Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 23 - Number 4
Publishing Date: dezembro 2018
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Impacto do tamanho do horizonte deslizante para controle preditivo em turbinas eólicas baseadas em DFIG
Lucas Lima Rodrigues, Omar Alexander Chura Vilcanqui, Alfeu Joãozinho Sguarezi Filho
434 - 441
http://dx.doi.org/10.18618/REP.2018.4.2803
Portuguese Data

Palavras Chaves: controle de potência, Controle Preditivo, Controle Vetorial de Máquinas, DFIG, energia eólica, Gerador de Indução Duplamente Alimentado

Resumo

Durante os últimos anos, tem-se apresentado diversas topologias de controladores preditivos aplicados ao Doubly Fed Induction Generators. Devido a importância dessa abordagem, neste artigo será analisado a sensibilidade dos horizontes de controle e de predição em um controlador preditivo baseado em modelo, do inglês Model Based Predictive Control, que utiliza um modelo de predição em espaço de estados. O presente estudo inclui a análise da resposta ao degrau, propagação do ruído, relativos ao chaveamento do conversor back to back e ao ruído do eixo. Além disso, serão analisados o desempenho do controlador quando o gerador opera em diferentes velocidades mecânicas, e o custo computacional do algoritmo do controlador. Finalmente, serão apresentados resultados experimentais para validar as análises feitas.

English Data

Title: Impact of receding horizon length under MBPC applied to DFIG based wind turbine

Keywords: DFIG, Doubly-Fed Induction Generator, Machine vector control, power control, Predictive Control, wind power generation

Abstract

During the last years, there has been presented many predictive controllers applied to Doubly Fed Induction Generators. Due to the importance of this approach, this paper is going to analyze the sensitivity of prediction and control horizon to a Model Based Predictive Control using a space-state prediction model. The current study includes a step response analysis, noise propagation, related to back to back power converter switching and mechanical shaft noise. Furthermore, the performance under different mechanical speed and computational cost of MBPC algorithm are going to be analyzed. Finally, experimental results were used to endorse the proposed analysis.

References

[1] R. Cardenas, R. Pena, S. Alepuz, G. Asher, Overview of Control Systems for the Operation of DFIGs in Wind Energy Applications, IEEE Transactions on Industrial Electronics vol. 60, no. 7, pp. 2776–2798, Julho 2013, http://dx.doi.org/10.1109/TIE.2013.2243372.
[2] A. A. B. M. Zin, M. P. H.A., A. B. Khairuddin,L. Jahanshaloo, An overview on doubly fed induction generators controls and contributions to wind based electricity generation, Renewable and Sustainable Energy Reviews, vol. 27, pp. 692–708, 2013, http://dx.doi.org/10.1016/J.RSER.2013.07.010.
[3] S. Yu, T. Fernando, K. Emami, H. H.-C. Iu, Dynamic State Estimation Based Control Strategy for DFIG Wind Turbine Connected to Complex Power Systems, IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1272–1281, 2017, http://dx.doi.org/10.1109/TPWRS.2016.2590951.
[4] G. Abad, J. Lopez, M. Rodríguez, L. Marroyo,G. Iwanski, Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation, Wiley-IEEE Press, 2011.
[5] B. Hamane, M. L. Doumbia, A. M. Bouhamida,M. Benghanem, Direct active and reactive power control of DFIG based WECS using PI and sliding mode controllers, in 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, http://dx.doi.org/10.1109/IECON.2014.7048784.
[6] E. Tremblay, S. Atayde, A. Chandra, Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: A DSP-based implementation approach, IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 288–299,2011, http://dx.doi.org/10.1109/TSTE.2011.2113381.
[7] R. Franco, C. E. Capovilla, R. V. Jacomini, J. A. T.Altana, A. J. S. Filho, A deadbeat direct power control applied to doubly-fed induction aerogenerator under normal and sag voltages conditions, in 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, http://dx.doi.org/10.1109/IECON.2014.7048762.
[8] W. Zhi-nong, Y. Xiao-yong, W. Jia-jia, H. Lianshan, X. Xiang, C. Dan, W. Yue, The intelligent control of DFIG-based wind generation, in International Conference on Sustainable Power Generation and Supply, 2009, http://dx.doi.org/10.1109/SUPERGEN.2009.5348146.
[9] H. Nguyen-Thanh, D. Q. Phan, C. Vo-Viet, Modified controls for DFIG under unbalanced voltage dip for reduction of current harmonic using PI-F plus Resonant controller, in IEEE International Conference on Sustainable Energy Technologies (ICSET), pp. 202–207, 2016, http://dx.doi.org/10.1109/ICSET.2016.7811782.
[10] A. J. Sguarezi Filho, A. L. de Lacerda Ferreira Murari, C. E. Capovilla, J. A. T. Altuna, R. V. Jacomini, A State Feedback Dfig Power Control For Wind Generation, Eletrônica de Potência, vol. 20, no. 2, pp.151–159, Maio 2015, http://dx.doi.org/10.18618/REP.2015.2.151159.
[11] B. Beltran, M. E. H. Benbouzid, T. Ahmed-Ali, Second-order sliding mode control of a doubly fed induction generator driven wind turbine, IEEE Transactions on Energy Conversion, vol. 27, no. 2, pp.261–269, 2012, http://dx.doi.org/10.1109/TEC.2011.2181515.
[12] E. F. Camacho, C. Bordons, Model Predictive Control, 2st edition, Springer-Verlag GmbH, 2004.
[13] S. V. Dias, T. R. F. Neto, L. L. N. dos Reis, B. C. Torrico, J. C. T. Campos, Robust analysis of a predictive controller of DFIG wind energy systems, in IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Abril 2017, http://dx.doi.org/10.1109/PEDG.2017.7972466.
[14] S. V. Dias, T. R. F. Neto, L. L. N. D. Reis, B. C. Torrico, J. C. T. Campos, Controlador de corrente preditivo contínuo com Anti-windup aplicado a um sistema de geração eólico baseado Em DFIG, Eletrônica de Potência, vol. 22, no. 1, pp. 72–80, Março 2017, http://dx.doi.org/10.18618/REP.2017.1.2650.
[15] X. Liu, X. Kong, Nonlinear model predictive control for DFIG-based wind power generation, IEEE Transactions on Automation Science and Engineering, vol. 11, no. 4, pp. 1046–1055, 2014, http://dx.doi.org/10.1109/TASE.2013.2284066.
[16] K. Ouaril, T. Rekioual, M. Ouhrouche, Nonlinear Model Predictive Controller of a variable speed wind turbine driven Doubly Fed Induction Generator, J. Electrical Systems, pp. 243–255, 2013.
[17] R. Errouissi, A. Al-Durra, S. M. Muyeen,S. Leng, F. Blaabjerg, Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2265–2277, 2017, http://dx.doi.org/10.1109/TPEL.2016.2557964.
[18] S. Chikha, K. Barra, A. Reama, Predictive current control of a wind energy conversion system based DFIG via direct matrix converter, in The Sixth International Renewable Energy Congress, 2015, http://dx.doi.org/10.1109/IREC.2015.7110888.
[19] X. Wang, D. Sun, Three-Vector-Based Low-Complexity Model Predictive Direct Power Control Strategy for Doubly Fed Induction Generators, IEEE Transactions on Power Electronics, vol. 32, no. 1, pp.773–782, 2017, http://dx.doi.org/10.1109/TPEL.2016.2532387.
[20] D. Zhi, L. Xu, B. W. Williams, Model-Based Predictive Direct Power Control of Doubly Fed Induction Generators, IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 341–351, 2010, http://dx.doi.org/10.1109/TPEL.2009.2028139.
[21] P. Kou, D. Liang, J. Li, L. Gao, Q. Ze, Finite-Control-Set Model Predictive Control for DFIG Wind Turbines, IEEE Transactions on Automation Science and Engineering, , no. 99, pp. 1–10, 2017, http://dx.doi.org/10.1109/TASE.2017.2682559.
[22] A. J. Sguarezi Filho, M. E. de Oliveira Filho, E. Ruppert Filho, A predictive power control for wind energy, IEEE Transactions on Sustainable Energy, vol. 2, no. 1, pp. 97–105, Janeiro 2011, http://dx.doi.org/10.1109/TSTE.2010.2088408.
[23] X.-B. Kong, L. Wang, X.-J. Liu, Predictive control for DFIG-based wind power generation,in 24th Chinese Control and Decision Conference (CCDC), pp. 240–245, 2012, http://dx.doi.org/10.1109/CCDC.2012.6244034.
[24] J. A. Rossiter, Model-based predictive control: a practical approach, CRC press, 2003.
[25] E. S. De Santana, E. Bim, W. C. do Amaral, A predictive algorithm for controlling speed and rotor flux of induction motor, IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4398–4407, 2008, http://dx.doi.org/10.1109/TIE.2008.2007376.
[26] J. Solís-Chaves, M. S. Barreto, M. B. Salles, V. M. Lira, R. V. Jacomini, A. J. S. Filho, A direct power control for DFIG under a three phase symmetrical voltage sag condition, Control Engineering Practice, vol. 65, pp. 48 – 58, 2017, http://dx.doi.org/10.1016/J.CONENGPRAC.2017.05.002.
[27] J. Chaves, D. Cortés, M. Salles, V. Lira, R. Jacomni, A. Filho, A Deadbeat Direct Power And Decoupled Stator Flux Control For Dfig, Eletrônica de Potência, vol. 22, no. 3, pp. 246–257, Setembro 2017, http://dx.doi.org/10.18618/REP.2017.3.2682.
[28] J. M. Maciejowski, Predictive control: with constraints, Pearson education, 2002.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.