Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 23 - Number 4
Publishing Date: dezembro 2018
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Estudo e validação experimental de um conversor multinível modular entrelaçado CA-CC monofásico para aplicações de transformadores de estado sólido
Davi Rabelo Joca, Luiz Henrique Silva Colado Barreto, Demercil de Souza Oliveira Júnior, Jean-Claude Vannier, Bogdan Dzonlaga, Loïc Quéval
495 - 504
http://dx.doi.org/10.18618/REP.2018.4.0007
Portuguese Data

Palavras Chaves: Conversor ca-cc isolado, Conversor Multinível Modular, modulação vetorial, Transformador de Estado Sólido

Resumo

Este artigo tem como objetivo apresentar o estudo teórico e a obtenção de resultados experimentais de uma topologia monofásica baseada em um conversor multinível modular entrelaçado. A estrutura pode ser empregada como o estágio ca-cc em aplicações de transformador de estado sólido. O objetivo é a conexão entre uma rede elétrica ca de média tensão e uma rede cc de baixa tensão. A nova técnica de entrelaçamento divide as correntes através das pernas do conversor multinível modular e é responsável pela modulação de tensão nos submódulos. O transformador de média frequência de 10 kHz fornece isolação galvânica e conecta o conversor multinível modular entrelaçado a um conversor de ponte completa. As características do conversor são discutidas, considerando a estrutura, o princípio de operação, a técnica de modulação e o esquema de controle. O sistema de controle regula a corrente de entrada e a tensão de barramento, no lado de alta tensão, e a tensão de saída e o fluxo de potência bidirecional, no lado de baixa tensão. A validação experimental do conversor é feita com um protótipo de pequena escala.

English Data

Title: Study and experimental validation of a single-phase AC-DC interleaved modular multilevel converter for solid-state transformers applications

Keywords: AC-DC power converters, Modular Multilevel Converter, Solid State Transformer, space vector modulation

Abstract

This paper aims to present the theoretical study and the obtaining of experimental results of a single-phase topology based on an interleaved modular multilevel converter. The structure can be employed as the ac-dc stage in solid-state transformer applications. The goal is the connection between a medium voltage ac grid and a low voltage dc grid. The new interleaving technique divides the currents through the legs of the modular multilevel converter and is responsible for the modulation of the voltage across in the submodules. The 10 kHz medium-frequency transformer provides galvanic isolation and connects the interleaved modular multilevel converter to a full bridge converter. The characteristics of the converter are discussed, considering the structure, the principle of operation, the modulation technique, and the control scheme. The control system regulates the input current and the bus voltage, on the high voltage side, and the output voltage and bidirectional power flow, on the low voltage side. The experimental validation of the converter is made with a scaled-down prototype.

References

[1] X. She, A. Q. Huang, F. Wang, R. Burgos, Wind Energy System With Integrated Functions of Active Power Transfer, Reactive Power Compensation, and Voltage Conversion, IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4512–4524, Oct 2013, https://doi.org/10.1109/ECCE.2012.6342508.
[2] P. Wang, L. Goel, X. Liu, F. H. Choo, Harmonizing AC and DC: A Hybrid AC/DC Future Grid Solution, IEEE Power and Energy Magazine, vol. 11, no. 3, pp. 76–83, May 2013, https://doi.org/10.1109/MPE.2013.2245587.
[3] A. Jhunjhunwala, A. Lolla, P. Kaur, Solar-dc Microgrid for Indian Homes: A Transforming Power Scenario, IEEE Electrification Magazine, vol. 4, no. 2, pp. 10–19, June 2016, https://doi.org/10.1109/MELE.2016.2543950.
[4] B. Nordman, K. Christensen, DC Local Power Distribution: Technology, Deployment, and Pathways to Success, IEEE Electrification Magazine, vol. 4, no. 2, pp. 29–36, June 2016, https://doi.org/10.1109/MELE.2016.2544218.
[5] E. Rodriguez-Diaz, F. Chen, J. C. Vasquez, J. M. Guerrero, R. Burgos, D. Boroyevich, Voltage-Level Selection of Future Two-Level LVdc Distribution Grids: A Compromise Between Grid Compatibiliy, Safety, and Efficiency, IEEE Electrification Magazine, vol. 4, no. 2, pp. 20–28, June 2016, https://doi.org/10.1109/MELE.2016.2543979.
[6] X. She, A. Q. Huang, S. Lukic, M. E. Baran, On Integration of Solid-State Transformer With Zonal DC Microgrid, IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 975–985, June 2012, https://doi.org/10.1109/TSG.2012.2187317.
[7] T. Zhao, G. Wang, S. Bhattacharya, A. Q. Huang, Voltage and Power Balance Control for a Cascaded H-Bridge Converter-Based Solid-State Transformer, IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1523–1532, April 2013, https://doi.org/10.1109/TPEL.2012.2216549.
[8] S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, J. C. Clare, Advanced Power Electronic Conversion and Control System for Universal and Flexible Power Management, IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 231–243, June 2011, https://doi.org/10.1109/TSG.2011.2115260.
[9] M. T. A. Khan, A. A. Milani, A. Chakrabortty, I. Husain, Dynamic Modeling and Feasibility Analysis of a Solid-State Transformer-Based Power Distribution System, IEEE Transactions on Industry Applications, vol. 54, no. 1, pp. 551–562, Jan 2018, https://doi.org/10.1109/TIA.2017.2757450.
[10] R. Gao, X. She, I. Husain, A. Q. Huang, Solid State-Transformer-Interfaced Permanent Magnet Wind Turbine Distributed Generation System With Power Management Functions, IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 3849–3861, July 2017, https://doi.org/10.1109/TIA.2017.2679679.
[11] H. Qin, J. W. Kimball, Solid-State Transformer Architecture Using AC-AC Dual-Active-Bridge Converter, IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3720–3730, Sept 2013, https://doi.org/10.1109/TIE.2012.2204710.
[12] H. Zhao, T. Zhu, D. Cheng, B. Li, J. Ding, Y. Li, Research on the smart modular cascaded solid state transformer interfaced to distributed photovoltaic power generation system, The Journal of Engineering, vol. 2017, no. 13, pp. 1872–1879, 2017, https://doi.org/10.1049/joe.2017.0656.
[13] A. Q. Huang, Q. Zhu, L. Wang, L. Zhang, 15 kV SiC MOSFET: An enabling technology for medium voltage solid state transformers, CPSS Transactions on Power Electronics and Applications, vol. 2, no. 2, pp. 118–130, 2017, https://doi.org/10.24295/CPSSTPEA.2017.00012.
[14] R. Marquardt, Stromrichterschaltungen mit verteilten energiespeichern, German Patent DE20 122 923 U1, pp. 832–840, 2001.
[15] S. Falcones, X. Mao, R. Ayyanar, Topology comparison for Solid State Transformer implementation, in IEEE PES General Meeting, pp. 1–8, July 2010, https://doi.org/10.1109/PES.2010.5590086.
[16] J. E. Huber, J. W. Kolar, Applicability of SolidState Transformers in Today’s and Future Distribution Grids, IEEE Transactions on Smart Grid, pp. 1–1, 2018, https://doi.org/10.1109/TSG.2017.2738610.
[17] M. S. Diab, A. M. Massoud, S. Ahmed, B. W. Williams, A Dual Modular Multilevel Converter With High-Frequency Magnetic Links Between Submodules for MV Open-End Stator Winding Machine Drives, IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 5142–5159, June 2018, https://doi.org/10.1109/TPEL.2017.2735195.
[18] Y. Wang, Q. Song, B. Zhao, J. Li, Q. Sun, W. Liu, Analysis and optimisation of modulation strategy based on dual-phase-shift for modular multilevel high frequency-link DC transformer in medium-voltage DC distribution network, IET Power Electronics, vol. 11, no. 2, pp. 253–261, 2018, https://doi.org/10.1049/iet-pel.2016.0857.
[19] M. Glinka, R. Marquardt, A new AC/AC-multilevel converter family applied to a single-phase converter, in The Fifth International Conference on Power Electronics and Drive Systems, vol. 1, pp. 16–23, Nov 2003, https://doi.org/10.1109/PEDS.2003.1282669.
[20] L. H. S. C. Barreto, D. de A. Honório, D. de S. Oliveira, P. P. Praça, An Interleaved-Stage AC-DC Modular Cascaded Multilevel Converter as a Solution for MV Railway Applications, IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3008–3016, April 2018, https://doi.org/10.1109/TIE.2017.2756600.
[21] G. V. T. Bascope, I. Barbi, Generation of a family of non-isolated DC-DC PWM converters using new three-state switching cells, in IEEE 31st Annual Power Electronics Specialists Conference, vol. 2, pp. 858–863, 2000, https://doi.org/10.1109/PESC.2000.879927.
[22] D. R. Joca, B. Dzonlaga, L. H. S. C. Barreto, D. S. Oliveira, J. C. Vannier, L. Quéval, AC DC Interleaved Modular Multilevel Converter with Medium-Frequency Isolation Transformer for DC Micro-grids, International Conference on Components and Systems for DC Grids (COSYS-DC), pp. 1–9, 2017.
[23] F. Briz, M. Lopez, A. Rodriguez, M. Arias, Modular Power Electronic Transformers: Modular Multilevel Converter Versus Cascaded H-Bridge Solutions, IEEE Industrial Electronics Magazine, vol. 10, no. 4, pp. 6–19, Dec 2016, https://doi.org/10.1109/MIE.2016.2611648.
[24] D. R. Joca, L. H. S. C. Barreto, D. d. S. Oliveira, J. d. O. Pacheco, Three-phase AC-DC solid-state transformer for low-voltage DC power distribution applications, in 12th IEEE International Conference on Industry Applications (INDUSCON), pp. 1–8, Nov 2016, https://doi.org/10.1109/INDUSCON.2016.7874536.
[25] S. Li, X. Wang, Z. Yao, T. Li, Z. Peng, Circulating Current Suppressing Strategy for MMC-HVDC Based on Nonideal Proportional Resonant Controllers Under Unbalanced Grid Conditions, IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 387–397, Jan 2015, https://doi.org/10.1109/TPEL.2014.2329059.
[26] A. Sanchez-Ruiz, G. Abad, I. Echeverria, I. Torre, I. Atutxa, Continuous Phase-Shifted Selective Harmonic Elimination and DC-Link Voltage Balance Solution for H-bridge Multilevel Configurations, Applied to 5L HNPC, IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2533–2545, April 2017, https://doi.org/10.1109/TPEL.2016.2574931.
[27] F. T. Ghetti, A. de O. Almeida, P. M. de Almeida, P. G. Barbosa, Simulação em tempo real de algoritmos de equalização das tensões CC de um conversor multinível modular, Eletrônica de Potência, vol. 2, no. 4, pp. 362–371, Dez 2017, http://dx.doi.org/10.18618/REP.2017.4.2701.
[28] H. M. d. O. Filho, D. d. S. Oliveira, Dynamic analysis of a ZVS bidirectional isolated three-phase dc-dc converter using phase-shift control, in IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1–6, Nov 2015, https://doi.org/10.1109/COBEP.2015.7420296.
[29] B. R. Almeida, J. W. M. Araujo, P. P. Praca, D. S. Oliveira, A Single-Stage Three-Phase AC/DC Converter with High-Frequency Isolation and PFC, IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8298 – 8307, Oct 2018, https://doi.org/10.1109/TPEL.2017.2775522.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.