Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 25 - Number 4
Publishing Date: dezembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
HIGH-VOLTAGE GAIN DC-DC CONVERTER FOR PHOTOVOLTAIC APPLICATIONS IN DC NANOGRIDS
Yury Pontes, Carlos Elmano de Alencar e Silva, Edilson Mineiro Sá Junior
473-480
http://dx.doi.org/10.18618/REP.2020.4.0021
English Data

Title: HIGH-VOLTAGE GAIN DC-DC CONVERTER FOR PHOTOVOLTAIC APPLICATIONS IN DC NANOGRIDS

Keywords: DC Nanogrids, Grid Connected Converters, High step-up dc-dc converter, High Voltage Gain, photovoltaic

Abstract
Photovoltaic (PV) systems used in DC Nanogrids present prominent advantages associated with low maintenance need and operation costs. Owing to the low output voltage of the PV module, highly efficient high-voltage gain DC-DC converters are required for connection with the DC nanogrid. This work presents a novel DC-DC converter topology with current source characteristic for PV applications and current injection in DC nanogrids. The introduced converter uses coupled inductors and switched capacitors to achieve high voltage gain with low component count and without using extreme duty ratios. Besides, the main switch is turned on with nearly zero current, thus contributing to minimized switching losses. The qualitative and quantitative analyzes of the circuit are presented in detail and a prototype rated at 200 W is developed and evaluated in the laboratory. Experimental results demonstrate efficient renewable energy conversion, where the maximum efficiency is 96.8%.

References

[1] A. Sannino, G. Postiglione, M. H. J. Bollen, and S. Member, “Pterygonema_alatum.pdf,” vol. 39, no. 5, pp. 1499–1507, 2003.
Doi: 10.1109/TIA.2003.816517

[2] S. I. Ganesan, D. Pattabiraman, R. K. Govindarajan, M. Rajan, and C. Nagamani, “Control Scheme for a Bidirectional Converter in a Self-Sustaining Low-Voltage DC Nanogrid,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6317–6326, 2015.
Doi: 10.1109/TIE.2015.2424192

[3] D. Salomonsson and A. Sannino, “Load modelling for steady-state and transient analysis of low-voltage DC systems,” IET Electr. Power Appl., vol. 1, no. 5, p. 690, 2007.
Doi: 10.1049/iet-epa:20060418

[4] A. T. Elsayed, A. A. Mohamed, and O. A. Mohammed, “DC microgrids and distribution systems: An overview,” Electr. Power Syst. Res., vol. 119, pp. 407–417, 2015.
Doi: 10.1109/PESMG.2013.6672624

[5] D. Burmester, R. Rayudu, W. Seah, and D. Akinyele, “A review of nanogrid topologies and technologies,” Renew. Sustain. Energy Rev., vol. 67, pp. 760–775, 2017.
Doi: 10.1016/j.rser.2016.09.073

[6] T. F. Wu, Y. K. Chen, G. R. Yu, and Y. C. Chang, “Design and development of dc-distributed system with grid connection for residential applications,” 8th Int. Conf. Power Electron. – ECCE Asia “Green World with Power Electron. ICPE 2011-ECCE Asia, pp. 235–241, 2011.
Doi: 10.1109/ICPE.2011.5944591

[7] D. Email, “Intelligent DC Microgrid Living Laboratories – A Sino-Danish Collaboration,” pp. 365–370, 2015.
Doi: 10.1109/ICDCM.2015.7152070

[8] M. D. O. Vasconcelos, F. C. De Araújo, F. A. P. Aragão, K. C. A. De Souza, and E. M. Sá, “High static gain DC-DC converter CUK with current source characteristic for nanogrid application,” 2017 IEEE 8th Int. Symp. Power Electron. Distrib. Gener. Syst. PEDG 2017, pp. 1–6, 2017.
Doi: 10.1109/PEDG.2017.7972474

[9] F. C. De Araújo, M. O. Vasconcelos, F. A. P. Aragão, K. C. A. De Souza, and E. M. Sá, “High-gain DC-DC converter with current source characteristics at the output for applications in photovoltaic systems and current injection in nanogrids,” 2017 IEEE 8th Int. Symp. Power Electron. Distrib. Gener. Syst. PEDG 2017, pp. 2–7, 2017.
Doi: 10.1109/PEDG.2017.7972485

[10] S. Ahmadi, H. Bevrani, S. Shokoohi, and E. Hasanii, “An improved droop control for simultaneous voltage and frequency regulation in an AC microgrid using fuzzy logic,” in 2015 23rd Iranian Conference on Electrical Engineering, 2015, vol. 10, pp. 1486–1491.
Doi: 10.1109/IranianCEE.2015.7146455

[11] A. A. Abdelsalam, H. A. Gabbar, and A. M. Sharaf, “Performance enhancement of hybrid AC/DC microgrid based D-FACTS,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 382–393, 2014.
Doi: 10.1016/j.ijepes.2014.06.003

[12] A. A. Memon and K. Kauhaniemi, “A critical review of AC Microgrid protection issues and available solutions,” Electr. Power Syst. Res., vol. 129, pp. 23–31, 2015.
Doi: 10.1016/j.epsr.2015.07.006

[13] M. Sechilariu, B. C. Wang, F. Locment, and A. Jouglet, “DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation,” Energy Convers. Manag., vol. 82, pp. 1–10, 2014.
Doi: 10.1016/j.enconman.2014.03.010

[14] W. W. Weaver, R. D. Robinett, G. G. Parker, and D. G. Wilson, “Distributed control and energy storage requirements of networked Dc microgrids,” Control Eng. Pract., vol. 44, pp. 10–19, 2015.
Doi: 10.1016/j.conengprac.2015.06.008

[15] S. S. Nag, R. Adda, O. Ray, and S. K. Mishra, “Current-Fed Switched Inverter based hybrid topology for DC Nanogrid application,” IECON Proc. (Industrial Electron. Conf., pp. 7146–7151, 2013.
Doi: 10.1109/IECON.2013.6700320

[16] V. Sudev and S. Parvathy, “Switched boost inverter based Dc nanogrid with battery and bi-directional converter,” 2014 Int. Conf. Circuits, Power Comput. Technol. [ICCPCT-2014], pp. 461–467, 2014.
Doi: 10.1109/ICCPCT.2014.7054920

[17] U. B. Mujumdar and D. R. Tutkane, “Parallel MPPT for PV based residential DC Nanogrid,” in 2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, vol. 54, no. 1, pp. 1350–1355.
Doi: 10.1109/IIC.2015.7150958

[18] M. Lakshmi and S. Hemamalini, “Nonisolated high gain DC-DC converter for DC microgrids,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1205–1212, 2018.
Doi: 10.1109/TIE.2017.2733463

[19] Q. Zhao, F. Tao, and F. C. Lee, “A front-end DC/DC converter for network server applications,” PESC Rec. – IEEE Annu. Power Electron. Spec. Conf., vol. 3, pp. 1535–1539, 2001.
Doi: 10.1109/PESC.2001.954337

[20] D. Dong, D. Boroyevich, R. Wang, and I. Cvetkovic, “A two-stage high power density single-phase ac-dc bi-directional PWM converter for renewable energy systems,” 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010 – Proc., pp. 3862–3869, 2010.
Doi: 10.1109/ECCE.2010.5617767

[21] W. W. A. G. Silva, P. F. Donoso-Garcia, S. I. Seleme, T. R. Oliveira, C. H. G. Santos, and A. S. Bolzon, “Study of the application of bidirectional dual active bridge converters in dc nanogrid energy storage systems,” 2013 Brazilian Power Electron. Conf. COBEP 2013 – Proc., pp. 609–614, 2013.
Doi: 10.1109/COBEP.2013.6785178

[22] W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, 2011.
Doi: 10.1109/TIE.2010.2049715

[23] M. Kasper, D. Bortis, and J. W. Kolar, “Classification and Comparative Evaluation of PV Panel-Integrated DC/DC Converter Concepts,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2511–2526, 2014.
Doi: 10.1109/TPEL.2013.2273399

[24] C. Knaesel, L. Michels, A. L. Batschauer, C. Knaesel, L. Michels, and A. L. Batschauer, “FOTOVOLTAICOS High Voltage Gain Isolated INTEGRAÇÃO DC-DC Converter for Integration in Photovoltaic Modules,” pp. 482–493, 2019.
Doi: 10.18618/REP.2019.4.0042

[25] S. Saravanan and N. Ramesh Babu, “Analysis and implementation of high step-up DC-DC converter for PV based grid application,” Appl. Energy, vol. 190, pp. 64–72, 2017.
Doi: 10.1016/j.apenergy.2016.12.094

[26] M. Muhammad, M. Armstrong, and M. A. Elgendy, “Analysis and implementation of high-gain non-isolated DC–DC boost converter,” IET Power Electron., vol. 10, no. 11, pp. 1241–1249, 2017.
Doi: 10.1049/iet-pel.2016.0810

[27] M. Kumar, M. Ashirvad, and Y. N. Babu, “An integrated Boost-Sepic-Ćuk DC-DC converter with high voltage ratio and reduced input current ripple,” Energy Procedia, vol. 117, pp. 984–990, 2017.
Doi: 10.1016/j.egypro.2017.05.219

[28] S. Salehi Dobakhshari, J. Milimonfared, M. Taheri, and H. Moradisizkoohi, “A Quasi-Resonant Current-Fed Converter with Minimum Switching Losses,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 353–362, 2017.
Doi: 10.1109/TPEL.2016.2528893

[29] Y. P. Siwakoti, F. Blaabjerg, and P. C. Loh, “Ultra-step-up DC-DC converter with integrated autotransformer and coupled inductor,” Conf. Proc. – IEEE Appl. Power Electron. Conf. Expo. – APEC, vol. 2016-May, no. 1, pp. 1872–1877, 2016.
Doi: 10.1109/APEC.2016.7468123

[30] Y. P. Siwakoti and F. Blaabjerg, “Single Switch Nonisolated Ultra-Step-Up DC-DC Converter with an Integrated Coupled Inductor for High Boost Applications,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8544–8558, 2017.
Doi: 10.1109/TPEL.2016.2646382

[31] A. M. S. S. Andrade, L. Schuch, and M. L. Da Silva Martins, “Analysis and design of high-efficiency hybrid high step-Up DC-DC converter for distributed PV generation systems,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3860–3868, 2019.
Doi: 10.1109/TIE.2018.2840496

[32] Y. Wang, Y. Qiu, Q. Bian, Y. Guan, and D. Xu, “A Single Switch Quadratic Boost High Step Up DC-DC Converter,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4387–4397, 2019.
Doi: 10.1109/PEDSTC.2018.8343765

[33] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143–9178, 2017.
Doi: 10.1109/TPEL.2017.2652318

[34] E. S. Hass, C. B. Nascimento, E. S. Hass, and C. B. Nascimento, “A SIMPLE SELF-CLAMPED HIGH STEP-UP DC-DC CONVERTER EMPLOYING COUPLED INDUCTOR A Simple Self-Clamped High Step-Up DC-Dc Converter Employing Coupled Inductor,” pp. 204–213, 2019.
Doi: 10.18618/REP.2019.2.0009

[35] L. Schmitz, A. I. Pereira, R. G. A. Cacau, D. C. Martins, and R. F. Coelho, “CONVERSOR CC-CC DE ALTO GANHO BASEADO NO CONVERSOR ĆUK COM INDUTOR ACOPLADO E MULTIPLICADORES DE TENSÃO,” pp. 267–276, 2019.
Doi: 10.18618/REP.2019.3.0020

[36] Qun Zhao, Fengfeng Tao, Yongxuan Hu, and F. C. Lee, “Active-clamp DC/DC converters using magnetic switches,” APEC 2001. Sixt. Annu. IEEE Appl. Power Electron. Conf. Expo. (Cat. No.01CH37181), vol. 2, pp. 946–952, 2001.
Doi: 10.1109/APEC.2001.912481

[37] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1 I, pp. 65–73, 2003.
Doi: 10.1109/TPEL.2002.807188

[38] D. M. Van De Sype, K. De Gussem, B. Renders, A. P. Van Den Bossche, and J. A. Melkebeek, “A single switch boost converter with a high conversion ratio,” Conf. Proc. – IEEE Appl. Power Electron. Conf. Expo. – APEC, vol. 3, pp. 1581–1587, 2005.
Doi: 10.1109/APEC.2005.1453247

[39] X. Yue, D. Boroyevich, F. C. Lee, F. Chen, R. Burgos, and F. Zhuo, “Beat Frequency Oscillation Analysis for Power Electronic Converters in DC Nanogrid Based on Crossed Frequency Output Impedance Matrix Model,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3052–3064, 2018.
Doi: 10.1109/TPEL.2017.2710101

[40] S. Sathyan, H. M. Suryawanshi, B. Singh, C. Chakraborty, V. Verma, and M. S. Ballal, “ZVS-ZCS High Voltage Gain Integrated Boost Converter for DC Microgrid,” IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6898–6908, 2016.
Doi: 10.1109/TIE.2016.2582460

[41] M. Forouzesh, Y. Shen, K. Yari, Y. P. Siwakoti, and F. Blaabjerg, “High-Efficiency High Step-Up DC-DC Converter with Dual Coupled Inductors for Grid-Connected Photovoltaic Systems,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5967–5982, 2018.
Doi: 10.1109/TPEL.2017.2746750

[42] S. Qin, K. A. Kim, and R. C. N. Pilawa-Podgurski, “Laboratory emulation of a photovoltaic module for controllable insolation and realistic dynamic performance,” 2013 IEEE Power Energy Conf. Illinois, PECI 2013, pp. 23–29, 2013.
Doi: 10.1109/PECI.2013.6506029

[43] F. Chen, R. Burgos, and D. Boroyevich, “A Transformerless Single-Phase Utility Interface Converter to Attenuate Common-Mode Voltage for DC Microgrid,” pp. 157–162, 2017.
Doi: 10.1109/IFEEC.2017.7992435

[44] V. D. S. Member, V. John, and S. Member, “A Modified Common-Mode Filter with Enhanced Attenuation Performance in Single-Phase Grid-Tied Solar PV Inverters,” pp. 5–10, 2020.
Doi: 10.1109/PESGRE45664.2020.9070514

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.