Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 24 - Number 1
Publishing Date: março 2019
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Influência do método de sincronismo na estabilidade de conversores trifásicos conectados à rede
André Nicolini, Fernanda de M. Carnielutti, Jorge Massing, Humberto Pinheiro
8-17
http://dx.doi.org/10.18618/REP.2019.1.0003
Portuguese Data

Palavras Chaves: Conversor trifásico, Critério generalizado de Nyquist, estabilidade, Linearização, PLL

Resumo

Este artigo realiza a análise da influência do sistema de sincronismo sobre a estabilidade de conversores trifásicos conectados à rede elétrica combinando equações de espaço de estado e funções de transferência matriciais. Fundamentado no método das impedâncias, divide-se o sistema de geração em dois elementos representados por funções de transferência matriciais em eixos síncronos dq. O primeiro representa a admitância equivalente do conversor, que é obtido ao considerá-lo conectado à uma rede ideal. Neste caso, são considerados as dinâmicas do phase-looked loop (PLL) e do controlador de corrente. O segundo representa a impedância equivalente da rede. O modelo não-linear obtido foi, então, linearizado por perturbações de pequenos sinais. A interconexão entre os dois elementos é realizada em matrizes função de transferência e representada na forma de digrama de blocos. A análise da estabilidade do sistema se dá pela utilização do critério generalizado de nyquist (GNC). Além disso, o método dos autovalores é utilizado no sistema completo em espaço de estados para elucidar a escolha dos ganhos do PLL. A fim de verificar a análise teórica, resultados de simulação são apresentados, mostrando uma boa correção com a análise matemática no domínio da frequência.

English Data

Title: Synchronism method influence on three-phase grid-tied converters stability

Keywords: Generalized Nyquist criteria, Linearization, PLL, stability, Three-phase converter

Abstract

This paper analyzes the influence of the synchronism system on the stability of three-phase grid-tied converters, combining state space equations and matrix transfer functions. Based on the impedance method, the generation system was divided into two elements represented by matrix transfer functions on dq synchronous axis. The first represents the equivalent admittance of the converter, which is obtained by considering it connected to an ideal grid. Here, the dynamics of the phase-looked loop (PLL) and of the current controller are considered. The second represents the grid equivalent impedance. In addition, the resulting non-linear model was linearized by the small-signal method. The interconnection between these two elements is performed in transfer function matrices and represented in the block diagram form. The analysis of the stability of the system is given by the use of the Generalized Nyquist Criterion (GNC). Moreover, the eigenvalues method is used in the complete state space system to elucidate the choice of PLL gains. In order to validate the theoretical analysis, simulations results are presented, showing a good agreement with the mathematical analysis in the frequency domain.

References

[1] F. Blaabjerg, R. Teodorescu, M. Liserre, A. V. Timbus, Overview of Control and Grid Synchronization for Distributed Power Generation Systems, IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398–1409, Oct 2006, https://doi.org/10.1109/TIE.2006.881997.
[2] S.-K. Chung, A phase tracking system for three phase utility interface inverters, IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431–438, May 2000, https://doi.org/10.1109/63.844502.
[3] B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, Z. Shen, Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters, IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 675–687, Jan 2016, https://doi.org/10.1109/TPEL.2015.2398192.
[4] C. Zhang, X. Cai, A. Rygg, M. Molinas, Sequence Domain SISO Equivalent Models of a Grid-tied Voltage Source Converter System for Small-Signal Stability Analysis, IEEE Transactions on Energy Conversion, vol. PP, no. 99, pp. 1–1, 2017, https://doi.org/10.1109/TEC.2017.2766217.
[5] J. Sun, Small-Signal Methods for AC Distributed Power Systems 2013 – A Review, IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2545–2554, Nov 2009, https://doi.org/10.1109/TPEL.2009.2029859.
[6] J. Sun, Impedance-Based Stability Criterion for Grid-Connected Inverters, IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3075–3078, Nov 2011, https://doi.org/10.1109/TPEL.2011.2136439.
[7] M. Céspedes, J. Sun, Modeling and mitigation of harmonic resonance between wind turbines and the grid, in 2011 IEEE Energy Conversion Congress and Exposition, pp. 2109–2116, Sept 2011, https://doi.org/10.1109/ECCE.2011.6064047.
[8] C. Zhang, X. Wang, F. Blaabjerg, Analysis of phase-locked loop influence on the stability of singlephase grid-connected inverter, in 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–8, June 2015, https://doi.org/10.1109/PEDG.2015.7223089.
[9] J. Wang, J. Yao, H. Hu, Y. Xing, X. He, K. Sun, Impedance-based stability analysis of singlephase inverter connected to weak grid with voltage feed-forward control”, in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2182–2186, March 2016, https://doi.org/10.1109/APEC.2016.7468169.
[10] X. Zhang, X. Danni, F. Zhichao, G. Wang, D. Xu, An Improved Feedforward Control Method Considering PLL Dynamics to Improve Weak Grid Stability of Grid-Connected Inverters, IEEE Transactions on Industry Applications, pp. 1–1, 2018, https://doi.org/10.1109/TIA.2018.2811718.
[11] Y. Yang, X. Du, G. Wang, X. Zou, P. Sun, H. M. Tai, Y. Ji, A q-axis voltage feedforward control method to improve the stability of VSI in a weak grid, in IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 7897–7902, Oct 2017, https://doi.org/10.1109/IECON.2017.8217384.
[12] X. Wang, L. Harnefors, F. Blaabjerg, Unified Impedance Model of Grid-Connected Voltage-Source Converters”, IEEE Transactions on Power Electronics,
vol. 33, no. 2, pp. 1775–1787, Feb 2018, https://doi.org/10.1109/TPEL.2017.2684906.
[13] K. Ogata, Modern Control Engineering, 4th ed., Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.
[14] X. Feng, J. Liu, F. C. Lee, Impedance specifications for stable DC distributed power systems, IEEE Transactions on Power Electronics, vol. 17, no. 2, pp. 157–162, Mar 2002, https://doi.org/10.1109/63.988825.
[15] M. Amin, M. Molinas, Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods, IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 5014–5030, Sept 2017, https://doi.org/10.1109/TIA.2017.2712692.
[16] T. Roinila, T. Messo, E. Santi, MIMO-Identification Techniques for Rapid Impedance-Based Stability Assessment of Three-Phase Systems in DQ Domain, IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4015–4022, May 2018, https://doi.org/10.1109/TPEL.2017.2714581.
[17] J. M. Maciejowski, Multivariable Feedback Design, Addison-Wesley, 1989.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.