Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 23 - Number 4
Publishing Date: dezembro 2018
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Estrutura de controle hierárquico para o paralelismo de UPS de dupla conversão com equalização das temperaturas dos capacitores dos barramentos CC
William Alegranci Venturini, João Manoel Lenz, Henrique Jank, Fábio Ecke Bisogno, José Renes Pinheiro
442 - 453
http://dx.doi.org/10.18618/REP.2018.4.0001
Portuguese Data

Palavras Chaves: Controle Hierárquico, fontes ininterruptas de energia, Gerenciamento Térmico, Paralelismo

Resumo

Este trabalho propõe uma estrutura de controle hierárquico que permite realizar a equalização das temperaturas internas dos capacitores de barramento de UPSs conectadas em paralelo. Os capacitores eletrolíticos, usualmente utilizados em barramentos CC, são um dos principais responsáveis por falhas em sistemas de conversão de energia, sendo que a vida útil destes componentes é sensível a elevadas temperaturas de operação. Neste sentido, com o intuito de aumentar a vida útil de sistemas ininterruptos de energia conectados em paralelo, este trabalho propõe a adição de uma malha de controle que, através da medição indireta das temperaturas das UPSs, gerencia a potência ativa que cada UPS deve fornecer, a fim de equalizar as temperaturas dos capacitores. Resultados hardware-in-the-loop são adquiridos considerando duas UPSs monofásicas de 10 kVA conectadas em paralelo e localizadas em ambientes com temperaturas distintas, comprovando o bom desempenho e a viabilidade da proposta.

English Data

Title: Hierarchical control structure for parallelism of double conversion UPS with equalization of the DC-link capacitors temperatures

Keywords: Hierarchical Control, Parallelism, Thermal Management, Uninterruptible Power Supplies

Abstract

This paper proposes a hierarchical control structure that allows the thermal equalization among the DC-link capacitors of UPSs connected in parallel. The electrolytic capacitors typically used in DC-links are one of the main causes of failure in electronic equipment and the lifetime of this component is sensitive to high operating temperatures. In this sense, this work proposes the addition of a control loop with the objective to increase the lifetime of uninterruptible power systems. Through the estimation of the UPS’s internal temperatures, the proposed control loop manages the active power that each UPS unit must provide to equalize the DC-link capacitors temperatures. Hardware-in-the-loop results are acquired considering two 10 kVA single-phase UPSs connected in parallel and located in places with different temperatures, proving the good performance and the feasibility of the proposal.

References

[1] Uninterruptible power systems (UPS) Part 3: Method of specifying the performance and test requirements, IEC 62040-3, 1999.
[2] M. Aamir, S. Mekhilef, An Online Transformerless Uninterruptible Power Supply (UPS) System With a Smaller Battery Bank for Low-Power Applications, IEEE Transactions on Power Electronics, vol. 32, n° 1, pp. 233-247, Janeiro 2017, https://doi.org/10.1109/TPEL.2016.2537834.
[3] S. Tolani, P. Sensarma, Extended Bandwidth Instantaneous Current Sharing Scheme for Parallel UPS Systems, IEEE Transactions on Power Electronics, vol. 32, n° 6, pp. 4960-4969, Junho 2017, https://doi.org/10.1109/TPEL.2016.2604251.
[4] J. M. Guerrero, L. Hang, J. Uceda, Control of Distributed Uninterruptible Power Supply Systems, IEEE Transactions on Industrial Electronics, vol. 55, nº 8, pp. 2845-2859, Agosto 2008, https://doi.org/10.1109/TIE.2008.924173.
[5] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. Vicuna, M. Castilla, Hierarchical Control of Droop-Controlled AC and DC Microgrids — A General Approach Toward Standardization, IEEE Transactions on Industrial Electronics, vol. 58, nº 1, pp. 158-172, Janeiro 2011, https://doi.org/10.1109/TIE.2010.2066534.
[6] J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, J. Miret, Output impedance design of parallel-connected UPS inverters with wireless load-sharing control, IEEE Transactions on Industrial Electronics, vol. 52, nº 4, pp. 1126-1135, Agosto 2005, https://doi.org/10.1109/TIE.2005.851634.
[7] H. Han, Y. Liu, Y. Sun, M. Su, J. M. Guerrero, An Improved Droop Control Strategy for Reactive Power Sharing in Islanded Microgrid, IEEE Transactions on Power Electronics, vol. 30, nº 6, pp. 3133-3141, Junho 2015, https://doi.org/10.1109/TPEL.2014.2332181.
[8] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, J. M Guerrero, Review on Control of DC Microgrids and Multiple Microgrid Clusters, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, nº 3, pp. 928-948, Setembro 2017, https://doi.org/10.1109/JESTPE.2017.2690219.
[9] Q. Shafiee, J. M. Guerrero, J. C. Vasquez, Distributed Secondary Control for Islanded Microgrids — A Novel Approach, IEEE Transactions on Power Electronics, vol. 29, nº 2, pp. 1018-1031, Fevereiro 2014, https://doi.org/10.1109/IECON.2012.6389034.
[10] H. Han, X. Hou, J. Yang, J. Wu, M. Su, J. M. Guerrero, Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids, IEEE Transactions on Smart Grid, vol. 7, nº 1, pp. 200-215, Janeiro 2016, https://doi.org/10.1109/TSG.2015.2434849.
[11] Y. Han, H. Li, P. Shen, E. A. A. Coelho, J. M. Guerrero, Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids, IEEE Transactions on Power Electronics, vol. 32, nº 3, pp. 2427-2451, Março 2017, https://doi.org/10.1109/TPEL.2016.2569597.
[12] W. F. de Souza, M. A. Severo-Mendes, L. A. C. Lopes, Power sharing control strategies for a three-phase microgrid in different operating condition with droop control and damping factor investigation, IET Renewable Power Generation, vol. 9, nº 9, pp. 831-839, Setembro 2015, https://doi.org/10.1049/iet-rpg.2014.0250.
[13] Y. Han, P. Shen, X. Zhao, J. M. Guerrero, Control Strategies for Islanded Microgrid Using Enhanced Hierarchical Control Structure With Multiple Current-Loop Damping Schemes, IEEE Transactions on Smart Grid, vol. 8, nº 3, pp. 1139-1153, Maio 2017, https://doi.org/10.1109/TSG.2015.2477698.
[14] E. A. A. Coelho, D. Wu, J. M. Guerrero, J. C. Vasquez, T. Dragicevic, C. Stefanovic, P. Popovski, Small-Signal Analysis of the Microgrid Secondary Control Considering a Communication Time Delay, IEEE Transactions on Industrial Electronics, vol. 63, nº 10, pp. 6257-6259, Outubro 2016, https://doi.org/10.1109/TIE.2016.2581155.
[15] C. Zhang, J. M. Guerrero, J. C. Vasquez, E. A. A. Coelho, Control Architecture for Parallel-Connected Inverters in Uninterruptible Power Systems, IEEE Transactions on Power Electronics, vol. 31, n° 7, pp. 5176-5188, Julho 2016, https://doi.org/10.1109/TPEL.2015.2481480.
[16] J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla, L. G. de Vicuna, Control Strategy for Flexible Microgrid Based on Parallel Line-Interactive UPS Systems, IEEE Transactions on Industrial Electronics, vol. 56, nº 3, pp. 726-736, Março 2009, https://doi.org/10.1109/TIE.2008.2009274.
[17] Z. Wang, Z. Xu, L. Zhao, S. Han, Power Capacitor Temperature Measurement System Using FBG Sensors and Its Validation, IEEE Transactions on Instrumentation and Measurement, vol. 67, nº 2, pp. 449-458, Fevereiro 2018, https://doi.org/10.1109/TIM.2017.2774208.
[18] K. Abdennadher, P. Venet, G. Rojat, J. Retif, C. Rosset, A Real-Time Predictive-Maintenance System of Aluminum Electrolytic Capacitors Used in Uninterrupted Power Supplies, IEEE Transactions on Industry Applications, vol. 46, nº 4, pp. 1644-1652, Julho/Agosto 2010, https://doi.org/10.1109/TIA.2010.2049972.
[19] Y. Song, B. Wang, Survey on Reliability of Power Electronic Systems, IEEE Transactions on Power Electronics, vol. 28, n° 1, pp. 591-604, Janeiro 2013, https://doi.org/10.1109/TPEL.2012.2192503.
[20] H. S. Chung, H. Wang, F. Blaabjerg, M. Pecht, Reliability of Power Electronic Converter Systems, Institution of Engineering and Technology, 2015.
[21] P. C. Todd, UC3854 Controlled Power Factor Correction Circuit Design. Unitrode Product and Applications Handbook, pp. 10303-10322, 1996.
[22] H. Wu, T. Mu, X. Gao, Y. Xing, A Secondary-Side Phase-Shift-Controlled LLC Resonant Converter With Reduced Conduction Loss at Normal Operation for Hold-Up Time Compensation Application, IEEE Transactions on Power Electronics, vol. 30, n° 10, pp. 5352-5357, Outubro 2015, https://doi.org/10.1109/TPEL.2015.2418786.
[23] Y. Lai, Z. Su, W. Chen, New Hybrid Control Technique to Improve Light Load Efficiency While Meeting the Hold-up Time Requirement for Two Stage Server Power, IEEE Transactions on Power Electronics, vol. 29, n° 9, pp. 4763-4775, Setembro 2014, https://doi.org/10.1109/TPEL.2013.2283747.
[24] W. A. Venturini, H. Jank, M. L. S. Martins, F. E. Bisogno, H. Pinheiro, C. Rech, J. R. Pinheiro, A. G. Bueno, A low cost three-phase transformerless online UPS, in Proc. of COBEP, pp. 1-6, 2015, https://doi.org/10.1109/COBEP.2015.7420150.
[25] W. A. Venturini, H. Jank, F. E. Bisogno, M. L. Martins, H. Pinheiro, Estágio de Entrada com Dupla Funcionalidade Aplicado a uma UPS Trifásica de Alto Desempenho, Eletrônica de Potência, vol. 23, nº 2, pp. 244-255, Abril 2018, http://dx.doi.org/10.18618/REP.2018.2.2776.
[26] DCMC Datasheet, Type DCMC 85 °C High Capacitance, Screw Terminal, Aluminum. [Online]. Disponível: http://www.farnell.com/datasheets/1731347.pdf.
[27] H. Wang, F. Blaabjerg, Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview, IEEE Transactions on Industry Applications, vol. 50, nº 5, pp. 3569-3578, Outubro 2014, https://doi.org/10.1109/TIA.2014.2308357.
[28] Z. Zhang, L. Wang, S. Kurtz, J. Wu, P. Quan, R. Sorensen, S. Liu, J. B. Bai, Z. W. Zhu, Operating Temperatures of Open-rack Installed Photovoltaic Inverters, Solar Energy, vol. 137, pp. 344-351, Novembro 2016, https://doi.org/10.1016/j.solener.2016.08.017.
[29] ABB Technologies, Technical Datasheet PowerValue 11/31 T 10-20 kVA, 2017. [Online]. Disponível: http://new.abb.com/ups/systems/single-phase-ups/powervalue-31-11-t.
[30] Y. Yang, K. Ma, H. Wang, F. Blaabjerg, Instantaneous Thermal Modeling of the DC-link Capacitor in PhotoVoltaic Systems, in Proc. of APEC, pp. 2733-2739, 2015, https://doi.org/10.1109/APEC.2015.7104737.
[31] Z. Wang, Z. Xu, L. Zhao, S. Han, Power Capacitor Temperature Measurement System Using FBG Sensors and Its Validation, IEEE Transactions on Instrumentation and Measurement, vol. 67, nº 2, pp. 449-458, Fevereiro 2018, https://doi.org/10.1109/TIM.2017.2774208.
[32] N. Agarwal, M. W. Ahmad, S. Anand, Quasi-Online Technique for Health Monitoring of Capacitor in Single-Phase Solar Inverter, IEEE Transactions on Power Electronics, vol. 33, n° 6, pp. 5283-5291, Junho 2018, https://doi.org/10.1109/TPEL.2017.2736162.
[33] E. Aeloiza, J.-H. Kim, P. Enjeti, P. Ruminot, A Real Time Method to Estimate Electrolytic Capacitor Condition in PWM Adjustable Speed Drives and Uninterruptible Power Supplies, in Proc. of PESC, pp. 2867-2872, 2005, https://doi.org/10.1109/PESC.2005.1582040.
[34] M. A. Vogelsberger, T. Wiesinger, H. Ertl, Life-Cycle Monitoring and Voltage-Managing Unit for DC-Link Electrolytic Capacitors in PWM Converters, IEEE Transactions on Power Electronics, vol. 26, n° 2, pp. 493-503, Fevereiro 2011, https://doi.org/10.1109/TPEL.2010.2059713.
[35] H. Jank, W. A. Venturini, G. G. Koch, M. L. Martins, F. E. Bisogno, V. F. Montagner, H. Pinheiro, Controle Baseado Em Um Lqr Com Estabilidade Robusta À Incerteza Paramétrica Aplicado A Um Carregador De Baterias, Eletrônica de Potência, vol. 22, nº 4, pp. 408-417, Dezembro 2017, http://dx.doi.org/10.18618/REP.2017.4.2713.
[36] R. Mo, H. Li, Hybrid Energy Storage System With Active Filter Function for Shipboard MVDC System Applications Based on Isolated Modular Multilevel DC/DC Converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, n° 1, pp. 79-87, Março 2017, https://doi.org/10.1109/JESTPE.2016.2642831.
[37] A. S. Vijay, S. Doolla, M. C. Chandorkar, Real-Time Testing Approaches for Microgrids, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, n° 3, pp. 1356-1376, Setembro 2017, https://doi.org/10.1109/JESTPE.2017.2695486.
[38] A. Hintz, U. R. Prasanna, K. Rajashekara, Novel Modular Multiple-Input Bidirectional DC–DC Power Converter (MIPC) for HEV/FCV Application, IEEE Transactions on Industrial Electronics, vol. 62, n° 5, pp. 3163-3172, Maio 2015, https://doi.org/10.1109/TIE.2014.2371778.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.