Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 25 - Number 3
Publishing Date: setembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
A DIRECT DISCRETE-TIME REDUCED ORDER ROBUST MODEL REFERENCE ADAPTIVE CONTROL FOR GRID-TIED POWER CONVERTERS WITH LCL FILTER
Paulo Jefferson Dias de Oliveira Evald, Rodrigo V. Tambara, Hilton Abílio Gründling
361-372
http://dx.doi.org/10.18618/REP.2020.3.0039
English Data

Title: A DIRECT DISCRETE-TIME REDUCED ORDER ROBUST MODEL REFERENCE ADAPTIVE CONTROL FOR GRID-TIED POWER CONVERTERS WITH LCL FILTER

Keywords: Controller order, Grid Connected Converters, LCL filter, Robust Adaptive Control

Abstract
In this work is presented the design of a direct discrete-time reduced order RMRAC (Robust Model Reference Adaptive Control) applied to the grid-side current control of a static grid-tied voltage-fed 3-wire converter with LCL filter. The proposed controller tracks the reference model output as close as a higher order RMRAC, with similar performance. Furthermore, it rejects exogenous disturbances from grid without the need of conventional resonant controllers, often employed in this kind of application. To design the reduced order controller, the LCL filter is approximated to a first order transfer function, neglecting the capacitor influence. Besides, it is shown mathematically that capacitor is the main element that compounds the additive dynamics, which is considered as unmodelled dynamics to design the controller. Furthermore, experimental results performed in a TMS320F28335 Delfino microcontroller are presented and show the similarity of performance between proposed control method and higher order RMRAC, regarding to harmonics content, which indicate its feasibility.

References

[1] M. Liserre, T. Sauter, J. Y. Hung, “Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics”, IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 18– 37, 2010.

Doi: 10.1109/MIE.2010.935861

[2] T. Kåberger, “Progress of renewable electricity replacing fossil fuels”, Global Energy Interconnection, vol. 1, no. 1, pp. 48–52, 2018.

Doi: 10.14171/j.2096-5117.gei.2018.01.006

[3] R. Moradpour, H. Ardi, A. Tavakoli, “Design and implementation of a new SEPIC-based high step-up DC/DC converter for renewable energy applications”, IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1290–1297, 2017.

Doi: 10.1109/TIE.2017.2733421

[4] B. Gu, J. Dominic, J.-S. Lai, C.-L. Chen, T. LaBella, B. Chen, “High reliability and efficiency single-phase transformerless inverter for grid-connected photovoltaic systems”, IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2235–2245, 2012.

Doi: 10.1109/TPEL.2012.2214237

[5] E. Twining, D. G. Holmes, “Grid current regulation of a three-phase voltage source inverter with an LCL input filter”, IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 888–895, 2003.

Doi: 10.1109/TPEL.2003.810838

[6] R. Teodorescu, M. Liserre, P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems, Wiley & Sons – IEEE, 2011.

[7] M. Liserre, F. Blaabjerg, S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier”, IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1281–1291, 2005.

Doi: 10.1109/TIA.2005.853373

[8] J. Dannehl, F. W. Fuchs, P. B. Thogersen, “PI state space current control of grid-connected PWM converters with LCL filters”, IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2320–2330, 2010.

Doi: 10.1109/TPEL.2010.2047408

[9] G. Shen, D. Xu, L. Cao, X. Zhu, “An improved control strategy for grid-connected voltage source inverters with an LCL filter”, IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1899–1906, 2008.

Doi: 10.1109/TPEL.2008.924602

[10] M. Liserre, R. Teodorescu, F. Blaabjerg, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values”, IEEE Transactions on Power Electronics, vol. 21, no. 1, pp.263–272, 2006.

Doi: 10.1109/TPEL.2005.861185

[11] R. Pena-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, F. W. Fuchs, “Analysis of the passive damping losses in LCL-filter-based grid converters”, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2642–2646, 2012.

Doi: 10.1109/TPEL.2012.2222931

[12] J. Dannehl, C. Wessels, F. W. Fuchs, “Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters”, IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 380–388, 2008.

Doi: 10.1109/TIE.2008.2008774

[13] J. Dannehl, F. W. Fuchs, S. Hansen, P. B. Thogersen, “Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters”, IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1509–1517, 2010.

Doi: 10.1109/TIA.2010.2049974

[14] M. B. Saïd-Romdhane, M. W. Naouar, I. SlamaBelkhodja, E. Monmasson, “Robust active damping methods for LCL filter-based grid-connected converters”, IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6739–6750, 2016.

Doi: 10.1109/TPEL.2016.2626290

[15] G. Shen, X. Zhu, J. Zhang, D. Xu, “A new feedback method for PR current control of LCL-filter-based grid-connected inverter”, IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2033–2041, 2010.

Doi: 10.1109/TIE.2010.2040552

[16] Y. Jia, J. Zhao, X. Fu, “Direct grid current control of LCL-filtered grid-connected inverter mitigating grid voltage disturbance”, IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1532–1541, 2013.
Doi: 10.1109/TPEL.2013.2264098

[17] L. A. Maccari, C. L. do Amaral Santini, H. Pinheiro, R. C. de Oliveira, V. F. Montagner, “Robust optimal current control for grid-connected three-phase pulse-width modulated converters”, IET Power Electronics, vol. 8, no. 8, pp. 1490–1499, 2015.

Doi: 10.1049/iet-pel.2014.0787

[18] S. A. Khajehoddin, M. Karimi-Ghartemani, M. Ebrahimi, “Optimal and systematic design of current controller for grid-connected inverters”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 812–824, 2017.

Doi: 10.1109/JESTPE.2017.2737987

[19] I. J. Gabe, V. F. Montagner, H. Pinheiro, “Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter”, IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1444–1452, 2009.

Doi: 10.1109/TPEL.2009.2016097

[20] L. A. Maccari, J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. Oliveira, V. F. Montagner, “LMI-based control for grid-connected converters with LCL filters under uncertain parameters”, IEEE Transactionson Power Electronics, vol. 29, no. 7, pp. 3776–3785, 2013.

Doi: 10.1109/TPEL.2013.2279015

[21] R. Guzman, L. G. de Vicuna, J. Morales, M. Castilla, J. Miret, “Model-based active damping control for three-phase voltage source inverters with LCL filter”, IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5637–5650, 2016.
Doi: 10.1109/TPEL.2016.2605858

[22] G. G. Koch, L. A. Maccari, R. C. L. F. Oliveira, V. F. Montagner, “Robust H8 State Feedback Controllers Based on Linear Matrix Inequalities Applied to Grid-Connected Converters”, IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6021–6031, 2019.
Doi: 10.1109/TIE.2018.2870406

[23] L. T. Martins, M. Stefanello, H. Pinheiro, R. P. Vieira, “Current Control of Grid-Tied LCL-VSI with a Sliding Mode Controller in a Multiloop Approach”, IEEE Transactions on Power Electronics, 2019.
Doi: 10.1109/TPEL.2019.2905717

[24] R. Guzman, L. G. de Vicuña, M. Castilla, J. Miret, H. Martin, “Variable structure control in natural frame for three-phase grid-connected inverters with LCL filter”, IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4512–4522, 2017.
Doi: 10.1109/TPEL.2017.2723638

[25] N. Panten, N. Hoffmann, F. W. Fuchs, “Finite control set model predictive current control for grid-connected voltage-source converters with LCL filters: A study based on different state feedbacks”, IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5189–5200, 2015.
Doi: 10.1109/TIE.2017.2750627

[26] J. R. Massing, M. Stefanello, H. A. Grundling, H. Pinheiro, “Adaptive current control for grid-connected converters with LCL filter”, IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4681–4693, 2012.
Doi: 10.1109/TIE.2011.2177610

[27] J. M. Espi, J. Castello, R. Garcia-Gil, G. Garcera, E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters”, IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp. 3537–3546, 2010.
Doi: 10.1109/TIE.2010.2089945

[28] R. V. Tambara, J. R. Massing, H. Pinheiro, H. A. Gründling, “A digital RMRAC controller based on a modified RLS algorithm applied to the control of the output currents of an LCL-filter connected to the grid”, in 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1–8, IEEE, 2013.
Doi: 10.1109/EPE.2013.6634360

[29] R. V. Tambara, J. M. Kanieski, J. R. Massing, M. Stefanello, H. A. Gründling, “A Discrete-Time Robust Adaptive Controller Applied to Grid-Connected Converters with LCL Filter”, Journal of Control, Automation and Electrical Systems, vol. 28, no. 3, pp. 371–379, 2017.
Doi: 10.1007/s40313-017-0313-3

[30] M. H. Durgante, H. F. B. Plotzki, M. Stefanello, “Combined active damping with adaptive current control for converters with LCL filters”, in IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, pp. 520–525, IEEE, 2013.
Doi: 10.1109/IECON.2013.6699189

[31] M. Stefanello, J. R. Massing, R. P. Vieira, “Robust control of a grid-connected converter with an lcl-filter using a combined sliding mode and adaptive controller in a multi-loop framework”, in IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp. 003726–003731, IEEE, 2015.
Doi: 10.1109/IECON.2015.7392681

[32] C. He, J. Zhao, S. Zhang, K. Qu, “Adaptive current control strategy based on system sensitivity for grid-connected LCL-filter inverter in weak grid”, in 2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), pp. 418–423, IEEE, 2016.
Doi: 10.1109/ISGT-Asia.2016.7796422

[33] R. V. Tambara, L. G. Scherer, H. A. Gründling, “A discrete-time MRAC-SM applied to grid connected converters with LCL-filter”, in 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6, IEEE, 2018.
Doi: 10.1109/COMPEL.2018.8460061

[34] A. Benrabah, F. Khoucha, K. Marouani, A. Kheloui, A. Raza, D. Xu, “Improved Grid-Side Current Control of LCL-Filtered Grid-Tied Inverters Under Weak Grid Conditions”, in 2019 Algerian Large Electrical Network Conference (CAGRE), pp. 1–5, IEEE, 2019.
Doi: 10.1109/CAGRE.2019.8713303

[35] K. J. Åström, P. Hagander, J. Sternby, “Zeros of sampled systems”, Automatica, vol. 20, no. 1, pp. 31–38, 1984.

Doi: 10.1109/CDC.1980.271968

[36] H. Elliott, “Direct adaptive pole placement with application to nonminimum phase system”, IEEE Transactions on Automatic Control, vol. 27, no. 3, pp.720–722, 1982.
Doi: 10.1109/TAC.1982.1102963

[37] D. Janecki, “Direct adaptive pole placement for plants having purely deterministic disturbances”, IEEE Transactions on Automatic Control, vol. 32, no. 3, pp.187–189, 1987.
Doi: 10.1109/TAC.1987.1104541

[38] J. H. Kim, K. K. Choi, “Direct adaptive control with integral action for nonminimum phase systems”, IEEE Transactions on Automatic Control, vol. 32, no. 5, pp.438–442, 1987.
Doi: 10.1109/TAC.1987.1104629

[39] W. Duesterhoeft, M. W. Schulz, E. Clarke, “Determination of instantaneous currents and voltages by means of alpha, beta, and zero components”, Transactions of the American Institute of Electrical Engineers, vol. 70, no. 2, pp. 1248–1255, 1951.
Doi: 10.1109/T-AIEE.1951.5060554

[40] P. A. Ioannou, J. Sun, Robust adaptive control, Courier Corporation, 2012.

[41] P. Ioannou, K. Tsakalis, “A robust direct adaptive controller”, IEEE Transactions on Automatic Control, vol. 31, no. 11, pp. 1033–1043, 1986.
Doi: 10.1109/TAC.1986.1104168

[42] R. Lozano, J. Collado, S. Mondie, “Model reference robust adaptive control without a priori knowledge of the high frequency gain”, IEEE Transactions on Automatic Control, vol. 35, no. 1, pp. 71–78, 1990.
Doi: 10.23919/ACC.1988.4789820

[43] R. Cardoso, R. F. de Camargo, H. Pinheiro, H. A. Gründling, “Kalman filter based synchronisation methods”, IET Generation, Transmission & Distribution, vol. 2, no. 4, pp. 542–555, 2008.
Doi: 10.1049/iet-gtd:20070281

[44] L. Michels, R. De Camargo, F. Botteron, H. Grüdling, H. Pinheiro, “Generalised design methodology of second-order filters for voltage-source inverters with space-vector modulation”, IEE Proceedings-Electric Power Applications, vol. 153, no. 2, pp. 219–226, 2006.
Doi: 10.1049/ip-epa:20050010

[45] P. Ioannou, K. Tsakalis, “A robust discrete-time adaptive controller”, in 1986 25th IEEE Conference on Decision and Control, pp. 838–843, IEEE, 1986.
Doi: 10.1109/CDC.1986.267486

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.