Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 26 - Number 1
Publishing Date: março 2021
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: Federal University of Ceara
Comparação de Controladores PIDs Robustos Otimizados para Aplicação em Conversores de Potência
Monique Rubenich Nascimento, Lucas Cielo Borin, Everson Mattos, Caio Ruviaro Dantas Osório, Gustavo Guilherme Koch, Rodrigo P. França, Fabrício Hoff Dupont, Vinícius Foletto Montagner
104-114
http://dx.doi.org/10.18618/REP.2021.1.0060
Portuguese Data

Palavras Chaves: Controle Robusto, Conversores de Potência

Resumo
Este trabalho apresenta uma comparação entre duas alternativas para o projeto de controladores PIDs robustos otimizados, com ganhos de controle fixos, adequados para aplicação em conversores de potência com incertezas paramétricas. Diferentemente de projetos convencionais, que obtêm os ganhos de controle a partir de um modelo nominal da planta e verificam a posteriori a robustez contra incertezas paramétricas, as abordagens utilizadas neste trabalho garantem desempenho robusto no estágio de projeto, para plantas com parâmetros intervalares. A primeira abordagem utiliza um problema de programação linear, baseado em um polinômio alvo de malha fechada e em uma função objetivo linear, para encontrar os ganhos do PID. A segunda abordagem utiliza um algoritmo de otimização não linear, a partir de uma função objetivo baseada em especificações no domínio da frequência, para encontrar, por meio de uma meta-heurística, os ganhos do controlador. Ambas as abordagens são orientadas por critérios de projeto amplamente utilizados em conversores, dados por frequência de cruzamento e margem de fase. Os procedimentos de projeto dos controladores PIDs robustos são apresentados e ilustrados por meio de resultados de simulações e experimentais para um estudo de caso, permitindo uma comparação de vantagens e desvantagens de cada uma das técnicas.

English Data

Title: Comparison of Robust PID Controllers Optimized for Application in Power Converters

Keywords: Optimization, power converters, Robust Control

Abstract
This work presents a comparison between two alternatives for the design of optimized robust PID controllers, with fixed control gains, suitable for application in power converters with parametric uncertainties. Different from conventional designs, which obtain control gains for a nominal model of the plant and verify a posteriori the robustness against parametric uncertainties, the approaches used in this work guarantee robust performance a priori (that is, in the design stage) for the plant with interval parameters. The first approach uses a linear programming problem, based on a target closed-loop polynomial and a linear objective function, to find the PID gains. The second approach uses a non-linear optimization algorithm, with an objective function based on specifications in the frequency domain, to find, through a meta-heuristic, the controller gains. Both approaches are guided by design criteria widely used in power converters, given by crossover frequency and phase margin. The design procedures of the robust PID controllers are presented and illustrated by means of simulation and experimental results for a case study, allowing a comparison of the advantages and disadvantages of each technique.

References

[1] S. Bhattacharyya, “Robust control under parametric uncertainty: An overview and recent results”, Annual Reviews in Control, vol. 44, pp. 45–77, 2017.
Doi: 10.1016/j.arcontrol.2017.05.001

[2] K. J. Åström, T. Hägglund, C. C. Hang, W. K. Ho, “Automatic tuning and adaptation for PID controllers – a survey”, Control Engineering Practice, vol. 1, no. 4, pp. 699–714, Ago. 1993.
Doi: 10.1016/0967-0661(93)91394-C

[3] H. Hjalmarsson, M. Gevers, S. Gunnarsson, O. Lequin, “Iterative feedback tuning: theory and applications”, IEEE Control Systems Magazine, vol. 18, no. 4, pp. 26–41, Ago. 1998.
Doi: 10.1109/37.710876

[4] K. J. Astrom, T. Hagglund, K. J. Astrom, Advanced PID control, vol. 461, ISA–The Instrumentation, Systems, and Automation Society Research Triangle, 2006.

[5] M.-T. Ho, C.-Y. Lin, “PID controller design for robust performance”, IEEE Transactions on Automatic Control, vol. 48, no. 8, pp. 1404–1409, Ago. 2003.
Doi: 10.1109/TAC.2003.815028

[6] G. Feng, E. Meyer, Y.-F. Liu, “A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters”, IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1489–1498, Jul. 2007.
Doi: 10.1109/TPEL.2007.900605

[7] J. G. Ziegler, N. B. Nichols, “Optimum settings for automatic controllers”, trans ASME, vol. 64, no. 11, 1942.

[8] Z.-Y. Zhao, M. Tomizuka, S. Isaka, “Fuzzy gain scheduling of PID controllers”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 5, pp. 1392–1398, Set./Out. 1993.
Doi: 10.1109/21.260670

[9] R. K. Mudi, N. R. Pal, “A robust self-tuning scheme for PI- and PD-type fuzzy controllers”, IEEE Transactions on Fuzzy Systems, vol. 7, no. 1, pp. 2–16, Fev. 1999.
Doi: 10.1109/91.746295

[10] L. Guo, J. Y. Hung, R. M. Nelms, “Evaluation of DSP-based PID and fuzzy controllers for DC–DC converters”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237–2248, Jun. 2009.
Doi: 10.1109/TIE.2009.2016955

[11] M. Algreer, M. Armstrong, D. Giaouris, “Adaptive PD+I control of a switch mode DC-DC power converter using a recursive FIR predictor”, IEEE Transactions on Industry Applications, vol. 47, no. 5, pp. 2135–2144, Set./Out. 2011.
Doi: 10.1109/TIA.2011.2161856

[12] H.-X. Li, L. Zhang, K.-Y. Cai, G. Chen, “An improved robust fuzzy-PID controller with optimal fuzzy reasoning”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 35, no. 6, pp. 1283–1294, Dez. 2005.
Doi: 10.1109/TSMCB.2005.851538

[13] W. K. Ho, C. C. Hang, J. Zhou, “Self-tuning PID control of a plant with under-damped response with specifications on gain and phase margins”, IEEE Transactions on Control Systems Technology, vol. 5, no. 4, pp. 446–452, Jul. 1997.
Doi: 10.1109/87.595926

[14] R. W. Erickson, D. Maksimovic, Fundamentals of power electronics, Springer Science and Business Media, 2007.

[15] E. W. Zurita-Bustamante, J. Linares-Flores, E. Guzman-Ramirez, H. Sira-Ramirez, “A comparison between the GPI and PID controllers for the stabilization of a DC–DC ’buck’ converter: A field programmable gate array implementation”, IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5251–5262, Nov. 2011.
Doi: 10.1109/TIE.2011.2123857

[16] Q. Feng, R. M. Nelms, J. Y. Hung, “Posicastbased digital control of the buck converter”, IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 759–767, Jun. 2006.
Doi: 10.1109/TIE.2006.874418

[17] T. Kobaku, R. Jeyasenthil, S. Sahoo, R. Ramchand, T. Dragicevic, “Quantitative Feedback Design-Based Robust PID Control of Voltage Mode Controlled DCDC Boost Converter”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 286– 290, Jan. 2021.
Doi: 10.1109/TCSII.2020.2988319

[18] L. Guo, J. Y. Hung, R. Nelms, “PID controller modifications to improve steady-state performance of digital controllers for buck and boost converters”, em APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335), vol. 1, pp. 381–388, IEEE, 2002.
Doi: 10.1109/APEC.2002.989274

[19] V. Yousefzadeh, A. Babazadeh, B. Ramachandran, E. Alarcón, L. Pao, D. Maksimovic, “Proximate time-optimal digital control for synchronous buck DC–DC converters”, IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 2018–2026, Jul. 2008.
Doi: 10.1109/TPEL.2008.924843

[20] S. Kapat, P. T. Krein, “Formulation of PID control for DC–DC converters based on capacitor current: A geometric context”, IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1424–1432, Mar. 2012.
Doi: 10.1109/TPEL.2011.2164423

[21] H.-H. Park, G.-H. Cho, “A DC–DC converter for a fully integrated PID compensator with a single capacitor”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 629–633, Ago. 2014.
Doi: 10.1109/TCSII.2014.2327351

[22] R. W. Erickson, Fundamentals of Power Electronics, Chapman & Hall, New York, NY, 1997.

[23] L. Keel, S. Bhattacharyya, “Robust stability and performance with fixed-order controllers”, Automatica, vol. 35, pp. 1717–1724, Out. 1999.
Doi: 10.1016/S0005-1098(99)00080-1

[24] S. P. Bhattacharyya, H. Chappelat, L. H. Keel, Robust Control The Parametric Approach, Prentice Hall, 1995.

[25] K. E. L. Marcillo, D. A. P. Guingla, W. Barra, R. L. P. Medeiros, E. M. Rocha, D. A. V. Benavides, F. G. Nogueira, “Interval Robust Controller to Minimize Oscillations Effects Caused by Constant Power Load in a DC Multi-Converter Buck-Buck System”, IEEE Access, vol. 7, pp. 26324–26342, Fev. 2019.
Doi: 10.1109/ACCESS.2019.2901441

[26] K. E. L. Marcillo, D. A. P. Guingla, W. Barra, R. L. P. Medeiros, E. M. Rocha, D. A. V. Benavides, S. J. R. Orellana, E. V. H. Muentes, “Novel Robust Methodology for Controller Design Aiming to Ensure DC Microgrid Stability Under CPL Power Variation”, IEEE Access, vol. 7, pp. 64206–64222, Mai. 2019.
Doi: 10.1109/ACCESS.2019.2915027

[27] R. L. P. Medeiros, D. B. R. Góes, F. A. C. A. Jr, W. B. Jr, E. M. R. C. C. Neves, “Avaliação Experimental de Projeto de Controlador Robusto Via Análise Intervalar Aplicado a am Conversor De Potência CC-CC Buck”, Revista Eletrônica de Potência, vol. 23, no. 3, pp. 360–370, Set. 2018.
Doi: 10.18618/REP.2018.3.2792

[28] J. Darvill, A. Tisan, M. Cirstea, “A novel PSIM and Matlab co-simulation approach to particle swarm optimization tuning of PID controllers”, em 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 784–789, IEEE, 2014.
Doi: 10.1109/OPTIM.2014.6850876

[29] E. Sahin, M. S. Ayas, I. H. Altas, “A PSO optimized fractional-order PID controller for a PV system with DC–DC boost converter”, in 2014 16th International Power Electronics and Motion Control Conference and Exposition, pp. 477–481, IEEE, 2014.
Doi: 10.1109/EPEPEMC.2014.6980539

[30] P. Farhang, A. M. Drimus, S. Mátéfi-Tempfli, “New technique for voltage tracking control of a boost converter based on the PSO algorithm and LTspice”, em 2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), pp. 1–6, IEEE, 2015.
Doi: 10.1109/RTUCON.2015.7343157

[31] P. Verma, N. Patel, N.-K. C. Nair, A. Sikander, “Design of PID controller using cuckoo search algorithm for buck-boost converter of LED driver circuit”, em 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), pp. 1–4, IEEE, 2016.
Doi: 10.1109/SPEC.2016.7846102

[32] S. E. De León-Aldaco, H. Calleja, J. A. Alquicira, “Metaheuristic optimization methods applied to power converters: A review”, IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6791–6803, Dez. 2015.
Doi: 10.1109/TPEL.2015.2397311

[33] R. Dorf, R. Bishop, Modern Control Systems, Pearson Prentice Hall, 2011.

[34] L. C. Borin, E. Mattos, C. R. D. Osorio, G. G. Koch, V. F. Montagner, “Robust PID Controllers Optimized by PSO Algorithm for Power Converters”, em 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), IEEE, 2019.
Doi: 10.1109/COBEP/SPEC44138.2019.9065642

[35] Z. Qi, Q. Shi, H. Zhang, “Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC motor subject to stochastic delays”, IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5637-5646, Jul. 2020.
Doi: 10.1109/TIE.2019.2934030

[36] R. A. Hanifah, S. F. Toha, S. Ahmad, M. K. Hassan, “Swarm-Intelligence Tuned Current Reduction for Power-Assisted Steering Control in Electric Vehicles”, IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7202–7210, Set. 2018.
Doi: 10.1109/TIE.2017.2784344

[37] L. C. Borin, I. Cleveston, G. G. Koch, C. R. D. Osório, E. Mattos, V. F. Montagner, “Robust Control of Grid-Tied Inverters using Particle Swarm Optimization and Linear Matrix Inequalities”, em 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG), vol. 1, pp. 285–290, IEEE, 2020.
Doi: 10.1109/CPE-POWERENG48600.2020.9161470

[38] R. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory”, em In Proceedings of the Sixth International Symposium on Micro Machine and Human Science., pp. 39–43, IEEE, 1995.
Doi: 10.1109/MHS.1995.494215

[39] M. Veerachary, A. R. Saxena, “Optimized power stage design of low source current ripple fourth-order boost DC–DC converter: A PSO approach”, IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1491–1502, Mar. 2015.
Doi: 10.1109/TIE.2014.2361316

[40] R. A. Ramos, N. G. Bretas, L. C. Alberto, “Damping controller design for power systems with polytopic representation of operating conditions”, em 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings, vol. 2, pp. 1517–1521, IEEE, 2002.
Doi: 10.1109/PESW.2002.985277

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.