Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 25 - Number 3
Publishing Date: setembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
COMPENSATION OF OSCILLATING INSTANTANEOUS POWER IN MODERN MICROGRIDS BASED ON THE CONSERVATIVE POWER THEORY
José de Arimatéia Olímpio Filho, Helmo Kelis Morales Paredes, Jakson Paulo Bonaldo, Augusto Matheus dos Santos Alonso, Fernando Pinhabel Marafão, Marcelo Godoy Simões
261-271
http://dx.doi.org/10.18618/REP.2020.3.0017
English Data

Title: COMPENSATION OF OSCILLATING INSTANTANEOUS POWER IN MODERN MICROGRIDS BASED ON THE CONSERVATIVE POWER THEORY

Keywords: Conservative Power Theory, Instantaneous Power Oscillations, Microgrid, Multifunctional Grid-Tied Inverters, Power quality

Abstract
Considering the application of multi-functional grid-tied inverters in modern microgrids, this paper proposes a novel control strategy derived from the Conservative Power Theory (CPT), which makes possible the compensation of instantaneous power oscillations. Such approach is based on the instantaneous power and instantaneous reactive energy terms defined by the CPT, allowing the extraction of oscillating power components directly in the abc frame. Simulation results are presented to demonstrate the applicability of the control strategy considering the scenario of a weak microgrid with linear, non-linear, and unbalanced loads, as well as comprising a three-phase multi-functional grid-tied inverter with LCL filter. The results show that active power dispatchability can be offered by the inverter, while concomitantly supporting the microgrid to operate at constant instantaneous power. Experimental results comprising a 3.6 kVA inverter prototype also validate the proposed decomposition of oscillating power terms, showing that they can be satisfactorily employed on compensation purposes.

References

[1] A. U. Krismanto, M. Nadarajah and O. Krause, “Influence of renewable energy based microgrid on low frequency oscillation of power systems,” 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, 2015, pp. 1-5.
10.1109/APPEEC.2015.7380982

[2] D. Castro, T. Soares and M. Matos, “Stochastic Energy and Reserve Market in a Microgrid Environment,” 2019 IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1-6.
10.1109/PTC.2019.8810826

[3] M. Di Somma, G. Graditi and P. Siano, “Optimal Bidding Strategy for a DER Aggregator in the DayAhead Market in the Presence of Demand Flexibility,” in IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1509-1519, Feb. 2019.
10.1109/TIE.2018.2829677

[4] T. Strasser et al., “A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems,” in IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2424-2438, April 2015.
10.1109/TIE.2014.2361486

[5] Xue et al., “On a Future for Smart Inverters with Integrated System Functions,” 9th IEEE Int. Sym. Power Electron. Dist. Gen. Syst., Charlotte, 2018, pp. 1-8.
10.1109/PEDG.2018.8447750

[6] T. Samad and A. M. Annaswamy, “Controls for Smart Grids: Architectures and Applications,” Proceedings of the IEEE, vol. 105, no. 11, pp. 2244-2261, Nov. 2017.
10.1109/JPROC.2017.2707326

[7] Z. Zeng, X. Li and W. Shao, “Multi-functional grid-connected inverter: upgrading distributed generator with ancillary services,” IET Renew. Power Gen., vol. 12, no. 7, pp. 797-805, 21 5 2018.
10.1049/iet-rpg.2017.0609

[8] W. Choi, W. Lee, D. Han and B. Sarlioglu, “New Configuration of Multifunctional Grid-Connected Inverter to Improve Both Current-Based and Voltage-Based Power Quality,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6374-6382, Nov.-Dec. 2018.
10.1109/TIA.2018.2861737

[9] Y. Yang, F. Blaabjerg, H. Wang and M. G. Simões, “Power control flexibilities for grid-connected multifunctional photovoltaic inverters,” IET Renew. Power Gen., vol. 10, no. 4, pp. 504-513, 4 2016.
10.1049/iet-rpg.2015.0133

[10] F. P. Marafão, D. I. Brandão, A. Costabeber and H. K. M. Paredes, “Multi-task control strategy for grid-tied inverters based on conservative power theory,” IET Renew. Power Gen., vol. 9, no. 2, pp. 154-165, 2015.
10.1049/iet-rpg.2014.0065

[11] R. Bhoyar and S. Bharatkar, “Potential of MicroSources, Renewable Energy sources and Application of Microgrids in Rural areas of Maharashtra State India,” Energy Procedia, vol. 14, pp. 2012-2018, 2012.
https://doi.org/10.1016/j.egypro.2011.12.1202

[12] X. Zhao-xia, Z. Mingke, H. Yu, J. M. Guerrero and J. C. Vasquez, “Coordinated Primary and Secondary Frequency Support Between Microgrid and Weak Grid,” IEEE Trans. Sust. Energy, vol. 10, no. 4, Oct. 2019.
10.1109/TSTE.2018.2869904

[13] D. E. Olivares et al, “Trends in Microgrid Control,” IEEE Trans. Smart Grid, vol. 5, pp. 1905-1919, July 2014.
10.1109/TSG.2013.2295514

[14] D. I. Brandao, P. Tenti, T. Caldognetto, and S. Buso, “Control of Utility Interfaces in Low-voltage Microgrids,” Brazilian J. Power Electron, vol. 20, no. 4, pp. 373-382, Nov. 2015.
http://dx.doi.org/10.18618/REP.2015.4.2556

[15] R. Palma-Behnke et al, “A Microgrid Energy Management System Based on the Rolling Horizon Strategy,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 996-1006, 2013.
10.1109/TSG.2012.2231440

[16] J. M. Carrasco et al, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Trans. Ind. Electron., vol. 53, pp. 1002–1016, June 2006.
10.1109/TIE.2006.878356

[17] M. Amin, Q. Zhong, “Resynchronization of Distributed Generation Based on the Universal Droop Controller for Seamless Transfer Between Operation Modes,” IEEE Trans. Ind. Electron., vol. 67, pp. 7574-7582, Sep. 2020.
10.1109/TIE.2019.2942556

[18] G.-H. Kim et al, “A Novel Three-phase Four-leg Inverter Based Load Unbalance Compensator for Stand-alone Microgrid,” Elec. Power and Energy Syst., vol. 65, p. 70–75, Feb. 2015.
10.1016/j.ijepes.2014.09.035

[19] F. Z. Peng et al, “Harmonic and Reactive Power Compensation Based on the Generalized Instantaneous Reactive Power Theory for Three-Phase Four-Wire Systems,” IEEE Trans. Power Electron., vol. 13, Nov. 1998.
10.1109/63.728344

[20] H. Akagi, Y. Kanazawa, A. Nabae, “Instantaneous Reactive Power Compensator Comprising Switching Devices Without Energy Storage Components,” IEEE Trans. Ind. Appl., vol. IA-20, pp. 625-630, May 1984.
10.1109/TIA.1984.4504460

[21] E. H. Watanabe et al, “Instantaneous p–q Power Theory for Control of Compensators in Micro-grids,” in Proc. 2010 International School on Nonsinusoidal Currents and Compensation, Lagow, 2010, pp. 17-26.
10.1109/ISNCC.2010.5524475

[22] Y. Sun et al, “Microgrid Tie-line Power Fluctuation Mitigation with Virtual Energy Storage,” The Journal of Engineering, vol. 2019, pp. 1001-1004, April 2019.
10.1049/joe.2018.8553

[23] Z. Miao, L. Fan, D. Osborn, S. Yuvarajan, “Control of DFIG-Based Wind Generation to Improve Interarea Oscillation Damping,” IEEE Trans. Energy Conv., vol. 24, pp. 415-422, June 2009.
10.1109/TEC.2009.2015980

[24] L. Fan, Z. Miao, “An Explanation of Oscillations Due to Wind Power Plants Weak Grid Interconnection,” IEEE Trans. Sust. Energy, vol. 9, pp. 488-490, January 2018.
10.1109/TSTE.2017.2713980

[25] D. Gautam, V. Vittal, R. Ayyanar, T. Harbour, “Supplementary Control for Damping Power Oscillations Due to Increased Penetration of Doubly fed Induction Generators in Large Power Systems”, in Proc. IEEE/PES Power Sys. Conf. Exp., PSCE 2011.
10.1109/PSCE.2011.5772501

[26] J. P. Bonaldo, H. K. M. Paredes, J. A. Pomilio, “Control of Single-Phase Power Converters Connected to Low-Voltage Distorted Power Systems with Variable Compensation Objectives”, IEEE Trans. Power Electron., vol. 31, pp. 2039-2052, March 2016.
10.1109/TPEL.2015.2440211

[27] J. He, Y. W. Li, F. Blaabjerg, X. Wang, “Active Harmonic Filtering Using Current-controlled, Grid-connected DG Units with Closed-loop Power Control,” IEEE Trans. Power Electron., vol. 29, pp. 642-653, February 2014.
10.1109/TPEL.2013.2255895

[28] J. He, Y. W. Li, M. S. Munir, “A Flexible Harmonic Control Approach Through Voltage Controlled DG-grid Interfacing Converters,” IEEE Trans. Ind. Electron., vol. 59, pp. 444-455, January 2012.
10.1109/TIE.2011.2141098

[29] F. Z. Peng, “Harmonic Sources and Filtering Approaches,” IEEE Ind. Appl. Mag., vol. 7, pp. 18-25, July 2001.
10.1109/2943.930987

[30] P. Tenti, H. K. Morales-Paredes, P. Mattavelli, “Conservative Power Theory, a Framework to Approach Control and Accountability Issues in Smart Microgrids,” IEEE Trans. Power Electron., vol. 26, pp. 664-673, March 2011.
10.1109/TPEL.2010.2093153

[31] D. Dong et all, “Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions,” IEEE Trans. Ind. Electron., vol. 62, no 1, pp. 310-321, Jan. 2015.
10.1109/TIE.2014.2334665

[32] H. K. Morales-Paredes, J. A. Olímpio Filho, A. M. S. Alonso, J. P. Bonaldo, F. P. Marafão, M. G. Simões. 3-Phase Multi-Functional Grid-Tied Inverter for Compensation of Oscillating Instantaneous Power. In: 15th Brazilian Power Electron. Conf. and 5th IEEE South. Power Electron. Conf., 2019, Santos. Proceedings of COBEP/SPEC 2019, 2019. p. 1-6. 10.1109/COBEP/SPEC44138.2019.9065443

[33] P. Tenti, P. Mattavelli and H. K. Morales, “Conservative Power Theory, Sequence Components and Accountability in Smart Grids,” Prz. Elektrotech, vol. 6, pp. 30-37, 2010.
10.1109/ISNCC.2010.5524473

[34] F. P. Marafão, D. I. Brandão, F. A. S. Gonçalves, and H. K. Morales Paredes, “Decoupled Reference Generator for Shunt Active Filters Using the Conservative Power Theory,” J. Control Autom. Electr. Syst, pp. 522–534, August 2013.
https://doi.org/10.1007/s40313-013-0043-0

[35] D. I. Brandão, H. K. Morales-Paredes, A. Costabeber, F. P. Marafão, “Flexible Active Compensation Based on Load Conformity Factors Applied to Nonsinusoidal and Asymmetrical Voltage Conditions”, IET Power Electron., vol. pp. 1-9, February 2015.
10.1049/IET-PEL.2015.0086

[36] H. Akagi, E. H. Watanabe and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, New Jersey, 2007.
10.1002/9781119307181

[37] A. V. Oppenheimer and R. W. Schafer, “Discrete-Time signal processing”. PrenticeHall International Inc. 1989.

[38] Yi Tang, P.C. Loh, Peng Wang, F.H. Choo, F. Gao. “Generalized Design of High Performance Shunt Active Power Filter with Output LCL Filter”, IEEE Trans. Ind. Electron., vol.59, March 2012.
10.1109/TIE.2011.2167117

[39] M. G. Villalva, J. R. Gazoli, E. R. Filho, “Modeling and Control of a Three-phase Isolated Grid-connected Converter fed by a Photovoltaic Array,” in Proc. Brazilian Power Electron. Conf., Dec. 2009.
10.1109/COBEP.2009.5347682

[40] S. Buso, P. Mattavelli, “Digital Control in Power Electronics”, First edition, Morgan & Claypoo, United States of America, 2006.
https://doi.org/10.2200/S00047ED1V01Y200609PEL002

[41] R. Teodorescu, F. Blaabjerg, M. Liserre, P. C. Loh, “Proportional-Resonant Controllers and Filters for Grid-connected Voltage-source Converters,” Electric Power Appl., IEE Proceedings, vol. 153, no.5, pp.750-762, September 2006.
10.1049/ip-epa:20060008

[42] ANEEL, “Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional – PRODIST: Módulo 8 – Qualidade de Energia”, Jan. 2018.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.