Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 26 - Number 1
Publishing Date: março 2021
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: Federal University of Ceara
A DISCRETE-TIME ROBUST ADAPTIVE PI CONTROLLER FOR GRID-CONNECTED VOLTAGE SOURCE CONVERTER WITH LCL FILTER
Paulo Jefferson Dias de Oliveira Evald, Guilherme Vieria Hollweg, Rodrigo V. Tambara, Hilton Abílio Gründling
19-30
http://dx.doi.org/10.18618/REP.2021.1.0053
English Data

Title: A DISCRETE-TIME ROBUST ADAPTIVE PI CONTROLLER FOR GRID-CONNECTED VOLTAGE SOURCE CONVERTER WITH LCL FILTER

Keywords: Grid-connected Converter, LCL filter, Robust Adaptive Control

Abstract
In this work, it is presented a new direct discrete-time robust adaptive PI (Proportional Integral) Controller for grid-injected current control loop of a voltage source converter with LCL filter. The mathematical background is based on Robust Model Reference Adaptive Control theory. However, the proposed controller is straightforward, it does not need a reference model and has capability to track directly currents reference. This approach simplifies significantly controller design, resulting in a reformulation of parameters vector used for adaptation of adjustable gains. It turns the controller robust to unmodelled dynamics, while avoid the complexity inherent to the conventional high order adaptive controllers for grid-connected power systems. Besides, it is highlighted that proposed controller does not need resonant controllers for grid disturbance rejection, or require any knowledge of grid parameters, lines impedance or load power demand. Also, due to its simple structure, it is easily implemented and does not require a high processing capacity. Furthermore, the effectiveness of the control strategy in terms of reference tracking, harmonics content and robustness to the grid impedance variation is corroborated through experiments.

References

[1] P. K. Ndwali, J. G. Njiri, E. M. Wanjiru, “Optimal Operation Control of Microgrid Connected Photovoltaic-Diesel Generator Backup System Under Time of Use Tariff”, Journal of Control, Automation and Electrical Systems, pp. 1–14, aug. 2020.
Doi: 10.1007/s40313-020-00585-w

[2] R. Singh, R. C. Bansal, A. R. Singh, R. Naidoo, “Multi-objective optimization of hybrid renewable energy system using reformed electric system cascade analysis for islanding and grid connected modes of operation”, IEEE Access, vol. 6, pp. 47332–47354, sep. 2018.
Doi: 10.1109/ACCESS.2018.2867276

[3] V. Suresh, S. Sreejith, S. K. Sudabattula, V. K. Kamboj, “Demand response-integrated economic dispatch incorporating renewable energy sources using ameliorated dragonfly algorithm”, Electrical Engineering, vol. 101, no. 2, pp. 421–442, jun. 2019.
Doi: 10.1007/s00202-019-00792-y

[4] M. E. Meral, D. Çelik, “Comparison of SRF/PI-and STRF/PR-based power controllers for grid-tied distributed generation systems”, Electrical Engineering, vol. 100, no. 2, pp. 633–643, jun. 2018.
Doi: 10.1007/s00202-017-0530-6

[5] O. Noureldeen, I. Hamdan, “Design of robust intelligent protection technique for large-scale grid-connected wind farm”, Protection and Control of Modern Power Systems, vol. 3, no. 1, p. 17, jun. 2018.
Doi: 10.1186/s41601-018-0090-4

[6] S. Padmanaban, F. Blaabjerg, P. Wheeler, J. O. Ojo, A. H. Ertas, “High-voltage dc-dc converter topology for pv energy utilization, investigation and implementation”, Electric Power Components and Systems, vol. 45, no. 3, pp. 221–232, dec. 2017.
Doi: 10.1080/15325008.2016.1248251

[7] M. Bajaj, A. K. Singh, “An analytic hierarchy process-based novel approach for benchmarking the power quality performance of grid-integrated renewable energy systems”, Electrical Engineering, pp. 1–21, sep. 2020.
Doi: 10.1007/s00202-020-00938-3

[8] E. Ali, S. A. Elazim, A. Abdelaziz, “Optimal allocation and sizing of renewable distributed generation using ant lion optimization algorithm”, Electrical Engineering, vol. 100, no. 1, pp. 99–109, mar. 2018.

Doi: 10.1007/s00202-016-0477-z

[9] S. A. O. da Silva, L. B. G. Campanhol, V. D. Bacon, L. P. Sampaio, “Single-phase grid-connected photovoltaic system with active power line conditioning”, Eletrônica de Potência, vol. 20, no. 1, pp. 8–18, fev. 2015.
Doi: 10.18618/REP.2015.1.008018

[10] A. Farakhor, M. Abapour, M. Sabahi, “Design, analysis, and implementation of a multiport DC–DC converter for renewable energy applications”, IET Power Electronics, vol. 12, no. 3, pp. 465–475, mar. 2018.

Doi: 10.1049/iet-pel.2018.5633

[11] B. Sakallioglu, B. Esenboga, T. Demirdelen, M. Tümay, “Performance evaluation of phase-shifting transformer for integration of renewable energy sources”, Electrical Engineering, vol. 102, pp. 2025–2039, dec. 2020.
Doi: 10.1007/s00202-020-01011-9

[12] J. Storey, P. R. Wilson, D. Bagnall, “The optimized-string dynamic photovoltaic array”, IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1768–1776, apr. 2013.
Doi: 10.1109/TPEL.2013.2265497

[13] E. Twining, D. G. Holmes, “Grid current regulation of a three-phase voltage source inverter with an LCL input filter”, IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 888–895, may 2003.
Doi: 10.1109/TPEL.2003.810838

[14] R. Jadeja, A. D. Ved, S. K. Chauhan, T. Trivedi, “A random carrier frequency PWM technique with a narrowband for a grid-connected solar inverter”, Electrical Engineering, pp. 1–13, sep. 2020.

Doi: 10.1007/s00202-020-00989-6

[15] D. Li, Z. Zhu, “A novel integrated power quality controller for microgrid”, IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2848–2858, may 2014.

Doi: 10.1109/TIE.2014.2362495

[16] IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces”, IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), vol. 19, no. 5, pp. 1–138, apr. 2018.
Doi: 10.1109/IEEESTD.2018.8332112

[17] J. Dannehl, F. W. Fuchs, P. B. Thogersen, “PI state space current control of grid-connected PWM converters with LCL filters”, IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2320–2330, sep. 2010.

Doi: 10.1109/TPEL.2010.2047408

[18] R. Teodorescu, F. Blaabjerg, M. Liserre, P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters”, IEE Proceedings – Electric Power Applications, vol. 153, no. 5, pp. 750–762, sep. 2006.
Doi: 10.1049/ip-epa:20060008

[19] J. C. Moreno, J. M. E. Huerta, R. G. Gil, S. A. Gonzalez, “A robust predictive current control for three-phase grid-connected inverters”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1993–2004, jun. 2009.
Doi: 10.1109/TIE.2009.2016513

[20] J. Xu, S. Xie, T. Tang, “Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only”, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4746–4758, sep. 2014.
Doi: 10.1109/TIE.2013.2290771

[21] F. Huerta, D. Pizarro, S. Cobreces, F. J. Rodriguez, C. Giron, A. Rodriguez, “LQG servo controller for the current control of LCL grid-connected voltage-source converters”, IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4272–4284, nov. 2012.

Doi: 10.1109/TIE.2011.2179273

[22] L. A. Maccari, J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. Oliveira, V. F. Montagner, “LMI-based control for grid-connected converters with LCL filters under uncertain parameters”, IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3776–3785, jul. 2013.

Doi: 10.1109/TPEL.2013.2279015

[23] R. P. Vieira, L. T. Martins, J. R. Massing, M. Stefanello, “Sliding mode controller in a multiloop framework for a grid-connected VSI with LCL filter”, IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 4714–4723, jun. 2017.

Doi: 10.1109/TIE.2017.2772143

[24] L. A. Maccari Jr, D. M. Lima, G. G. Koch, V. F. Montagner, “Robust Model Predictive Controller Applied to Three-Phase Grid-Connected LCL Filters”, Journal of Control, Automation and Electrical Systems, vol. 31, pp. 447–460, apr. 2020.

Doi: 10.1007/s40313-019-00546-y

[25] M. F. Braga, C. F. Morais, L. A. Maccari, E. S. Tognetti, V. F. Montagner, R. C. L. F. Oliveira, P. L. D. Peres, “Robust stability analysis of grid-connected converters based on parameter-dependent lyapunov functions”, Journal of Control, Automation and Electrical Systems, vol. 28, no. 2, pp. 159–170, apr. 2017.

Doi: 10.1007/s40313-017-0301-7

[26] G. G. Koch, C. R. Osório, H. Pinheiro, R. C. Oliveira, V. F. Montagner, “Design Procedure Combining Linear Matrix Inequalities and Genetic Algorithm for Robust Control of Grid-Connected Converters”, IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1896–1906, mar./apr. 2019.

Doi: 10.1109/TIA.2019.2959604

[27] R. V. Tambara, J. R. Massing, H. Pinheiro, H. A. Gründling, “A digital RMRAC controller based on a modified RLS algorithm applied to the control of the output currents of an LCL-filter connected to the grid”, in 15th European Conference on Power Electronics and Applications (EPE), pp. 1–8, IEEE, sep. 2013.

Doi: 10.1109/EPE.2013.6634360

[28] J. R. Massing, M. Stefanello, H. A. Grundling, H. Pinheiro, “Adaptive current control for grid-connected converters with LCL filter”, IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4681–4693, dec. 2011.

Doi: 10.1109/TIE.2011.2177610

[29] R. V. Tambara, J. M. Kanieski, J. R. Massing, M. Stefanello, H. A. Gründling, “A Discrete-Time Robust Adaptive Controller Applied to Grid-Connected Converters with LCL Filter”, Journal of Control, Automation and Electrical Systems, vol. 28, no. 3, pp. 371–379, jun. 2017.

Doi: 10.1007/s40313-017-0313-3

[30] P. J. D. d. O. Evald, R. V. Tambara, H. A. Gründling, “A Discrete-Time Robust MRAC Applied on Grid-Side Current Control of a Grid-Connected Three-Phase Converter with LCL Filter”, in ELECTRIMACS 2019, pp. 45–57, Springer, 2020.

Doi: 10.1007/978-3-030-37161-6_4

[31] M. A. Soliman, H. M. Hasanien, H. Z. Azazi, E. E. El-Kholy, S. A. Mahmoud, “An adaptive fuzzy logic control strategy for performance enhancement of a grid-connected PMSG-based wind turbine”, IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3163–3173, jun. 2019.

Doi: 10.1109/TII.2018.2875922

[32] A. A. Mohamed, H. Metwally, A. El-Sayed, S. Selem, “Predictive neural network based adaptive controller for grid-connected PV systems supplying pulse-load”, Solar Energy, vol. 193, pp. 139–147, nov. 2019.
Doi: 10.1016/j.solener.2019.09.018

[33] L. C. Borin, C. R. D. Osório, G. G. Koch, T. S. Gabbi, R. C. L. F. de Oliveira, V. F. Montagner, “Robust control design procedure based on particle swarm optimization and Kharitonov 0 s theorem with an application for PMSMs”, Eletrônica de Potência, vol. 25, no. 2, pp. 219–229, jun. 2020.

Doi: 10.18618/REP.2020.2.0008

[34] C. R. D. Osório, G. G. Koch, I. Cleveston, L. C. Borin, F. H. Dupont, R. C. L. F. Oliveira, V. F. M. Montagner, “Otimização multiobjetivo para controle robusto aplicado a inversores conectados à rede”, Eletrônica de Potência, vol. 24, no. 1, pp. 107–115, mar. 2018.

Doi: 10.18618/REP.2019.1.0041

[35] W. C. Duesterhoeft, M. W. Schulz, E. Clarke, “Determination of instantaneous currents and voltages by means of alpha, beta, and zero components”, Transactions of the American Institute of Electrical Engineers, vol. 70, no. 2, pp. 1248–1255, jul. 1951.

Doi: 10.1109/T-AIEE.1951.5060554

[36] P.Ioannou, K.Tsakalis, “Robust discrete-time adaptive control”, in Adaptive and Learning Systems, pp.73–85, Springer, 1986.
Doi: 10.1007/978-1-4757-1895-9_5

[37] K. Ogata, Discrete-time control systems, vol. 2, Prentice Hall Englewood Cliffs, NJ, 1995.

[38] P. Ioannou, K. Tsakalis, “A robust direct adaptive controller”, IEEE Transactions on Automatic Control, vol. 31, no. 11, pp. 1033–1043, nov. 1986.
Doi: 10.1109/TAC.1986.1104168

[39] M. Liserre, F. Blaabjerg, S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier”, IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1281–1291, sep./oct. 2005.
Doi: 10.1109/TIA.2005.853373

[40] R. Cardoso, R. F. de Camargo, H. Pinheiro, H. A. Gründling, “Kalman filter based synchronisation methods”, IET Generation, Transmission & Distribution, vol. 2, no. 4, pp. 542–555, jul. 2008.
Doi: 10.1049/iet-gtd:20070281

[41] P. J. D. O. Evald, R. V. Tambara, H. A. Gründling, “A direct discrete-time reduced order robust model reference adaptive control for grid-tied power converters with LCL filter”, Eletrônica de Potência, vol. 25, no. 3, pp. 361–372, jul./sep. 2020.

Doi: 10.18618/REP.2020.3.0039

[42] P. Ioannou, K. Tsakalis, “A robust discrete-time adaptive controller”, in 25th Conference on Decision and Control (CDC), pp. 838–843, IEEE, dec. 1986.
Doi: 10.1109/CDC.1986.267486

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.