Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 27 - Number 1
Publishing Date: março 2022
Editor-in-Chief: Marcelo Lobo Heldwein
Editor Affiliation: Federal University of Santa Catarina
A Transformerless Common-Ground Two-Switch Single-Phase Inverter for Battery Energy Storage System Applications
Gabriel de Oliveira Assunção, Ivo Barbi
15-25
http://dx.doi.org/10.18618/REP.2021.1.0022
English Data

Title: A TRANSFORMERLESS COMMON-GROUND TWO-SWITCH SINGLE-PHASE INVERTER FOR BATTERY ENERGY STORAGE SYSTEM APPLICATIONS

Keywords: Battery energy storage system, Common-ground inverter, Leakage Current, Parasitic capacitance, Transformerless inverter

Abstract
This paper proposes a transformerless common-ground single-phase inverter for battery energy storage system (BESS) applications. With regard to conventional converters operating as a voltage source inverter (VSI), the proposed converter offers the advantage of a common connection between the battery bank negative terminal and the ground. Hence, the common-mode voltage becomes continuous while common-mode currents flowing through parasitic capacitances located between the battery bank and the grounded metallic frame are eliminated, allowing operation without a transformer. This new topology has only two power semiconductors, two inductors and one capacitor, without the need for a filter on the AC grid side. The converter operation is described and the relevant equations for sizing are presented along with the main characteristics. A 1 kW non-optimized prototype was dimensioned, built and tested to validate in practice the theoretical analysis, and a maximum efficiency of 95.25% was obtained. Due to the simplicity, low number of active components, no clamping circuit requirement and the common-ground, this topology is a very interesting option for the above-mentioned application.

References

[1] A. K. Raji, M. T. E. Kahn, “Investigation of common-mode voltage and ground leakage current of grid-connected transformerless PV inverter topology”, in Proc. of Journal of Energy in South. Afr., vol. 26, nº 1, pp. 20-24, Feb. 2015.
Doi: 10.17159/2413-3051/2015/v26i1a2217

[2] C. A. Varghese, M. Karpagam, T. Alwarsamy, “Analysis of leakage current and DC injection in transformerless PV inverter topologies”, in Proc. of Int. Journal of Eng. and Tech., vol. 6, nº 1, pp. 453-459, Feb. 2014.

[3] R. Teodorescu, M. Liserre, P. Rodriguez, Grid converters for photovoltaic and wind power systems, John Wiley & Sons, Ltd., 1st ed., 2011.

[4] B. Shaffer, H. A. Hassan, M. J. Scott, S. U. Hasan, G. E. Town, Y. Siwakoti, “A common-ground single-phase five-level transformerless boost inverter for photovoltaic applications”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 368-374, doi: 10.1109/APEC.2018.8341037.
Doi: 10.1109/APEC.2018.8341037

[5] S. A. Khan, Y. Guo, J. Zhu, “A high efficiency transformerless PV grid-connected inverter with leakage current suppression”, 2016 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, 2016, pp. 190-193, doi: 10.1109/ICECE.2016.7853888.
Doi: 10.1109/ICECE.2016.7853888

[6] M. Islam, S. Mekhilef, M. Hasan, “Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review”, Renewable and Sustain. Energy Rev., vol. 45, pp. 69-86, May 2015.
Doi: 10.1016/j.rser.2015.01.009

[7] M. Tofigh Azary, M. Sabahi, E. Babaei, F. Abbasi Aghdam Meinagh, “Modified Single-Phase Single-Stage Grid-Tied Flying Inductor Inverter With MPPT and Suppressed Leakage Current”, IEEE Transactions on Industrial Electronics, vol. 65, nº 1, pp. 221-231, Jan. 2018, doi: 10.1109/TIE.2017.2719610.
Doi: 10.1109/TIE.2017.2719610

[8] Y. P. Siwakoti, F. Blaabjerg, “A novel flying capacitor transformerless inverter for single-phase grid connected solar photovoltaic system”, 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, 2016, pp. 1-6, doi: 10.1109/PEDG.2016.7527086.
Doi: 10.1109/PEDG.2016.7527086

[9] J. F. Ardashir, M. Sabahi, S. H. Hosseini, F. Blaabjerg, E. Babaei and G. B. Gharehpetian, “A Single-Phase Transformerless Inverter With Charge Pump Circuit Concept for Grid-Tied PV Applications”, IEEE Transactions on Industrial Electronics, vol. 64, nº 7, pp. 5403-5415, July 2017, doi: 10.1109/TIE.2016.2645162.
Doi: 10.1109/TIE.2016.2645162

[10] S. U. Hasan, B. Shaffer, H. A. Hassan, M. J. Scott, Y. Siwakoti, G. E. Town, “Common-ground transformerless inverter for solar photovoltaic module”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 167-172, doi: 10.1109/APEC.2018.8341004.
Doi: 10.1109/APEC.2018.8341004

[11] SMA Solar Technology AG, “Duennschicht-TI-UPT114630 Versão 3.0: Informação técnica – tecnologia de módulos”. [Online]. Available: http://files.sma.de/dl/7418/Duennschicht-TI-UPT114630.pdf, Accessed on: Jan. 21, 2018.

[12] L. Ma et al., “Leakage current analysis of single-phase transformer-less grid-connected PV inverters”, IECON 2015 – 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015, pp. 000887-000892, doi: 10.1109/IECON.2015.7392211.
Doi: 10.1109/IECON.2015.7392211

[13] Y. Gu, W. Li, Y. Zhao, B. Yang, C. Li, X. He, “Transformerless Inverter With Virtual DC Bus Concept for Cost-Effective Grid-Connected PV Power Systems”, IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 793-805, Feb. 2013, doi: 10.1109/TPEL.2012.2203612.
Doi: 10.1109/TPEL.2012.2203612

[14] H. Patel, V. Agarwal, “A Single-Stage Single-Phase Transformer-Less Doubly Grounded Grid-Connected PV Interface”, IEEE Transactions on Energy Conversion, vol. 24, nº 1, pp. 93-101, March 2009, doi: 10.1109/TEC.2008.2006551.
Doi: 10.1109/TEC.2008.2006551

[15] M. Verma, S. Gangavarapu, A. K. Rathore, “Analysis and Design of a Novel Transformer-less-Inverter in Grid-Connected Photovoltaic System”, 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 2019, pp. 79-84, doi: 10.1109/ICIEA.2019.8834150.
Doi: 10.1109/ICIEA.2019.8834150

[16] A. Sarikhani, M. M. Takantape, M. Hamzeh, “A Transformerless Common-Ground Three-Switch Single-Phase Inverter for Photovoltaic Systems”, IEEE Transactions on Power Electronics, vol. 35, nº 9, pp. 8902-8909, Sept. 2020, doi: 10.1109/TPEL.2020.2971430.
Doi: 10.1109/TPEL.2020.2971430

[17] B. Gu, J. Dominic, B. Chen and J. Lai, “A high-efficiency single-phase bidirectional AC-DC converter with miniminized common mode voltages for battery energy storage systems”, 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 5145-5149, doi: 10.1109/ECCE.2013.6647396.
Doi: 10.1109/ECCE.2013.6647396

[18] S. Thomas, M. Stieneker, R. W. De Doncker, “Development of a modular high-power converter system for battery energy storage systems”, Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, 2011, pp. 1-10.

[19] A. Ginart, A. Salazar, R. Liou, “Transformerless Bidirectional Inverter for Residential Battery Storage Systems”, 2016 IEEE Green Technologies Conference (GreenTech), Kansas City, MO, 2016, pp. 18-23, doi: 10.1109/GreenTech.2016.11.
Doi: 10.1109/GreenTech.2016.11

[20] T. B. Reddy, D. Linden, Linden’s Handbook of Batteries, Mcgraw-hill, 4th ed., 2011.

[21] S. Kratz, P. Hanses, B. Krueger, R. Wegener, S. Soter, “Integration of Second Life Batteries into a Smart Overhead Contact System based on SiC-Technology”, 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2019, pp. 1-5, doi: 10.1109/ITEC.2019.8790484.
Doi: 10.1109/ITEC.2019.8790484

[22] W. -. Oh, S. -. Han, S. -. Choi, G. -. Moon, “Three Phase Three-Level PWM Switched Voltage Source Inverter With Zero Neutral Point Potential,” IEEE Transactions on Power Electronics, vol. 21, nº 5, pp. 1320-1327, Sept. 2006, doi: 10.1109/TPEL.2006.880300.
Doi: 10.1109/TPEL.2006.880300

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.