Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 25 - Number 3
Publishing Date: setembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
ESTRATÉGIA DE CONTROLE PARA CONVERSOR BOOST FOTOVOLTAICO OPERANDO NOS MODOS MPPT E LPPT
Cássia C. C. dos Santos, Jean Patric da Costa, Carlos Marcelo de Oliveira Stein, Emerson Giovani Carati, Rafael Cardoso, L. I. Nadal
326-336
http://dx.doi.org/10.18618/REP.2020.3.0006
Portuguese Data

Palavras Chaves: Geração Fotovoltaica, Perturbação e Observação, Rastreamento de Potência Limitada, Técnicas de MPPT

Resumo
Este artigo propõe uma estratégia de controle composta por um algoritmo de rastreamento do ponto de máxima potência (MPPT) e um algoritmo de rastreamento do ponto de potência limitado (LPPT) para conversores boost aplicados a um sistema fotovoltaico. Primeiramente, uma técnica MPPT tradicional é implementada e a partir disso, a técnica de LPPT proposta nesse trabalho é desenvolvida sem adição de novos sensores. O LPPT desenvolvido pode ser empregado tanto em sistemas fotovoltaicos que possuem apenas um conversor boost no estágio CC como também em sistemas com múltiplos conversores compartilhando o mesmo barramento CC do lado do inversor. Além disso, a estratégia proposta pode contribuir com o controle do inversor fotovoltaico quando o sistema necessita limitar a potência ativa gerada. É demonstrado que uma rápida resposta dinâmica de transição entre os modos de operação pode ser obtida com a estrutura proposta. Resultados experimentais em um arranjo de 3 kW são apresentados para dar suporte a teoria desenvolvida e ilustrar o bom desempenho do sistema.

English Data

Title: CONTROL STRATEGY FOR PHOTOVOLTAIC BOOST CONVERTER OPERATING IN MPPT AND LPPT MODES

Keywords: Limited Power Point Operation, Maximum Power Point Tracker, Perturb and Observe, photovoltaic generation

Abstract
This paper proposes a control strategy composed of a maximum power point tracking algorithm (MPPT) and a limited power point tracking algorithm (LPPT) for boost converters of grid connected photovoltaic systems. First of all, a traditional MPPT technique is implemented and after that, the LPPT technique proposed in this work is developed without adding new sensors. The developed LPPT can be used both in photovoltaic systems that have only one boost converter in the dc stage as well as in systems with multiple converters sharing the same dc bus on the inverter side. In addition, the proposed strategy can contribute to the control of the photovoltaic inverter when the system needs to limit the active power generated. It is demonstrated that a fast dynamic response between the transition of operation modes can be obtained with the proposed structure. Experimental results in a 3 kW setup are presented to support the developed theory and illustrate the good performance of the system.

References

[1] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jimenez-Estevez, N. D. Hatziargyriou, “Trends in Microgrid Control”, IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, jul 2014
Doi: 10.1109/tsg.2013.2295514

[2] D. K. Molzahn, F. Dorfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, J. Lavaei, “A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems”, IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, nov 2017.
Doi: 10.1109/tsg.2017.2720471

[3] J. Vasquez, J. Guerrero, J. Miret, M. Castilla, L. Garcia de Vicuna, “Hierarchical Control of Intelligent Microgrids”, IEEE Industrial Electronics Magazine, vol. 4, no. 4, pp. 23–29, dec 2010.
Doi: 10.1109/MIE.2010.938720

[4] M. P. Contzen, J. Raisch, “Reactive power consensus in microgrids”, in 2016 European ControlConference (ECC), pp. 334–339, June 2016.
Doi: 10.1109/ECC.2016.7810307

[5] Y. Levron, Y. Beck, L. Katzir, J. M. Guerrero, “Realtime reactive power distribution in microgrids by dynamic programing”, IET Generation, Transmission Distribution, vol. 11, no. 2, pp. 530–539, 2017.
Doi: 10.1049/iet-gtd.2016.1141

[6] X. Liu, A. Aichhorn, L. Liu, H. Li, “Coordinated Control of Distributed Energy Storage System With Tap Changer Transformers for Voltage Rise Mitigation Under High Photovoltaic Penetration”, IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 897–906, 2012.

[7] Y. Riffonneau, S. Bacha, F. Barruel, S. Ploix, “Optimal Power Flow Management for Grid Connected PV Systems With Batteries”, IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 309–320, jul 2011.
Doi: 10.1109/tste.2011.2114901

[8] S. X. Chen, H. B. Gooi, M. Q. Wang, “Sizing of Energy Storage for Microgrids”, IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 142–151, mar 2012.
Doi: 10.1109/tsg.2011.2160745

[9] S. J. Bossart, J. E. Bean, “Metrics and benefits analysis and challenges for Smart Grid field projects”, in IEEE 2011 EnergyTech, pp. 1–5, 2011.

[10] N. Jenkins, J. B. Ekanayake, G. Strbac, Distributed Generation, 2010.

[11] H. S. V. S. K. Nunna, S. Doolla, “MultiagentBased Distributed-Energy-Resource Management for Intelligent Microgrids”, IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1678–1687, apr 2013.
Doi: 10.1109/tie.2012.2193857

[12] H. Bevrani, B. Francois, T. Ise, Microgrid dynamics and control, John Wiley and Sons Ltd, Hoboken, 2017.

[13] N. Hatziargyriou, Microgrid: architecture and control, John Wiley and Sons Ltd, Chichester, 2014.

[14] F. Katiraei, M. R. Iravani, “Power Management Strategies for a Microgrid With Multiple Distributed Generation Units”, IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1821–1831, nov 2006.
Doi: 10.1109/TPWRS.2006.879260

[15] F. Katiraei, R. Iravani, N. Hatziargyriou, A. Dimeas, “Microgrids management”, IEEE Power and Energy Magazine, vol. 6, no. 3, pp. 54–65, may 2008.
Doi: 10.1109/MPE.2008.918702

[16] R. Tonkoski, L. A. Lopes, T. H. El-Fouly, “Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention”, IEEE Transactions on Sustainable Energy, vol. 2, no. 2, pp. 139–147, 2011.
Doi: 10.1109/TSTE.2010.2098483

[17] N. R. Ullah, T. Thiringer, D. Karlsson, “Voltage and Transient Stability Support by Wind Farms Complying With the E.ON Netz Grid Code”, IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1647–1656, 2007.

[18] A. Sangwongwanich, Y. Yang, F. Blaabjerg, H. Wang, “Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems”, IEEE Transactions onIndustry Applications, vol. 54, no. 1, pp. 447–457,
2018.
Doi: 10.1109/TIA.2017.2740380

[19] A. Urtasun, P. Sanchis, L. Marroyo, “Limiting the Power Generated by a Photovoltaic System”, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), pp. 1–6, 2013.
Doi: 10.1109/SSD.2013.6564069

[20] M. A. G. de Brito, L. Galotto, L. P. Sampaio, G. d. A. e Melo, C. A. Canesin, “Evaluation of the main MPPT techniques for photovoltaic applications”, IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1156–1167, 2013.
Doi: 10.1109/TIE.2012.2198036

[21] T. Esram, P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques”, IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439–449, 2007.
Doi: 10.1109/TEC.2006.874230

[22] L. V. Bellinaso, H. H. Figueira, M. F. Basquera, R. P. Vieira, H. Ab, “Applied to Photovoltaic Boost Converters”, vol. 55, no. 2, pp. 1903–1912, 2019.

[23] P. B. S. Kiran, V. Sarkar, “Improved limited power tracking of a photovoltaic plant connected across voltage-controlled DC bus”, Proceedings -2015 IEEE IAS Joint Industrial and Commercial Power Systems / Petroleum and Chemical Industry
Conference, ICPSPCIC 2015, pp. 203–208, 2017.
Doi: 10.1109/CICPS.2015.7974075

[24] A. Sangwongwanich, Y. Yang, F. Blaabjerg, “Highperformance constant power generation in gridconnected PV systems”, IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 1822–1825, 2016.
Doi: 10.1109/TPEL.2015.2465151

[25] Y. Yang, H. Wang, F. Blaabjerg, T. Kerekes, “A hybrid power control concept for PV inverters with reduced thermal loading”, IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6271–6275, 2014.
Doi: 10.1109/TPEL.2014.2332754

[26] Y. T. Jeon, H. Lee, K. A. Kim, J. H. Park, “Least Power Point Tracking Method for Photovoltaic Differential Power Processing Systems”, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1941–1951, 2017.
Doi: 10.1109/TPEL.2016.2556746

[27] Y. T. Jeon, J. H. Park, “Unit-Minimum Least Power Point Tracking for the Optimization of Photovoltaic Differential Power Processing Systems”, IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 311–324, 2018.
Doi: 10.1109/TPEL.2018.2822289

[28] H. D. Tafti, A. I. Maswood, G. Konstantinou, J. Pou, F. Blaabjerg, “A general constant power generation algorithm for photovoltaic systems”, IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4088–4101, 2018.
Doi: 10.1109/TPEL.2017.2724544

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.