Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 25 - Number 4
Publishing Date: dezembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
ESTRATÉGIA DE TOLERÂNCIA A FALHAS PARA UM CONVERSOR DELTA-CHB STATCOM NA REGIÃO DE SOBREMODULACÃO
Dayane do Carmo Mendonça, Allan Fagner Cupertino, Heverton Augusto Pereira, Seleme Isaac Seleme Júnior, Remus Teodorescu
395-404
http://dx.doi.org/10.18618/REP.2020.4.0029
Portuguese Data

Palavras Chaves: STATCOM, Tolerância a Falhas

Resumo
O conversor CHB (do inglês,cascaded H-bridge) é uma topologia popular para aplicações STATCOM (do inglês, Static Synchronous Compensator). Visto que esse conversor é composto por dezenas/centenas de componentes, preocupações relacionadas à confiabilidade são inerentes ao seu projeto. Geralmente, células redundantes são utilizadas, aumentando o custo do STATCOM. De fato, existe um potencial de operação tolerante a falhas quando a região de sobremodulação é considerada. Este trabalho explora a redundância inerente do conversor delta-CHB na região de sobremodulação. Inicialmente, uma expressão analítica para a fronteira entre a região linear e de sobremodulação é determinada e validada para diferentes condições de operação. Em seguida, a tolerância a falhas é avaliada em ambiente de simulação, considerando um estudo de caso com conversor delta-CHB STATCOM de 17 MVA/13,8 kV composto de 24 células por braço. Falhas simétricas e assimétricas são abordadas. Os resultados indicam que o conversor é capaz de operar em condições nominais após 4 falhas distribuídas nos três braços do conversor (fator de redundância de 5,5 %) sem exceder os valores de distorção harmônica recomendados.

English Data

Title: FAULT-TOLERANT STRATEGY FOR A DELTA-CHB-BASED STATCOM IN THE OVERMODULATION REGION

Keywords: Fault-tolerant, STATCOM

Abstract
The cascaded H-bridge (CHB) is a popular topology for Static Synchronous Compensator (STATCOM) applications. Since this converter is composed of tens/hundreds of components, concerns related to reliability are inherent in the design of this converter. Generally, redundant cells are used, increasing the cost of STATCOM. Indeed, there is a potential for fault-tolerant operation when the overmodulation region is considered. This work explores the inherent redundancy of the delta-CHB in the overmodulation region. Initially, an analytical expression for the boundary between the linear region and overmodulation is determined and validated for different operating conditions. Then, the fault-tolerant is evaluated in a simulation environment, considering a case study of a 17 MVA/13.8 kV delta-CHB STATCOM composed of 24 cells per arm. Symmetric and asymmetric failures are addressed. The results indicate that the converter is capable of operating at rated conditions after 4 faults distributed in the three converter arms (5.5 % redundancy factor) without exceeding the recommended harmonic distortion values.

References

[1] M. R. Nasiri, S. Farhangi, J. Rodriguez, “Model Predictive Control of a Multilevel CHB STATCOM in Wind Farm Application Using Diophantine Equations”, IEEE Trans. on Ind. Electron., vol. 66,no. 2, pp. 1213–1223, 2019
Doi: 10.1109/TIE.2018.2833055

[2] Z. Wang, S. Fan, Y. Zheng, M. Cheng, “Designand Analysis of a CHB Converter Based PV-Battery Hybrid System for Better Electromagnetic Compatibility”, IEEE Trans. on Magn., vol. 48, no. 11,pp. 4530–4533, 2012
Doi: 10.1109/TMAG.2012.2198912

[3] A. F. Cupertino, J. V. M. Farias, H. A. Pereira, S. I. Seleme, R. Teodorescu, “Comparison of DSCC and SDBC Modular Multilevel Converters for STATCOM Application During Negative Sequence Compensation”, IEEE Trans. Ind. Electron., vol. 66,no. 3, pp. 2302–2312, March 2019
Doi: 10.1109/TIE.2018.2811361

[4] M. Hagiwara, R. Maeda, H. Akagi, “Negative-Sequence Reactive-Power Control by a PWM STATCOM Based on a Modular Multilevel Cascade Converter (MMCC-SDBC)”, IEEE Trans. Ind. Appl., vol. 48, no. 2, pp. 720–729, March 2012
Doi: 10.1109/TIA.2011.2182330

[5] ABB, Static compensator (STATCOM), URL:https://new.abb.com/facts/statcom

[6] Siemens, Optimal dynamic grid stabilization, URL:https://new.siemens.com/global/en/products/energy/high-voltage/facts/portfolio/svcplus.html

[7] GE, Static Synchronous Compensator (STATCOM) Solutions, URL:https://www.gegridsolutions.com/products/brochures/powerd_vtf/STATCOM_GEA31986_HR.pdf

[8] L. Hui, Z. Meimei, Y. Ran, L. Wei, D. Jili, L. Haiyang, Q. Haitao, “Reliability modelling and analysis on MMC for VSC-HVDC by considering the press-pack IGBT and capacitors failure”, The Journal of Engineering, vol. 2019, no. 16, pp. 2219–2223, 2019
Doi: 10.1049/joe.2018.8909

[9] N. Ahmed, L. Angquist, A. Antonopoulos, L. Harnefors, S. Norrga, H. Nee, “Performance of the modular multilevel converter with redundant submodules”, in Annual Conference of the IEEE Industrial Electronics Society, pp. 003922–003927, Nov 2015
Doi: 10.1109/IECON.2015.7392712

[10] G. S. Konstantinou, M. Ciobotaru, V. G. Agelidis, “Effect of redundant sub-module utilization on modular multilevel converters”, in IEEE International Conference on Industrial Technology, pp. 815–820, March 2012
Doi: 10.1109/ICIT.2012.6210039

[11] W. Song, A. Q. Huang, “Fault-Tolerant Design and Control Strategy for Cascaded H-Bridge Multilevel Converter-Based STATCOM”, IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2700–2708, 2010
Doi: 10.1109/TIE.2009.2036019

[12] H. Salimian, H. Iman-Eini, “Fault-Tolerant Operation of Three-Phase Cascaded H-Bridge Converters Using an Auxiliary Module”, IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1018–1027, 2017
Doi: 10.1109/TIE.2016.2613983

[13] J. V. M. Farias, A. F. Cupertino, H. A. Pereira, S. I. S.Junior, R. Teodorescu, “On the Redundancy Strategies of Modular Multilevel Converters”, IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 851–860, 2018
Doi: 10.1109/TPWRD.2017.2713394

[14] L. Maharjan, T. Yamagishi, H. Akagi, J. Asakura, “Fault-Tolerant Operation of a Battery-Energy-Storage System Based on a Multilevel Cascade PWM Converter With Star Configuration”, IEEE Transactions on Power Electronics, vol. 25, no. 9, pp.2386–2396, 2010
Doi: 10.1109/TPEL.2010.2047407

[15] Chia-tse Lee, Hsin-chih Chen, Ping-heng Wu, Ching-wei Wang, Ching-hsiang Yang, Po-tai Cheng, “A fault tolerant operation technique for STATCOMs based on star-connected cascaded H-bridges multilevel converter”, in 2015 IEEE Applied Power ElectronicsConference and Exposition (APEC), pp. 995–1001, 2015
Doi: 10.1109/APEC.2015.7104470

[16] F. Carnielutti, H. Pinheiro, “Extending the Operation of Asymmetrical Cascaded Multilevel Converters Under Fault Conditions on the Converter Power Cells”, IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 1853–1862, 2017
Doi: 10.1109/TIE.2016.2624723

[17] M. Aleenejad, H. Mahmoudi, R. Ahmadi, “Unbalanced Space Vector Modulation with Fundamental Phase Shift Compensation for Faulty Multilevel Converters”, IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7224–7233, 2016
Doi: 10.1109/TPEL.2015.2509446

[18] D. C. Mendonça, A. F. Cupertino, H. A. Pereira, S. I. Seleme, R. Teodorescu, “Inherent Redundancy of SDBC-MMCC based STATCOM in the Overmodulation Region”, in IEEE Brazilian Power Electronics Conference and IEEE Southern Power Electronics Conference, pp. 1–6, 2019
Doi: 10.1109/COBEP/SPEC44138.2019.9065447

[19] H. Akagi, “Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC)”, IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3119–3130, 2011
Doi: 10.1109/TPEL.2011.2143431

[20] F. Hassan, “Hvdc-vsc: transmission technol. of the future”, Alstom Grid, Tech Rep, 2011

[21] Siemens, “3TM Vacuum Contactors”, 2019, URL:https://cache.industry.siemens.com/dl/files/517/109745517/att_973846/v1/HG_11_23_3TM_EN_2019_201902051237437506.pdf

[22] A. Hassanpoor, L. Angquist, S. Norrga, K. Ilves, H. Nee, “Tolerance Band Modulation Methods for Modular Multilevel Converters”, IEEE Trans. Power Electron., vol. 30, no. 1, pp. 311–326, Jan 2015
Doi: 10.1109/TPEL.2014.2305114

[23] L. Angquist, A. Antonopoulos, D. Siemaszko, K. Ilves, M. Vasiladiotis, H. Nee, “Open-Loop Control of Modular Multilevel Converters Using Estimation of Stored Energy”, IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2516–2524, Nov 2011
Doi: 10.1109/TIA.2011.2168593

[24] A. Hassanpoor, S. Norrga, A. Nami, “Loss evaluation for modular multilevel converters with different switching strategies”, in 2015 9th International Conference on Power Electronics and ECCE Asia(ICPE-ECCE Asia), pp. 1558–1563, 2015
Doi: 10.1109/ICPE.2015.7167984

[25] S. Lerdudomsak, S. Doki, S. Okuma, “Analysis for Unstable Problem of PMSM Current Control System in Overmodulation Range”, in IEEE Industry Applications Society Annual Meeting, pp. 1–8, 2008
Doi: 10.1109/08IAS.2008.194

[26] L. Maharjan, S. Inoue, H. Akagi, “A Transformerless Energy Storage System Based on a Cascade Multilevel PWM Converter With Star Configuration”, IEEE Transactions on Industry Applications, vol. 44, no. 5,pp. 1621–1630, 2008
Doi: 10.1109/TIA.2008.2002180

[27] “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”, IEEEStd 519-2014 (Revision of IEEE Std 519-1992), pp. 1–29, June 2014
Doi: 10.1109/IEEESTD.2014.6826459

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.