Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 26 - Number 2
Publishing Date: junho 2021
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: Federal University of Ceara
CONVERSOR CC-CC BUCK-BOOST DIFERENCIAL SIMÉTRICO
Paulo Ícaro T. Nogueira, André Schlingmann, Lenon Schmitz, Denizar Cruz Martins, Roberto Francisco Coelho
136-146
http://dx.doi.org/10.18618/REP.2021.2.0049
Portuguese Data

Palavras Chaves: conexão diferencial, Processamento Parcial de Potência, Rastreamento do Ponto de Máxima Potência

Resumo
Este artigo apresenta o conversor Buck–Boost diferencial simétrico, obtido da conexão diferencial entre dois conversores Buck-Boost. A topologia é caracterizada por apresentar baixa ondulação de tensão, processamento parcial de potência, capacidade de fornecer ganhos de tensão intermediários (1<M<10) e simplicidade de dimensionamento. O artigo apresenta a descrição do conversor proposto, suas principais equações e formas de onda em modo de condução contínua com modulação phase-shift, uma análise matemática que demonstra sua capacidade de realizar o processamento parcial de potência e uma análise comparativa com topologias similares publicadas na literatura. Além disso, resultados experimentais extraídos de um protótipo projetado para operar com frequência de comutação de 40 kHz, tensão de entrada de 105 V, tensão de saída de 400 V e potência nominal de 800 W são apresentados. Por ser destinado ao processamento de energia solar fotovoltaica, o conversor é validado em malha aberta e como rastreador do ponto de máxima potência, cuja eficiência CEC obtida é de 97,8%.

English Data

Title: SYMMETRIC DIFFERENTIAL DC-DC BUCK-BOOST CONVERTER

Keywords: differential connection, maximum power point tracking, Partial Power Processing

Abstract
This paper presents the symmetric differential Buck–Boost converter, obtained from the differential connection between two Buck-Boost converters. The topology is characterized by presenting low voltage ripple, partial power processing, ability to provide intermediate voltage gains (1 <M <10) and simplicity of design. The paper presents the description of the proposed converter, its main equations and waveforms in continuous conduction mode with phase-shift modulation, a mathematical analysis that demonstrates its ability to perform partial power processing, and a comparative analysis with similar published topologies in literature. In addition, experimental results extracted from a prototype designed to operate with a switching frequency of 40 kHz, input voltage of 105 V, output voltage of 400 V and rated power of 800 W are presented. Since the proposed converter is applied to photovoltaic energy processing, it is validated in open loop and as maximum power point tracker, in which the weighted efficiency CEC obtained is 97.8%.

References

[1] M. K. Kazimierczuk, Pulse-width modulated DC-DC power converters. Chichester, U.K: Wiley, 2008.

[2] N. Mohan, T. M. Undeland, e W. P. Robbins, Power electronics: converters, applications, and design, Media enhanced 3. Hoboken, NJ: Wiley, 2007.

[3] A. Tomaszuk, and A. KRUPA, “High Efficiency High Step-Up DC-DC Converters – A Review”, in Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 59, no 4, p. 475-483, 2011.
Doi: 10.2478/v10175-011-0059-1

[4] F. L. Tofoli, D. d C. Pereira, W. J. de Paula, e D. d S. O. Júnior, “Survey on non-isolated high-voltage step-up dc-dc topologies based on the boost converter”, IET Power Electron., vol. 8, no 10, p. 2044–2057, Oct. 2015.
Doi: 10.1049/iet-pel.2014.0605

[5] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, e B. Lehman, “Step-Up DC-DC Converters: A Comprehensive Review of Voltage Boosting Techniques, Topologies, and Applications”, IEEE Trans. Power Electron., vol. PP, no 99, p. 1–1, Mar. 2017.
Doi: 10.1109/TPEL.2017.2652318

[6] M. S. Makowski e D. Maksimovic, “Performance limits of switched-capacitor DC-DC converters”, in 26th Annual IEEE Power Electronics Specialists Conference, 1995. PESC ’95 Record, vol. 2, p. 1215–1221. Aug. 1995.
Doi: 10.1109/PESC.1995.474969

[7] G. Palumbo e D. Pappalardo, “Charge Pump Circuits: An Overview on Design Strategies and Topologies”, IEEE Circuits Syst. Mag., vol. 10, p. 31–45, Mar. 2010.
Doi: 10.1109/MCAS.2009.935695

[8] J. C. Rosas-Caro, J. M. Ramirez, e P. M. Garcia-Vite, “Novel DC-DC Multilevel Boost Converter”, in 2008 IEEE Power Electronics Specialists Conference, p. 2146–2151, Aug. 2008.
Doi: 10.1109/PESC.2008.4592260

[9] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, e A. Valderrabano, “A DC-DC multilevel boost converter”, IET Power Electron., vol. 3, no 1, p. 129–137, jan. 2010.
Doi: 10.1049/iet-pel.2008.0253

[10] B. P. Baddipadiga e M. Ferdowsi, “A High-Voltage-Gain DC-DC Converter Based on Modified Dickson Charge Pump Voltage Multiplier”, IEEE Trans. Power Electron., vol. 32, no 10, p. 7707–7715, out. 2017.
Doi: 10.1109/TPEL.2016.2594016

[11] M. D. Vecchia, M. A. Salvador, e T. B. Lazzarin, “Hybrid Non-Isolated DC-DC Converters Derived from a Passive Switched-Capacitor Cell”, IEEE Trans. Power Electron., vol. PP, no 99, p. 1–1, May 2017.
Doi: 10.1109/TPEL.2017.2703912

[12] Y. Tang, D. Fu, T. Wang, e Z. Xu, “Hybrid Switched-Inductor Converters for High Step-Up Conversion”, IEEE Trans. Ind. Electron., vol. 62, no 3, p. 1480–1490, mar. 2015.
Doi: 10.1109/TIE.2014.2364797

[13] L. Schmitz, D. C. Martins, e R. F. Coelho, “Generalized High Step-Up DC-DC Boost-Based Converter With Gain Cell”, IEEE Trans. Circuits Syst. Regul. Pap., vol. 64, no 2, p. 480–493, fev. 2017.
Doi: 10.1109/TCSI.2016.2603782

[14] L. Schmitz, D. C. Martins and R. F. Coelho, “Comprehensive Conception of High Step-Up DC–DC Converters with Coupled Inductor and Voltage Multipliers Techniques,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 2140-2151, June 2020.
Doi: 10.1109/JSSC.1971.1049670

[15] P. Lin e L. Chua, “Topological generation and analysis of voltage multiplier circuits”, IEEE Trans. Circuits Syst., vol. 24, no 10, p. 517–530, out. 1977.
Doi: 10.1109/TCS.1977.1084273

[16] H. Matsuo e K. Harada, “The Cascade Connection of Switching Regulators”, IEEE Trans. Ind. Appl., vol. IA-12, no 2, p. 192–198, mar. 1976.
Doi: 10.1109/TIA.1976.349401

[17] T.-F. Wu e T.-H. Yu, “Unified approach to developing single-stage power converters”, IEEE Trans. Aerosp. Electron. Syst., vol. 34, no 1, p. 211–223, jan. 1998.
Doi: 10.1109/7.640279

[18] D. Maksimovic e S. Cuk, “Switching converters with wide DC conversion range”, IEEE Trans. Power Electron., vol. 6, no 1, p. 151–157, jan. 1991.
Doi: 10.1109/63.65013

[19] J. Leyva-Ramos, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna, e J. A. Morales-Saldana, “Switching regulator using a quadratic boost converter for wide DC conversion ratios”, IET Power Electron., vol. 2, no 5, p. 605–613, set. 2009.
Doi: 10.1049/iet-pel.2008.0169

[20] M. A. Salvador, J. M. de Andrade, T. B. Lazzarin and, R. F. Coelho. “Methodology for synthesis of high-gain step-up DC–DC converters based on differential connections”, in International Journal of Circuits and Theory Applications, Oct. 2020.
Doi: 10.1002/cta.2892

[21] J. M. de Andrade, M. A. Salvador, R. F. Coelho and T. B. Lazzarin, “General Method for Synthesizing High Gain Step-Up DC–DC Converters Based on Differential Connections,” IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13239-13254, Dec. 2020.
Doi: 10.1109/TPEL.2020.2996501

[22] L. Schmitz, D. C. Martins and R. F. Coelho, “High Step-Up Non-isolated ZVS/ZCS DC–DC Converter for Photovoltaic Thin-Film Module Applications,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 565-575, March 2019.
Doi: 10.1109/JESTPE.2018.2830650

[23] Omar and W. Haoyu, “A New High Gain DC-DC Converter With Model predictive-Control Based Mppt Technique For Photovoltaic Systems”, in CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, june, 2020.
Doi: 10.24295/CPSSTPEA.2020.00016

[24] A. Safari and S. Mekhilef, “Simulation and Hardware Implementation of Incremental Conductance MPPT With Direct Control Method Using Cuk Converter,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1154-1161, April 2011.
Doi: 10.1109/TIE.2010.2048834

[25] Photovoltaic systems – Power conditioners – Procedure for measuring efficiency, European Standard EN 61683, Nov. 1999.

[26] C. P. Steinmetz, “On the Law of Hysteresis,” Transactions of the American Institute of Electrical Engineers, vol. IX, pp. 1,64, Feb. 1892.
Doi: 10.1109/PROC.1984.12842

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.