Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 28 - Number 1
Publishing Date: março 2023
Editor-in-Chief: Telles Brunelli Lazzarin
Editor Affiliation: UFSC
COMPARAÇÃO ENTRE CONTROLADORES POR REALIMENTAÇÃO PARCIAL E TOTAL DE ESTADOS OTIMIZADOS PARA CONVERSORES CONECTADOS À REDE SUJEITOS A INCERTEZAS PARAMÉTRICAS
Everson Mattos, Lucas Cielo Borin, Paulo Jefferson Dias de Oliveira Evald, Guilherme Vieria Hollweg, Vinícius Foletto Montagner
7-16
http://dx.doi.org/10.18618/REP.2023.1.0044
Portuguese Data

Palavras Chaves: Controle Robusto, Conversor Conectado à Rede, Otimização por enxame de partículas, Realimentação de estados

Resumo
Este artigo propõe uma comparação de técnicas de realimentação de estados, utilizando duas malhas de controle para a regulação das correntes de conversores conectados à rede por meio de filtro LCL. A malha interna visa ao amortecimento do pico de ressonância do filtro LCL e é implementada de duas formas diferentes: ou por uma realimentação total de estados, ou por uma realimentação parcial de estados, reduzindo o número de sensores. A malha externa utiliza a realimentação dos estados de controladores ressonantes para garantir rastreamento de referências senoidais para correntes e rejeição de distúrbios harmônicos provenientes das tensões da rede. Os ganhos das duas malhas de controle são sintonizados off-line por meio de um algoritmo de otimização por enxame de partículas, que se mostra eficaz para fornecer controladores que garantam estabilidade e desempenho otimizado frente a incertezas na impedância da rede e harmônicas na tensão de rede, garantindo correntes experimentais em conformidade com a norma IEEE 1547. A análise de desempenho dos controladores indica a superioridade do controlador com realimentação total de estados. Entretanto, os resultados da realimentação parcial também são satisfatórios para faixas estreitas de incerteza na impedância de rede.

English Data

Title: COMPARISON BETWEEN PARTIAL AND FULL STATE FEEDBACK CONTROLLERS OPTIMIZED FOR GRID-CONNECTED CONVERTERS SUBJECT TO PARAMETRIC UNCERTAINTIES

Keywords: Grid-connected Converter, Particle swarm optimization, Robust Control, State feedback

Abstract
This paper proposes a comparison between state feedback techniques using two control loops for current regulation of grid-connected converters with LCL filter. The inner loop aims at the damping of the resonance of the LCL filter and in implemented here in twe different ways: by means of a full state feedback, or by means of a partial state feedback, allowing to reduce the number of sensors. The external loop uses state feedback of resonant controllers in order to ensure the tracking of sinusoidal references for the currents, and the rejection of harmonic disturbances from the grid voltage. The gains of both control loops are tuned off-line by means of a particle swarm optimization algorithm, which is effective to provide controllers that allow stability and optimized performance against uncertainties in the grid impedance and harmonics, ensuring grid currents complying the IEEE 1547 Standard. A performance analysis of the controllers indicates the superiority of the controller based on full state feedback. However, the results with the controller based on partial state feedback are suitable for narrow intervals of uncertainty in the grid impedance.

References

[1] C. R. D. Osório, G. G. Koch, I. Cleveston, L. C. Borin, F. H. Dupont, R. C. L. F. Oliveira, V. F. Montagner, “Otimização multiobjetivo para controle robusto aplicado a inversores conectados à rede”, Eletrônica de Potência, vol. 24, no. 1, pp. 107–115, Mar. 2018.
Doi: 10.18618/REP.2019.1.0041

[2] R. Teodorescu, M. Liserre, P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems, John Wiley & Sons, Jan. 2011.

[3] Q. Liu, T. Caldognetto, S. Buso, “Stability Analysis and Auto-Tuning of Interlinking Converters Connected to Weak Grids”, IEEE Trans on Power Elec, vol. 34, no. 10, pp. 9435–9446, Feb. 2019.
Doi: 10.1109/TPEL.2019.2899191

[4] C. R. D. Osorio, G. G. Koch, L. C. Borin, I. Cleveston, V. F. Montagner, “A robust quasi-deadbeat controller and relaxations applied to grid-connected inverters”, Eletrônica de Potência, vol. 23, no. 3, Apr. 2018.
Doi: 10.18618/REP.2018.3.2787

[5] Z. Zhang, W. Wu, Z. Shuai, X. Wang, A. Luo, H. S.-H. Chung, F. Blaabjerg, “Principle and robust impedance-based design of grid-tied inverter with LLCL-filter under wide variation of grid-reactance”, IEEE Trans on Power Elec, vol. 34, no. 5, pp. 4362–4374, Aug. 2019.
Doi: 10.1109/TPEL.2018.2864775

[6] A. Reznik, M. G. Simões, A. Al-Durra, S. M. Muyeen, “LCL Filter Design and Performance Analysis for Grid-Interconnected Systems”, IEEE Trans on Industry Applic, vol. 50, no. 2, pp. 1225–1232, Jul. 2014.
Doi: 10.1109/TIA.2013.2274612

[7] W. Zhao, G. Chen, “Comparison of active and passive damping methods for application in high power active power filter with LCL-filter”, in International Conf. on Sustainable Power Gen. and Supply, pp. 1–6, Apr. 2009.
Doi: 10.1109/SUPERGEN.2009.5347992

[8] M. Liserre, R. Teodorescu, F. Blaabjerg, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values”, IEEE Trans on Power Elec, vol. 21, no. 1, pp. 263 – 272, Jan. 2006.
Doi: 10.1109/TPEL.2005.861185

[9] C. Zou, B. Liu, S. Duan, R. Li, “Influence of Delay on System Stability and Delay Optimization of Grid-Connected Inverters With LCL Filter”, IEEE Trans on Ind Informatics, vol. 10, pp. 1775–1784, Aug. 2014.
Doi: 10.1109/TII.2014.2324492

[10] M. B. Said-Romdhane, M. W. Naouar, I. Slama-Belkhodja, E. Monmasson, “Robust Active Damping Methods for LCL Filter-Based Grid-Connected Converters”, IEEE Trans on Power Elec, vol. 32, no. 9, pp. 6739–6750, Sep. 2017.
Doi: 10.1109/TPEL.2016.2626290

[11] M. Lu, A. Al-Durra, S. M. Muyeen, S. Leng, P. C. Loh, F. Blaabjerg, “Benchmarking of Stability and Robustness Against Grid Impedance Variation for LCL-Filtered Grid-Interfacing Inverters”, IEEE Trans on Power Elec, vol. 33, pp. 9033–9046, Oct. 2018.
Doi: 10.1109/TPEL.2017.2784685

[12] J. Xu, S. Xie, B. Zhang, Q. Qian, “Robust Grid Current Control with Impedance-Phase Shaping for LCL-Filtered Inverters in Weak and Distorted Grid”, IEEE Trans on Power Elec, pp. 1–1, Feb. 2018.
Doi: 10.1109/TPEL.2018.2808604

[13] R. Teodorescu, F. Blaabjerg, M. Liserre, P. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters”, IEE Proc of Elec Power Applications, vol. 153, pp. 750–762, Sep. 2006.
Doi: 10.1049/ip-epa:20060008

[14] L. F. A. Pereira, A. S. Bazanella, “Tuning rules for proportional resonant controllers”, IEEE Trans on Control Systems Tech, vol. 23, pp. 2010–2017, Feb. 2015.
Doi: 10.1109/TCST.2015.2389655

[15] C. Bao, X. Ruan, X. Wang, W. Li, D. Pan, K. Weng, “Step-by-Step Controller Design for LCL-Type Grid-Connected Inverter with Capacitor–Current-Feedback Active-Damping”, IEEE Trans on Power Electronics, vol. 29, no. 3, pp. 1239–1253, Mar. 2014.
Doi: 10.1109/TPEL.2013.2262378

[16] X. Ruan, X. Wang, D. Pan, D. Yang, W. Li, C. Bao, Control techniques for LCL-type grid-connected inverters, Springer, Jan. 2018.

[17] G. Shen, X. Zhu, J. Zhang, D. Xu, “A New Feedback Method for PR Current Control of LCL-Filter-Based Grid-Connected Inverter”, IEEE Trans on Ind Elec, vol. 57, no. 6, pp. 2033–2041, Jun. 2010.
Doi: 10.1109/TIE.2010.2040552

[18] L. A. Maccari Jr., J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. L. F. Oliveira, V. F. Montagner, “LMI-Based Control for Grid-Connected Converters With LCL Filters Under Uncertain Parameters”, IEEE Trans on Power Elec, vol. 29, no. 7, pp. 3776–3785, Jul. 2014.
Doi: 10.1109/TPEL.2013.2279015

[19] L. A. Maccari Jr., H. Pinheiro, R. C. L. F. Oliveira, V. F. Montagner, “Robust pole location with experimental validation for three-phase grid-connected converters”, Control Eng Prac, vol. 59, pp. 16 – 26, Feb. 2017.
Doi: 10.1016/j.conengprac.2016.10.013

[20] G. G. Koch, L. A. Maccari Jr., R. C. L. F. Oliveira, V. F. Montagner, “Robust H∞ State Feedback Controllers based on LMIs applied to Grid-Connected Converters”, IEEE Trans on Ind Elec, vol. 66, no. 8, pp. 6021–6031, Sep. 2018.
Doi: 10.1109/TIE.2018.2870406

[21] C. R. D. Osório, G. G. Koch, R. C. L. F. Oliveira, V. F. Montagner, “A Practical Design Procedure for Robust H2 Controllers Applied to Grid-Connected Inverters”, Control Eng Practice, vol. 92, p. 104157, Nov. 2019.
Doi: 10.1016/j.conengprac.2019.104157

[22] C. R. D. Osório, G. G. Koch, H. Pinheiro, R. C. L. F. Oliveira, V. F. Montagner, “Robust Current Control of Grid-Tied Inverters Affected by LCL Filter Soft-Saturation”, IEEE Trans on Ind Elec, vol. 67, no. 8, pp. 6550–6561, Aug. 2019.
Doi: 10.1109/TIE.2019.2938474

[23] IEEE:1547, Standard for interconnecting distributed resources with electric power systems, Feb. 2018.
Doi: 10.1109/IEEESTD.2018.8332112

[24] M. O. Okwu, L. K. Tartibu, Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications, Springer, Jan. 2021.

[25] A. Sharma, A. Sharma, J. K. Pandey, M. Ram, Swarm Intelligence: Foundation, Principles, and Engineering Applications (Mathematical Engineering, Manufacturing, and Management Sciences), CRC Press, Feb. 2022.

[26] S. E. De León-Aldaco, H. Calleja, J. A. Alquicira, “Metaheuristic optimization methods applied to power converters: A review”, IEEE Trans on Power Elec, vol. 30, no. 12, pp. 6791–6803, Dec. 2015.
Doi: 10.1109/TPEL.2015.2397311

[27] S. Zhao, F. Blaabjerg, H. Wang, “An overview of artificial intelligence applications for power electronics”, IEEE Trans on Power Elec, Sep. 2020.
Doi: 10.1109/TPEL.2020.3024914

[28] R. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory”, in In Proc. of the Sixth International Symposium on Micro Machine and Human Science., pp. 39–43, IEEE, Oct. 1995.
Doi: 10.1109/MHS.1995.494215

[29] B. Ufnalski, A. Kaszewski, L. M. Grzesiak, “Particle Swarm Optimization of the Multioscillatory LQR for a Three-Phase Four-Wire Voltage-Source Inverter With an LC Output Filter”, IEEE Trans on Ind Elec, vol. 62, no. 1, pp. 484–493, Jan. 2015.
Doi: 10.1109/TIE.2014.2334669

[30] G. G. Koch, C. R. D. Osório, H. Pinheiro, R. C. L. F. Oliveira, V. F. Montagner, “Design Procedure Combining Linear Matrix Inequalities and Genetic Algorithm for Robust Control of Grid-Connected Converters”, IEEE Trans on Ind Applications, vol. 56, no. 2, pp. 1896–1906, Dec. 2019.
Doi: 10.1109/TIA.2019.2959604

[31] L. C. Borin, C. R. D. Osório, G. G. Koch, R. C. L. F. Oliveira, V. F. Montagner, “Partial State Feedback Based on LMIs for Robust Control of GTIs”, Eletrônica de Potência, vol. 26, pp. 369–378, Dez. 2021.
Doi: 10.18618/REP.2021.4.0011

[32] L. C. Borin, C. R. D. Osório, G. G. Koch, R. C. L. F. Oliveira, V. F. Montagner, “Robust Control of GTIs under wide grid impedance ranges: An approach combining metaheuristics and LMIs”, Control Eng Prac, vol. 120, Mar. 2022.
Doi: 10.1016/j.conengprac.2021.105010

[33] K. Astrom, B. Wittenmark, Computer-Controlled Systems: Theory and Design, Prentice Hall, Dec. 1997.

[34] F. G. Shinskey, “Process Control: As Taught vs as Practiced”, Industrial & Engineering Chemistry Research, vol. 41, pp. 3745–3750, Nov. 2002.
Doi: 10.1021/ie010645n

[35] P. D. Domanski, “Control Performance Assessment: Theoretical Analyses and Industrial Practice”, Studies in Systems, Decision and Control, Jan. 2020.

[36] M. Ait-Rami, L. El Ghaoui, “LMI optimization for nonstandard Riccati equations arising in stochastic control”, IEEE Transactions on Automatic Control, vol. 41, pp. 1666–1671, Nov. 1996.
Doi: 10.1109/9.544005

[37] K. A. Barbosa, A. T. C. E. de Souza, “Robust H2 filtering for uncertain linear systems: LMI based methods with parametric Lyapunov functions”, Systems & Control Letters, vol. 54, no. 3, pp. 251–262, Mar. 2005.
Doi: 10.1016/j.sysconle.2004.08.010

[38] R. A. Borges, V. F. Montagner, R. C. L. F. Oliveira, P. L. D. Peres, P. J. Bliman, “Parameter-dependent H2 and and H∞ filter design for linear systems with arbitrarily time-varying parameters in polytopic domains.”, Signal Processing, vol. 88, pp. 1801–1816, Jul. 2008.
Doi: 10.1016/j.sigpro.2008.01.021

[39] R. Cardoso, R. F. de Camargo, H. Pinheiro, H. A. Gründling, “Kalman filter based synchronisation methods”, IET Generation, Transmission & Distribution, vol. 2, no. 4, pp. 542–555, Jul. 2008.
Doi: 10.1049/iet-gtd:20070281

[40] D. G. Holmes, T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Wiley-IEEE Press, Jan. 2003.

[41] J. Daafouz, J. Bernussou, “Poly-quadratic stability and H∞ performance for discrete systems with time varying uncertainties”, in Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp. 267–272, Dec. 2001.
Doi: 10.1109/CDC.2001.980110

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.