Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 26 - Number 3
Publishing Date: setembro 2021
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: Federal University of Ceará
ANÁLISE DE UMA PROPOSTA DE CONDICIONADOR DE POTÊNCIA NA GERAÇÃO FOTOVOLTAICA PARA MELHORAR A QUALIDADE DE ENERGIA
Jaqueline Oliveira Rezende, Geraldo C. Guimarães, Paulo Henrique Oliveira Rezende, Thales Lima Oliveira, Leonardo Rosenthal Caetano Silva, nderson Rodrigo Piccini
268-278
http://dx.doi.org/10.18618/REP.2021.3.0004
Portuguese Data

Palavras Chaves: qualidade da energia, Sistema Fotovoltaico

Resumo
Neste artigo, um condicionador de potência de quatro fios é proposto para conectar os painéis fotovoltaicos à rede elétrica. Este condicionador visa injetar potência ativa na rede e, ao mesmo tempo, melhorar a qualidade da energia quando há cargas desequilibradas e não lineares no sistema elétrico. Assim, são realizadas simulações computacionais para uma rede elétrica composta por dois sistemas fotovoltaicos conectados a um sistema elétrico e um conjunto de cargas com características desequilibradas, harmônicas e lineares. Inicialmente, os dois sistemas fotovoltaicos são conectados à rede por meio de inversores trifásicos. Em seguida, um dos inversores é substituído pelo condicionador de potência proposto. Com este estudo, constatou-se que o condicionador de potência proposto utilizado para conectar a geração fotovoltaica à rede elétrica contribui significativamente para suprimir correntes harmônicas e desequilibradas, trazendo melhorias significativas na qualidade de energia do sistema elétrico analisado.

English Data

Title: ANALYSIS OF A PROPOSED POWER CONDITIONER IN PHOTOVOLTAIC GENERATION TO IMPROVE POWER QUALITY

Keywords: Photovoltaic System, Power quality

Abstract
In this article, a four-wire power conditioner is proposed to connect the photovoltaic panels to the power grid. This conditioner aims to inject active power into the network, and at the same time, improve the quality of energy when there are unbalanced and nonlinear loads in the electrical system. Thus, computer simulations are carried out for an electrical network consisting of two photovoltaic systems connected to an electrical system and a set of loads with unbalanced, harmonic and linear characteristics. Initially, the two photovoltaic systems are connected to the network by means of three-phase inverters. Then, one of the inverters is replaced by the proposed power conditioner. With this study, it was found that the proposed power conditioner used to connect the photovoltaic generation to the grid contributes significantly to suppress harmonic and unbalanced currents, bringing significant improvements in the power quality of the analyzed electrical system.

References

[1] Y. Zhu and J. Fei, “Disturbance Observer Based Fuzzy Sliding Mode Control of PV Grid Connected Inverter,” IEEE Access, vol. 6, pp. 21202–21211, 2018, doi: 10.1109/ACCESS.2018.2825678.
Doi: 10.1109/ACCESS.2018.2825678

[2] B. Han, B. Bae, H. Kim, and S. Baek, “Combined operation of unified power-quality conditioner with distributed generation,” IEEE Trans. Power Deliv., vol. 21, no. 1, pp. 330–338, 2006, doi:10.1109/TPWRD.2005.852843.
Doi: 10.1109/TPWRD.2005.852843

[3] M. Davari, S. M. Aleemran, H. Nafisi, I. Salabeigi, and G. B. Gharehpetian, “Modeling the combination of UPQC and photovoltaic arrays with Multi-Input Single-Output DC-DC converter,” in 2009 IEEE International Conference on Industrial Technology, 2009, pp. 1–6, doi: 10.1109/ICIT.2009.4939547.
Doi: 10.1109/ICIT.2009.4939547

[4] S. Sindhu, M. R. Sindhu, and T. N. P. Nambiar, “Implementation of photovoltaic integrated unified power conditioner for power quality enhancement,” in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016, pp. 1–6, doi: 10.1109/PEDES.2016.7914305.
Doi: 10.1109/PEDES.2016.7914305

[5] S. K. Dash and P. K. Ray, “Novel PV-tied UPQC topology based on a new model reference control scheme and integral plus sliding mode dc-link controller,” Int. Trans. Electr. Energy Syst., vol. 28, no. 7, p. e2564, Jul. 2018, doi: 10.1002/etep.2564
Doi: 10.1002/etep.2564

[6] P. Kumar, A. Kumar, and V. Gupta, “Design and implementation of solar PV fed UPQC with advanced MPPT technique,” in 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI), 2017, pp. 1–9, doi: 10.1109/ICICCIS.2017.8660829.
Doi: 10.1109/ICICCIS.2017.8660829

[7] S. Devassy and B. Singh, “Discrete SOGI based control of solar photovoltaic integrated unified power quality conditioner,” in 2016 National Power Systems Conference (NPSC), 2016, pp. 1–6, doi: 10.1109/NPSC.2016.7858966.
Doi: 10.1109/NPSC.2016.7858966

[8] A. Patel, H. D. Mathur, and S. Bhanot, “A new SRF-based power angle control method for UPQC-DG to integrate solar PV into grid,” Int. Trans. Electr. Energy Syst., vol. 29, no. 1, p. e2667, Jan. 2019, doi: 10.1002/etep.2667.
Doi: 10.1002/etep.2667

[9] A. Awasthi and D. Patel, “Implementation of adaptive hysteresis current control technique for shunt active power conditioner and its comparison with conventional hysteresis current control technique,” in 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2017, pp. 1–6, doi: 10.1109/SPICES.2017.8091304.
Doi: 10.1109/SPICES.2017.8091304

[10] C. Y. Jeong, J. G. Cho, Y. Kang, G. H. Rim, and E. H. Song, “A 100 kVA power conditioner for three-phase four-wire emergency generators,” in PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), 1998, vol. 2, pp. 1906–1911 vol.2, doi: 10.1109/PESC.1998.703442.
Doi: 10.1109/PESC.1998.703442

[11] I. Vechiu, G. Gurguiatu, and E. Rosu, “Advanced Active Power Conditioner to improve power quality in microgrids,” in 2010 Conference Proceedings IPEC, 2010, pp. 728–733, doi: 10.1109/IPECON.2010.5697021.
Doi: 10.1109/IPECON.2010.5697021

[12] L. Zhang, P. C. Loh, and F. Gao, “An integrated nine-switch power conditioner,” in The 2010 International Power Electronics Conference – ECCE ASIA -, 2010, pp. 2663–2669, doi: 10.1109/IPEC.2010.5542338.
Doi: 10.1109/IPEC.2010.5542338

[13] R. A. Wanjari, A. B. Parit, and H. T. Jadhav, “An integrated eight-switch power conditioner for current and voltage profile improvement,” in 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 2017, pp. 1–6, doi: 10.1109/ICCPCT.2017.8074271
Doi: 10.1109/ICCPCT.2017.8074271

[14] S. Devassy and B. Singh, “PLL-less d-q control of solar PV integrated UPQC,” in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016, pp. 1–6, doi: 10.1109/PEDES.2016.7914293.
Doi: 10.1109/PEDES.2016.7914293

[15] M. C. Cavalcanti, G. M. S. Azevedo, B. A. Amaral, and F. A. S. Neves, “Unified power quality conditioner in a grid-connected photovoltaic system,” Electr. Power Qual. Util. J., vol. 12, nr 2, pp. 59–69, 2006

[16] Amirullah, A. Soeprijanto, Adiananda, and O. Penangsang, “Power Transfer Analysis Using UPQC-PV System Under Sag and Interruption With Variable Irradiance,” in 2020 International Conference on Smart Technology and Applications (ICoSTA), 2020, pp. 1–7, doi: 10.1109/ICoSTA48221.2020.1570615953.
Doi: 10.1109/ICoSTA48221.2020.1570615953

[17] A. Patel, S. K. Yadav, H. D. Mathur, S. Bhanot, and R. C. Bansal, “Optimum sizing of PV based UPQC-DG with improved power angle control,” Electr. Power Syst. Res., vol. 182, p. 106259, 2020, doi: https://doi.org/10.1016/j.epsr.2020.106259.
Doi: 10.1016/j.epsr.2020.106259

[18] G. M. Pelz, S. A. O. da Silva, and L. P. Sampaio, “Distributed generation integrating a photovoltaic-based system with a single- to three-phase UPQC applied to rural or remote areas supplied by single-phase electrical power,” Int. J. Electr. Power Energy Syst., vol. 117, p. 105673, 2020, doi: https://doi.org/10.1016/j.ijepes.2019.105673.
Doi: 10.1016/j.ijepes.2019.105673

[19] Solar Hub, “PV Module SPR-415E-WHT-D Details,” 2019. [Online]. Available: http://www.solarhub.com/product-catalog/pv-modules/4197-SPR-415E-WHT-D-SunPower.

[20] M. Golzar, H. Van Khang, and A. M. M. Versland, “Control of ultra-high switching frequency power converters using virtual flux-based direct power control,” in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 2017, pp. 1–6, doi: 10.1109/ICEMS.2017.8055976.
Doi: 10.1109/ICEMS.2017.8055976

[21] B. Callanan, “Application considerations for Silicon Carbide MOSFETs.” Cree Inc.

[22] L. Abbatelli, M. Macauda, and G. Catalisano, “Fully SiC based high efficiency boost converter,” in 2014 IEEE Applied Power Electronics Conference and Exposition – APEC 2014, 2014, pp. 1835–1837, doi: 10.1109/APEC.2014.6803555.
Doi: 10.1109/APEC.2014.6803555

[23] A. Reznik, M. G. Simões, A. Al-Durra, and S. M. Muyeen, “LCL Filter Design and Performance Analysis for Grid-Interconnected Systems,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1225–1232, 2014, doi: 10.1109/TIA.2013.2274612.
Doi: 10.1109/TIA.2013.2274612

[24] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems. Wiley, 2011.

[25] A. C. de Souza, “Sistemas fotovoltaicos trifásicos com compensação de reativo, armazenamento interno de energia e inércia virtual,” Universidade Federal de Uberlândia, 2020.

[26] J. k. Sahu, S. Sahu, J. P. Patra, S. K. Maharana, and B. Panda, “Harmonics analysis of a PV integrated Hysteresis current control inverter connected with grid and without grid,” in 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), 2019, pp. 1154–1157, doi: 10.1109/ICSSIT46314.2019.8987864.
Doi: 10.1109/ICSSIT46314.2019.8987864

[27] S. Sahoo, S. K. M. ishra, and J. K. Sahu, “Standalone PV System Integrated with Hysteresis Current Controlled Inverter using MPPT Techniques,” in 2019 International Conference on Communication and Electronics Systems (ICCES), 2019, pp. 2024–2029, doi: 10.1109/ICCES45898.2019.9002384
Doi: 10.1109/ICCES45898.2019.9002384

[28] J. Liu, Y. Wu, L. Fan, Z. Si, and Z. Jia, “Current Hysteresis Control Design of Motorized Spindle Driven System Based on Semi-Physical Simulation Model,” in 2020 Chinese Control And Decision Conference (CCDC), 2020, pp. 1110–1115, doi: 10.1109/CCDC49329.2020.9164078.
Doi: 10.1109/CCDC49329.2020.9164078

[29] S. Agarwal and A. Maity, “A 10-MHz Current-Mode Fixed-Frequency Hysteretic Controlled DC-DC Converter With Fast Transient Response,” in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), 2019, pp. 945–948, doi: 10.1109/MWSCAS.2019.8885176.
Doi: 10.1109/MWSCAS.2019.8885176

[30] M. Kanzian, M. Agostinelli, and M. Huemer, “Digital hysteresis sliding mode control for interleaved DC–DC converters,” Control Eng. Pract., vol. 90, pp. 148–159, 2019, doi: https://doi.org/10.1016/j.conengprac.2019.07.001.
Doi: 10.1016/j.conengprac.2019.07.001

[31] R. Viswadev, A. Mudlapur, V. V Ramana, B. Venkatesaperumal, and S. Mishra, “A Novel AC Current Sensorless Hysteresis Control for Grid-Tie Inverters,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 11, pp. 2577–2581, 2020, doi: 10.1109/TCSII.2019.2960289.
Doi: 10.1109/TCSII.2019.2960289

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.