Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 24 - Number 2
Publishing Date: junho 2019
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Improved Photoelectrothermal Model with Thermal Parameters Variation Applied to an Extra-High Current COB LED
Dênis de Castro Pereira, Pedro Laguardia Tavares, Pedro Santos Almeida, Guilherme Márcio Soares, Fernando Lessa Tofoli, Henrique Antônio Carvalho Braga
147 - 156
http://dx.doi.org/10.18618/REP.2019.2.0054
English Data

Title: Improved Photoelectrothermal Model with Thermal Parameters Variation Applied to an Extra-High Current COB LED

Keywords: Extra-high current COB LEDs, Floodlighting, Improved photoelectrothermal modeling, Thermal parameters variation

Abstract

This work is mainly concerned with the improved photoelectrothermal (IPET) modeling of an extra-high current (EHC)
and extra-high luminous flux (up to 60 klm) solid-state light source based on a chip-on-board (COB) light-emitting diode (LED).
The studied COB technology presents the particular challenge of extremely small thermal resistances, with extra-high current
levels through the lamp (up to 12 A). Considering the unique thermal characteristics of such devices, an improved PET modeling
and its respective experimental methodology are detailed. Accurate techniques are also proposed to estimate the device junction temperature.
The studied method is very suitable to represent EHC COB devices, since it includes the main thermal parameters variation into a novel model,
optimizing the flux prediction for this technology. In this context, the static flux and efficacy are analyzed by means of experimental tests
and theoretical model, where the improvement of the employed method is highlighted.

References

[1] M. A. Reyes, J. J. Sammarco, S. Gallagher, and J. R. Srednicki.
Comparative evaluation of light-emitting diode lamps with an emphasis on visual performance in mesopic lighting conditions.
IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 127-133, Jan 2014. DOI: 10.1109/TIA.2013.2291294

[2] Osram. Floodlight 20 Maxi LED Module Generation 2. Osram Lighting, 2018.
Available in: https://goo.gl/wGmf33. Accessed in 01/30/2019.

[3] N. Kafadarova N. Vakrilov, A. Andonova. Study of high power COB LED modules with respect to topology of chips. In Electronics Technology (ISSE), 2015 38th International Spring Seminar on, vol. 2, pp. 108-113, 2015.
DOI: 10.1109/ISSE.2015.7247972

[4] Flip Chip Opto. FCOpto Starlite LED product catalogue, 2016.
Available in: https://goo.gl/mxWZtx. Accessed in 02/03/2019.

[5] Flip Chip Opto. Apollo 600 datasheet, 2016.
Available in: https://goo.gl/CxkdGi. Accessed in 02/03/2019.

[6] Lumileds. Luxeon COB Core Range, Lumileds Lighting 2018.
Available in: https://goo.gl/9F52Yh. Accessed in 02/03/2019.

[7] Bridgelux. Décor Ultra High CRI Array Series, Bridgelux Lighting, 2018.
Available in: https://goo.gl/wGqPn7. Accessed in 02/03/2019.

[8] R. Hui. Photo-electro-thermal Theory for LED Systems: Basic Theory and Applications. Cambridge University Press, 2017.

[9] Getian. GT-P500W White COB LED Series, Getian Group, 2018.
Available in: https://goo.gl/FYoKGd. Accessed in 01/30/2019.

[10] Yujileds.
BC270H High Power Density COB LED, Yujileds Lighting, 2018.
Available in: https://goo.gl/HExJjz. Accessed in 01/30/2019.

[11] S. Y Hui and Y. X Qin. A general photo-electro-thermal theory for light emitting diode systems. IEEE Transactions on Power electronics, vol. 24, no. 8, pp.1967-1976, 2009. DOI: 10.1109/TPEL.2009.2018100

[12] V. C. Bender, O. Iaronka, W. D. Vizzotto, M. A. D. Costa, R. N. do Prado and T. B. Marchesan. Design Methodology for Light-Emitting Diode Systems by Considering an Electrothermal Model. IEEE Transactions on Electron. Devices, vol. 60, no. 11, pp. 3799-3806, Nov. 2013. DOI: 10.1109/TED.2013.2282901

[13] P. S. Almeida, V. C. Bender, H. A. C. Braga, M. A. Dalla Costa, T. B. Marchesan, and J. M. Alonso. Static and dynamic photoelectrothermal modeling of led lamps including low-frequency current ripple effects. IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3841-3851, July 2015. DOI: 10.1109/TPEL.2014.2340352

[14] Philips. Clear Flood Large LED Module BVP651 LED500-4S/740 DM10 ALU PSU, Philips Lighting, 2018. Available in: https://goo.gl/HWbpwf. Accessed in 01/30/2019.

[15] WEISS Technik. Climatic Chamber WKL 100/40 model, 2010.
Available in: https://goo.gl/p3bJEe. Accessed in 02/03/2019.

[16] D. Gacio, J. M. Alonso, J. Garcia, M. S. Perdigão, E. S. Saraiva, F. E. Bisogno. Effects of the junction temperature on the dynamic resistance of white LEDs. IEEE Transactions on Industry Applications, vol. 49, no. 2, pp. 750-760, Feb. 2013. DOI: 10.1109/TIA.2013.2243092

[17] Ursa Lighting/Starlite LED. 600-W Cold Forged Heatsink, 2016.
Available in: https://goo.gl/LQ9RpN. Accessed in 01/30/2019.

[18] J. Lalith, Y. M. Gu, and N. Nadarajah. Characterization of thermal resistance coefficient of high-power LEDs. in Proc. 6th Int. Conf. Solid State Lighting, San Diego, CA, Aug. 2006, pp. 63370-63377. DOI: 10.1117/12.682585

[19] Z. L. Ma, X. R. Zheng, W. J. Liu, X. W. Lin, and W. L. Deng. Fast thermal resistance measurement of high brightness LED. in Proc. 6th Int. Conf. Electron. Packag. Technol. (ICEPT 2005), Shenzhen, China, Aug. 2005, pp. 614–616. DOI: 10.1109/ICEPT.2005.1564685

[20] B. Siegal. Practical considerations in high power LED junction temperature measurements. In Proc. 31st Int. Conf. Electron. Manuf. Technol. (IEMT 2006), Kuala Lumpur, Malaysia, Nov. 2006, pp. 62-66. DOI: 10.1109/IEMT.2006.4456433

[21] I. U. Perera, N. Narendran, and Y. Liu. Accurate measurement of LED lens surface temperature. Proc. Int. Conf. Optical Engineering and Applications (SPIE 2013), San Diego, California, United States, Sep. 2013, pp. 1-6.
DOI: 10.1117/12.2023091

[22] H. Kaplan. Practical Applications of Infrared Thermal Sensing and Imaging Equipment. 3rd ed., Int. Society of Optics and Photonics, Washington, 2007.

[23] Ursa Lighting/Starlite LED. 320-W Cold Forged Heatsink, 2016.
Available in: https://goo.gl/6Rf7ah. Accessed in 01/30/2019.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.