Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 25 - Number 4
Publishing Date: dezembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
Seleção da Tensão de Bloqueio Ótima de IGBTs para Inversores de Frequência Baseados em Conversor Modular Multinível
Paulo R. M. Júnior, João Victor Matos Farias, Allan Fagner Cupertino, Gabriel A. Mendonça, Marcelo M. Stopa, Heverton Augusto Pereira
405-414
http://dx.doi.org/10.18618/REP.2020.4.0033
Portuguese Data

Palavras Chaves: Acionamentos elétricos

Resumo
O conversor modular multinível (CMM) é uma topologia inerentemente tolerante a falhas e uma opção interessante para acionamentos elétricos de média tensão, especialmente quando cargas quadráticas são empregadas. Para selecionar a melhor tensão de bloqueio de IGBTs, este trabalho apresenta uma metodologia de projeto e comparação de CMMs considerando a redundância necessária para atingir o requisito de confiabilidade. São comparados projetos utilizando IGBTs com tensão de bloqueio na faixa de 1,7 a 6,5 kV. A seleção é baseada em métricas de complexidade, volume, área de silício e eficiência do conversor. O uso da metodologia é exemplificado em um soprador industrial acionado por um motor de indução trifásico de 13,8 kV - 16 MW. Medições da velocidade de operação do acionamento e temperatura ambiente desse processo em uma indústria siderúrgica localizada no sudeste brasileiro são utilizadas na avaliação das perdas do conversor. Os resultados evidenciam que a classe de tensão ótima de IGBTs depende do tipo de redundância empregado. Além disso, apesar do aumento de complexidade e do número de componentes, os projetos baseados em IGBTs com menor tensão de bloqueio (1,7 e 3,3 kV) se mostram mais vantajosos devido a menores perdas, volume e área de silício.

English Data

Title: Selection of the Optimal IGBT Blocking Voltage for Electric Drives based on Modular Multilevel Converter

Keywords: Modular Multilevel Converter, Reliability

Abstract
The modular multilevel converter (MMC) is an inherently fault-tolerant topology and an interesting option for medium voltage electrical drives, especially when quadratic loads are taken into account. In order to select the optimal blocking voltage for IGBTs, this paper presents a design methodology and comparison of MMCs considering the necessary redundancy to achieve the reliability requirement. Designs using IGBTs with blocking voltage in the range of 1.7 to 6.5 kV are compared. The selection is based on complexity, volume, silicon area and efficiency. The methodology application is exemplified through an industrial blower driven by a 13.8 kV - 16 MW three-phase induction motor. Measurements of the operating drive speed and ambient temperature of this process, which is part of a steel industy located in southeastern Brazil, is used as mission profile. The results show that the optimal class of IGBTs depends on the type of redundancy employed. In addition, despite the increase in complexity and the number of components, designs based on IGBTs with lower blocking voltage (1.7 and 3.3 kV) are proved to be more advantageous due to lower losses, volume and silicon area.

References

[1] S. Kouro, J. Rodriguez, B. Wu, S. Bernet, M. Perez, “Powering the Future of Industry: High-Power Adjustable Speed Drive Topologies”, IEEE Ind App Mag, vol. 18, no. 4, pp. 26–39, July 2012.
Doi: 10.1109/MIAS.2012.2192231

[2] Y. S. Kumar, G. Poddar, “Control of Medium-Voltage AC Motor Drive for Wide Speed Range Using Modular Multilevel Converter”, IEEE Trans Ind Electron, vol. 64, no. 4, pp. 2742–2749, April 2017.
Doi: 10.1109/TIE.2016.2631118

[3] A. Antonopoulos, L. Ängquist, S. Norrga, K. Ilves, L. Harnefors, H. Nee, “Modular Multilevel Converter AC Motor Drives With Constant Torque From Zero to Nominal Speed”, IEEE Trans Ind Appl, vol. 50, no. 3, pp. 1982–1993, May 2014.
Doi: 10.1109/TIA.2013.2286217

[4] M. Hagiwara, I. Hasegawa, H. Akagi, “Start-Up and Low-Speed Operation of an Electric Motor Driven by a Modular Multilevel Cascade Inverter”, IEEE Trans Ind Appl, vol. 49, pp. 1556–1565, July 2013.
Doi: 10.1109/TIA.2013.2256331

[5] H. Akagi, “Multilevel Converters: Fundamental Circuits and Systems”, Proc of the IEEE, vol. 105, no. 11, pp. 2048–2065, Nov 2017.
Doi: 10.1109/JPROC.2017.2682105

[6] B. Wu, M. Narimani, High-Power Converters and AC Drives – Introduction, IEEE, 2017.

[7] Y. S. Kumar, G. Poddar, “Medium-Voltage Vector Control Induction Motor Drive at Zero Frequency Using Modular Multilevel Converter”, IEEE Trans Ind Electron, vol. 65, no. 1, pp. 125–132, Jan 2018.
Doi: 10.1109/TIE.2017.2721927

[8] J. E. Huber, J. W. Kolar, “Optimum Number of Cascaded Cells for High-Power Medium Voltage AC DC Converters”, IEEE J of Emerging and Select Topics in Power Electron, vol. 5, pp. 213–232, March 2017.
Doi: 10.1109/JESTPE.2016.2605702

[9] M. R. Islam, Y. Guo, J. Zhu, “A High-Frequency Link Multilevel Cascaded Medium-Voltage Converter for Direct Grid Integration of Renewable Energy Systems”, IEEE Trans Power Electron, vol. 29, no. 8, pp. 4167–4182, Aug 2014.
Doi: 10.1109/TPEL.2013.2290313

[10] H. A. B. Siddique, A. R. Lakshminarasimhan, C. I. Odeh, R. W. De Doncker, “Comparison of modular multilevel and neutral-point-clamped converters for medium-voltage grid-connected applications”, in Int. Conf. on Renewable Energy Research and Appl., pp. 297–304, Nov 2016.
Doi: 10.1109/ICRERA.2016.7884555

[11] A. Marzoughi, R. Burgos, D. Boroyevich, Y. Xue, “Design and Comparison of Cascaded H-Bridge, Modular Multilevel Converter, and 5-L Active Neutral Point Clamped Topologies for Motor Drive Applications”, IEEE Trans Ind Appl, vol. 54, no. 2, pp. 1404–1413, March 2018.
Doi: 10.1109/ECCE.2015.7310229

[12] F. Beltrame, H. C. Sartori, J. R. Pinheiro, “Energetic Efficiency Improvement in Photovoltaic Energy Systems Through a Design Methodology of Static Converter”, J Control Autom Electr Syst, vol. 27, no. 1, pp. 82–92, February 2016.
Doi: https://doi.org/10.1007/s40313-015-0215-1

[13] P. R. M. Júnior, J. V. M. Farias, A. F. Cupertino, G. A. Mendonça, M. M. Stopa, H. A. Pereira, “Selection of the Number of Levels of a Modular Multilevel Converter for an Electric Drive”, in 2019 COBEP/SPEC, pp. 1–6, 2019.
Doi: 10.1109/COBEP/SPEC44138.2019.9065903

[14] B. Gemmell, J. Dorn, D. Retzmann, D. Soerangr, “Prospects of multilevel VSC technologies for power transmission”, in IEEE/PES Transmission and Distrib. Conf. and Expo., pp. 1–16, April 2008.
Doi: 10.1109/TDC.2008.4517192

[15] L. Harnefors, A. Antonopoulos, S. Norrga, L. Angquist, H. Nee, “Dynamic Analysis of Modular Multilevel Converters”, IEEE Trans Ind Electron, vol. 60, no. 7, pp. 2526–2537, July 2013.
Doi: 10.1109/TIE.2012.2194974

[16] D. W. Novotny, T. Lipo, Vector Control and Dynamics of AC Drives, Clarendon Press, 1996.

[17] M. Hagiwara, H. Akagi, “Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters”, IEEE Trans Power Electron, vol. 24, no. 7, pp. 1737–1746, July 2009.
Doi: 10.1109/TPEL.2009.2014236

[18] ABB Switzerland Ltd Semiconductors, Voltage ratings of high power semiconductors, 8 2013, application note 5SYA 2051.

[19] K. Sharifabadi, L. Harnefors, H. Nee, S. Norrga, R. Teodorescu, Main-Circuit Design, pp. 60–132, 2016.
Doi: 10.1002/9781118851555.ch2

[20] M. R. Islam, Y. Guo, J. Zhu, Power Converter Topologies for Grid-Integrated, pp. 51–107, 2014.
Doi: 10.1007/978-3-662-44529-7_3

[21] J. Z. Md. Rabiul Islam, Youguang Guo, Power Converters for Medium Voltage Networks, SpringerVerlag Berlin Heidelberg, 2014.

[22] K. Ilves, S. Norrga, L. Harnefors, H. Nee, “On Energy Storage Requirements in Modular Multilevel Converters”, IEEE Trans Power Electron, vol. 29, no. 1, pp. 77–88, Jan 2014.
Doi: 10.1109/TPEL.2013.2254129

[23] A. Marzoughi, R. Burgos, D. Boroyevich, “Investigating Impact of Emerging Medium-Voltage SiC MOSFETs on Medium-Voltage High-Power Industrial Motor Drives”, IEEE J of Emerging and Select Topics in Power Electron, vol. 7, no. 2, pp. 1371–1387, June 2019.
Doi: 10.1109/JESTPE.2018.2844376

[24] Qingrui Tu, Zheng Xu, H. Huang, Jing Zhang, “Parameter design principle of the arm inductor in modular multilevel converter based HVDC”, in 2010 Int. Conf. on Power Syst. Technology, pp. 1–6, 2010.
Doi: 10.1109/POWERCON.2010.5666416

[25] K. Sharifabadi, L. Harnefors, H. Nee, S. Norrga, R. Teodorescu, Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems – Dynamics and Control, pp. 133–213, 2016.
Doi: 10.1002/9781118851555.ch3

[26] Y. Li, E. A. Jones, F. Wang, “Circulating Current Suppressing Controls Impact on Arm Inductance Selection for Modular Multilevel Converter”, IEEE J of Emerging and Select Topics in Power Electron, vol. 5, no. 1, pp. 182–188, 2017.
Doi: 10.1109/JESTPE.2016.2617865

[27] H. Wang, K. Ma, F. Blaabjerg, “Design for reliability of power electronic systems”, in IECON 2012, pp. 33– 44, 2012.
Doi: 10.1109/IECON.2012.6388833

[28] J. V. M. Farias, A. F. Cupertino, V. de Nazareth Ferreira, H. A. Pereira, S. I. Seleme, “Redundancy design for modular multilevel converter based STATCOMs”, Microelectronics Rel, vol. 100- 101, p. 113471, 2019, 30th European Symp. on Rel. of Electron. Devices, Failure Physics and Analysis.
Doi: https://doi.org/10.1016/j.microrel.2019.113471

[29] P. Tu, S. Yang, P. Wang, “Reliability and Cost based Redundancy Design for Modular Multilevel Converter”, IEEE Trans Ind Electron, pp. 1–1, 2018.
Doi: 10.1109/TIE.2018.2793263

[30] J. Guo, X. Wang, J. Liang, H. Pang, J. Gonçalves, “Reliability Modeling and Evaluation of MMCs Under Different Redundancy Schemes”, IEEE Trans Power Del, vol. 33, no. 5, pp. 2087–2096, 2018.
Doi: 10.1109/TPWRD.2017.2715664

[31] Y. Chen, X. Yu, Y. Li, “A Failure Mechanism Cumulative Model for Reliability Evaluation of a kOut-of-n System With Load Sharing Effect”, IEEE Access, vol. 7, pp. 2210–2222, 2019.
Doi: 10.1109/ACCESS.2018.2852730

[32] J. Pedra, F. Corcoles, “Estimation of induction motor double-cage model parameters from manufacturer data”, IEEE Trans Energy Convers, vol. 19, no. 2, pp. 310–317, 2004.
Doi: 10.1109/TEC.2003.822314

[33] M. R. Islam, Y. Guo, J. Zhu, “A Multilevel MediumVoltage Inverter for Step-Up-Transformer-Less Grid Connection of Photovoltaic Power Plants”, IEEE J of Photovoltaics, vol. 4, May 2014.
Doi: 10.1109/JPHOTOV.2014.2310295

[34] J. V. M. Farias, A. F. Cupertino, H. A. Pereira, S. I. S. Junior, R. Teodorescu, “On the Redundancy Strategies of Modular Multilevel Converters”, IEEE Trans on Power Del, vol. 33, April 2018.
Doi: 10.1109/TPWRD.2017.2713394

[35] J. W. Kolar, J. Biela, S. Waffler, T. Friedli, U. Badstuebner, “Performance trends and limitations of power electronic systems”, in 2010 6th Int. Conf. on Integr. Power Electron. Syst., pp. 1–20, 2010.

[36] J. V. M. Farias, Reliability-Oriented Redundancy Design for Modular Multilevel Cascaded Converterbased STATCOMs, Dissertação de Mestrado, CEFETMG, Brasil, 2019.

[37] H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J. B. Jacobsen, T. Kvisgaard, J. Landkildehus, “Transitioning to Physics-of-Failure as a Reliability Driver in Power Electronics”, IEEE J of Emerging and Select Topics in Power Electron, vol. 2, no. 1, pp. 97–114, March 2014.
Doi: 10.1109/JESTPE.2013.2290282

[38] J. Falck, C. Felgemacher, A. Rojko, M. Liserre, P. Zacharias, “Reliability of Power Electronic Systems: An Industry Perspective”, IEEE Ind Electron Magazine,
vol. 12, no. 2, pp. 24–35, June 2018.
Doi: doi:10.1109/MIE.2018.2825481.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.