Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 24 - Number 2
Publishing Date: junho 2019
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
A STRATEGY TO ELIMINATE INSTANTANEOUS ACTIVE POWER OSCILLATIONS AND REDUCE HIGH CURRENTS IN THE DFIG DURING ASYMMETRIC VOLTAGE SAGS
Joacillo Luz Dantas, Paulo Henrique Pereira Silva, Jean Marcos Lobo da Fonseca, Carlos Gustavo Castelo Branco, Francisco Kleber de Araújo Lima
188 - 195
http://dx.doi.org/10.18618/REP.2019.2.0021
English Data

Title: A STRATEGY TO ELIMINATE INSTANTANEOUS ACTIVE POWER OSCILLATIONS AND REDUCE HIGH CURRENTS IN THE DFIG DURING ASYMMETRIC VOLTAGE SAGS

Keywords: Doubly-Fed Induction Generator, Instantaneous active and reactive power, Unbalanced voltage sag, wind power generation

Abstract

Wind turbines are widespread around the globe, and the number of windfarms connected to the grid is continually increasing. The Doubly-Fed Induction Generator (DFIG) plays an important role, since it is one of the most used configurations for wind power generation. DFIG-based wind plants, however, are very sensitive to grid disturbances, specially to voltage sags, as these machines have their stator circuit directly connected to the grid. Voltage sags can result in oscillations in active power, torque and DC link voltage, as well as damage the machine and the back-to-back converter due to high currents that arise in such type of contingency. This work proposes a control strategy applied to the rotor-side converter (RSC) of the DFIG, in order to protect the machine and the back-to-back converter during voltage sags. The aim of the control strategy is to reduce the machine currents and also to remove the oscillating active power caused by unbalanced voltage sags.

References

[1] S. Müller, M. Deicke, R. W. De Doncker, “Doubly Fed Induction Generator Systems for Wind Turbines”, IEEE Industry Application Magazine, vol. 8, no. 3, pp. 26–33, June 2002, doi:10.1109/TPEL.2008.921157.

[2] G. Abad, J. Lopez, M. Rodriguez, L. Marroyo, G. Iwanski, Doubly fed induction machine: modeling and control for wind energy generation, vol. 85, John Wiley & Sons, 2011.

[3] E. A. Mohamed, Y. Qudaih, Y. Mitani, M. Ebeed, “Study the Different effects of SFCL and Outer Crowbar on Fault Ride-through Capability Enhancement of Wind Farms”, Energy Procedia, vol. 100, pp. 127–136, November 2016.

[4] I. Boldea, Variable Speed Generators, Taylor e Francis, 2006.

[5] F. K. A. Lima, J. L. Dantas, C. G. C. Branco, “Reactive power control of DFIG-based wind turbine during voltage sag”, in IECON-38th Annual Conference on IEEE Industrial Electronics Society, pp. 4321–4325, IEEE, October 2012.

[6] M. H. Bollen, M. H. Bollen, Understanding power quality problems: voltage sags and interruptions, vol. 445, IEEE press New York, 2000.

[7] J. A. Martinez, J. Martin-Arnedo, “Voltage Sag Studies in Distribution Networks – Part II: Voltage Sag Assessment”, IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1679–1688, June 2006.

[8] J. L. Dantas, F. K. A. Lima, C. G. C. Branco, J. M. Guerrero, J. C. Vasquez, “A robust andfast generic voltage sag detection technique”, in IEEE 13th Brazilian Power Electronics Conferenceand 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1–6, November 2015.

[9] P. Tourou, C. Sourkounis, “DFIG-based wind energyconversion systems under unbalanced voltage dips”, in Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), International Symposium on, pp. 877–882, June 2014.

[10] J. Morren, J, S. W. H. De Haan, “Ridethrough of wind turbines with doubly-fed induction generatorduring a voltage dip”, Energy Conversion, IEEE Transactions on, vol. 20, no. 2, pp. 435–441, 2005, doi: 10.1109/TEC.2005.845526.

[11] D. Xie, Z. Xu, L. Yang, J. Ostergaard, Y. Xue, K. P.Wong, “A Comprehensive LVRT Control Strategy for DFIG Wind Turbines With Enhanced Reactive Power Support”, Power Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–9, February 2013, doi: 10.1109/TPWRS.2013.2240707.

[12] J. Solís-Chaves, M. S. Barreto, M. B. Salles, V. M. Lira, R. V. Jacomini, A. J. Sguarezi Filho, “A direct power control for DFIG under a three phase symmetrical voltage sag condition”, Control Engineering Practice, vol. 65, pp. 48–58, August 2017.

[13] N. Zhou, F. Sun, Q.Wang, X. Meng, “A flexible power control strategy for rotor-side converter of DFIG under unbalanced grid voltage sags”, International Journal of Electrical Power & Energy Systems, vol. 90, pp. 64– 75, September 2017.

[14] V. F. Mendes, H. Pereira, F. F. Matos, W. Hofmann, S. R. Silva, “Doubly-fed induction generator control during unbalanced grid conditions”, in IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1–6, February 2015.

[15] S. Xiao, G. Yang, H. Zhou, H. Geng, “An LVRT Control Strategy Based on Flux Linkage Tracking for DFIG-Based WECS”, Industrial Electronics, IEEE Transactions on, vol. 60, no. 7, pp. 2820–2832, July 2013, doi:10.1109/TIE.2012.2205354.

[16] M. K. Dö¸so˘glu, “A new approach for low voltage ride through capability in DFIG based wind farm”, International journal of electrical power & energy systems, vol. 83, pp. 251–258, December 2016.

[17] J. J. Justo, F. Mwasilu, J.-W. Jung, “Enhanced crowbarless FRT strategy for DFIG based wind turbines under three-phase voltage dip”, Electric Power Systems Research, vol. 142, pp. 215–226, January 2017.

[18] S. Yang, T. Zhou, D. Sun, Z. Xie, X. Zhang, “A SCR crowbar commutated with power converter for DFIG-based wind turbines”, International Journal of Electrical Power & Energy Systems, vol. 81, pp. 87– 103, October 2016.

[19] M. Gholizadeh, S. Tohidi, A. Oraee, H. Oraee, “Appropriate crowbar protection for improvement of brushless DFIG LVRT during asymmetrical voltage dips”, International Journal of Electrical Power & Energy Systems, vol. 95, pp. 1–10, February 2018.

[20] F. K. A. Lima, A. Luna, P. Rodriguez, E. Watanabe, F. Blaabjerg, “Rotor Voltage Dynamics in the Doubly Fed Induction Generator During GridFaults”, Power Electronics, IEEE Transactions on, vol. 25, no. 1, pp. 118–130, August 2010, doi:10.1109/TPEL.2009.2025651.

[21] Y. Liao, H. Li, J. Yao, K. Zhuang, “Operationand control of a grid-connected DFIG-based wind turbine with series grid-side converter during network unbalance”, Electric Power Systems Research, vol. 81, no. 1, pp. 228–236, 2011.

[22] A. Luna, F. K. A. Lima, D. Santos, P. Rodriguez, E. H. Watanabe, S. Arnaltes, “Simplified Modeling of a DFIG for Transient Studies in Wind Power Applications”, IEEE Transactions on IndustrialElectronics, vol. 58, no. 1, pp. 9–20, January 2011, doi: 10.1109/TIE.2010.2044131.

[23] A. E. Leon, J. M. Mauricio, J. A. Solsona, “Fault Ride-Through Enhancement of DFIG-Based Wind Generation Considering Unbalanced and Distorted Conditions”, Energy Conversion, IEEE Transactions on, vol. 27, no. 3, pp. 775–783, June 2012, doi: 10.1109/TEC.2012.2204756.

[24] D. Ananth, G. N. Kumar, “Fault ride-through enhancement using an enhanced field oriented control technique for converters of grid connected DFIG and STATCOM for different types of faults”, ISA transactions, vol. 62, pp. 2–18, May 2016.

[25] L. Xu, Y. Wang, “Dynamic modeling and control of DFIG-based wind turbines under unbalanced networkconditions”, IEEE Transactions on Power Systems, vol. 22, no. 1, pp. 314–323, February 2007.

[26] L. Xu, et al., “Coordinated control of DFIG’s rotor and grid side converters during network unbalance”, IEEE Transactions on Power Electronics PE, vol. 23, no. 3,
p. 1041, May 2008.

[27] J. P. da Costa, H. Pinheiro, “Controle do gerador de inducão duplamente alimentado durante distúrbios na rede elétrica: Crowbar ativo e suporte de reativos”, in Proc. XVII Brazilian Conf. Automatica, pp. 01–07,
2008.

[28] A. Luna, F. Lima, P. Rodriguez, E. Watanabe, R. Teodorescu, “Comparison of power control strategies for DFIG wind turbines”, in Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, pp. 2131–2136, January 2008.

[29] D. Xiang, L. Ran, P. J. Tavner, S. Yang, “Control of a doubly fed induction generator in a wind turbine during grid fault ride-through”, IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 652–662, August 2006.

[30] F. d. A. Lima, E. Watanabe, P. Rodriguez, A. Luna,et al., “Controle de gerador de inducão duplamente alimentado diante de afundamentos de tensão”, Eletrônica de Potência, vol. 3, no. 14, pp. 189–199, August 2009.

[31] S. Karimi, A. Gaillard, P. Poure, S. Saadate, “FPGAbased real-time power converter failure diagnosis for wind energy conversion systems”, IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4299– 4308, November 2008.

[32] J. P. da Costa, H. Pinheiro, “Nova estratégia de controle de alto desempenho para operação do GIDA durante distúrbios assimétricos na rede elétrica”, Revista Eletrônica de Potência, vol. 13, no. 4, pp. 305–315, November 2009.

[33] H. Akagi, E. H. Watanabe, M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, 2nd ed., John Wiley & Sons, Inc., New York, N.Y., 2007.

[34] R. Teodorescu, M. Liserre, P. Rodriguez, Grid converters for photovoltaic and wind power systems, vol. 29, John Wiley & Sons, 2011.

[35] G. F. Franklin, J. D. Powell, A. Emami-Naeini,Marroyo, Feedback Control of Dynamic Systems, Prentice-Hall, 2010.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.