Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 27 - Number 1
Publishing Date: março 2022
Editor-in-Chief: Marcelo Lobo Heldwein
Editor Affiliation: Federal University of Santa Catarina
A GENERIC ROBUST MODEL-BASED ESTIMATOR FOR ACTIVE DAMPING OF SINGLE-PHASE GRID-TIED INVERTERS
Arthur de Abreu Romão, Newton da Silva
78-86
http://dx.doi.org/10.18618/REP.2022.1.0038
English Data

Title: A GENERIC ROBUST MODEL-BASED ESTIMATOR FOR ACTIVE DAMPING OF SINGLE-PHASE GRID-TIED INVERTERS

Keywords: Control, Current Estimator, Grid-connected inverters, Power quality, renewable energy, stability

Abstract
This paper presents the design and analysis of a signal estimator with improved robustness applied in the active damping (AD) of a single-phase grid-tied inverter with LCL low-pass filter. The proposed estimator is based on the mathematical model of the LCL filter, with resistors in series with the converter-side inductor and capacitor for improving robustness. The implementation method is also capable of estimate multiple filter signals. The control strategy presented uses a virtual resistor based AD, that suppresses the resonance ensuring stability and robustness, helping comply with power quality standards, such as IEEE 1547 and IEC 61727. The signal necessary for achieving the AD is obtained through the estimator, dismissing the use of additional sensors. The current control structure uses grid-side current feedback with proportional-resonant controller and harmonic compensation. The system is designed by the root locus approach to achieve stability despite grid parameter variance. The estimator and overall system is analyzed through mathematical modeling, computational simulation and experimental setup. The results show that the estimator presented is capable of providing the necessary AD feedback signal, even with grid inductance variation.

References

[1] A. Reznik, M. G. Simões, A. Al-Durra, S. M. Muyeen, “LCL Filter Design and Performance Analysis for Grid-Interconnected Systems”, IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1225–1232, 2014, doi:10.1109/TIA.2013.2274612.
Doi: 10.1109/TIA.2013.2274612

[2] P. S. N. Filho, T. A. S. Barros, M. G. Villalva, E. R. Filho, “Accurate Modeling for Analysis and Control Design of the DC-Side of the Grid-Tie VSC with LCL Filter”, Revista Eletrônica de Potência, vol. 22, no. 1, pp. 7–18, 2017, doi:10.18618/REP.2017.1.2639.
Doi: 10.18618/REP.2017.1.2639

[3] S. G. Parker, B. P. McGrath, D. G. Holmes, “Regions of Active Damping Control for LCL Filters”, IEEETransactions on Industry Applications, vol. 50, no. 1, pp. 424–432, 2014, doi:10.1109/TIA.2013.2266892.
Doi: 10.1109/TIA.2013.2266892

[4] P. Channegowda, V. John, “Filter Optimization for Grid Interactive Voltage Source Inverters”, IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4106–4114, 2010, doi:10.1109/TIE.2010.2042421.
Doi: 10.1109/TIE.2010.2042421

[5] R. Peña-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, F. W. Fuchs, “Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters”, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2642–2646, 2013, doi:10.1109/TPEL.2012.2222931.
Doi: 10.1109/TPEL.2012.2222931

[6] J. Dannehl, M. Liserre, F. Fuchs, “Filter-Based Active Damping of Voltage Source Converters With LCL Filter”, IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp. 3623–3633, 2011, doi: 10.1109/TIE.2010.2081952.
Doi: 10.1109/TIE.2010.2081952

[7] M. Ciobotaru, A. Rossé, L. Bede, B. Karanayil, V. G. Agelidis, “Adaptive Notch filter based active damping for power converters using LCL filters”, in 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–7, 2016, doi:10.1109/PEDG.2016.7527081.
Doi: 10.1109/PEDG.2016.7527081

[8] D. Pan, X. Ruan, C. Bao, W. Li, X. Wang, “CapacitorCurrent-Feedback Active Damping With Reduced Computation Delay for Improving Robustness of LCLType Grid-Connected Inverter”, IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3414–3427, 2014, doi:10.1109/TPEL.2013.2279206.
Doi: 10.1109/TPEL.2013.2279206

[9] Z. Xin, P. C. Loh, X. Wang, F. Blaabjerg, Y. Tang, “Highly Accurate Derivatives for LCLFiltered Grid Converter With Capacitor Voltage Active Damping”, IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3612–3625, 2016, doi: 10.1109/TPEL.2015.2467313.
Doi: 10.1109/TPEL.2015.2467313

[10] T. Liu, J. Liu, Z. Liu, Z. Liu, “A Study of Virtual Resistor-Based Active Damping Alternatives for LCL Resonance in Grid-Connected Voltage Source Inverters”, IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 247–262, 2020, doi: 10.1109/TPEL.2019.2911163.
Doi: 10.1109/TPEL.2019.2911163

[11] M. A. Gaafar, G. M. Dousoky, M. Shoyama, “Robustness analysis for observer based active damping of LCL filter at different resonant frequencies”, in 2015 IEEE International Telecommunications Energy Conference (INTELEC), pp. 1–6, 2015, doi:10.1109/INTLEC.2015.7572390.
Doi: 10.1109/INTLEC.2015.7572390

[12] M. Su, B. Cheng, Y. Sun, Z. Tang, B. Guo, Y. Yang, F. Blaabjerg, H. Wang, “Single-Sensor Control of LCL-Filtered Grid-Connected Inverters”, IEEE Access, vol. 7, pp. 38481–38494, 2019, doi: 10.1109/ACCESS.2019.2906239.
Doi: 10.1109/ACCESS.2019.2906239

[13] R. A. Liston, E. G. Carati, R. Cardoso, J. P. da Costa, C. M. O. Stein, “A Robust Design of Active Damping With a Current Estimator for Single-Phase Grid-Tied Inverters”, IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4672–4681, 2018, doi: 10.1109/TIA.2018.2838074.
Doi: 10.1109/TIA.2018.2838074

[14] S. M. Machado, L. B. G. Campanhol, N. da Silva, I. A. I. Millán, “Grid-Connection strategy with reduced current spikes for grid-tie module-integrated converter”, in 2017 IEEE PES Innovative Smart Grid Technologies Conference – Latin America (ISGT Latin America), pp. 1–6, 2017, doi:10.1109/ISGTLA.2017.8126688.
Doi: 10.1109/ISGTLA.2017.8126688

[15] S. J. M. Machado, R. A. F. Pereira, C. H. L. Oliveira, N. da Silva, “Enhancing harmonic rejection capability of grid-connected moduleintegrated converters”, in 2017 Brazilian Power Electronics Conference (COBEP), pp. 1–6, 2017, doi:10.1109/COBEP.2017.8257371.
Doi: 10.1109/COBEP.2017.8257371

[16] R. A. S. Kraemer, E. G. Carati, J. P. da Costa, R. Cardoso, C. M. O. Stein, “Robust Design of Control Structure for Three-Phase Grid-Tied Inverters”, in 2018 13th IEEE International Conference on Industry Applications (INDUSCON), pp. 636–643, 2018, doi: 10.1109/INDUSCON.2018.8627068.
Doi: 10.1109/INDUSCON.2018.8627068

[17] A. G. Yepes, F. D. Freijedo, J. Doval-Gandoy, O. López, J. Malvar, P. Fernandez-Comesaña, “Effects of Discretization Methods on the Performance of Resonant Controllers”, IEEE Transactions on Power Electronics, vol. 25, no. 7, pp. 1692–1712, 2010, doi: 10.1109/TPEL.2010.2041256.
Doi: 10.1109/TPEL.2010.2041256

[18] R. Peña-Alzola, M. Liserre, F. Blaabjerg, M. Ordonez, Y. Yang, “LCL-Filter Design for Robust Active Damping in Grid-Connected Converters”, IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2192–2203, 2014, doi:10.1109/TII.2014.2361604.
Doi: 10.1109/TII.2014.2361604

[19] S. G. Parker, B. P. McGrath, D. G. Holmes, “Regions of Active Damping Control for LCL Filters”, IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 424–432, 2014, doi:10.1109/TIA.2013.2266892.
Doi: 10.1109/TIA.2013.2266892

[20] S. Buso, P. Mattavelli, Digital Control in Power Electronics, 2006, doi: 10.2200/S00047ED1V01Y200609PEL002.
Doi: 10.2200/S00047ED1V01Y200609PEL002

[21] C. P. Basso, Linear Circuit Transfer Functions: An Introduction to Fast Analytical Techniques, pp. 41– 115, 2016, doi:10.1002/9781119236344.ch02.
Doi: 10.1002/9781119236344.ch02

[22] “IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces”, IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1–138, 2018, doi:10.1109/IEEESTD.2018.8332112.
Doi: 10.1109/IEEESTD.2018.8332112

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.