Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 23 - Number 4
Publishing Date: dezembro 2018
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Inversor boost a capacitor chaveado conectado à rede elétrica
Jéssika Melo de Andrade, Gilberto Valentim Silva, Roberto Francisco Coelho, Telles Brunelli Lazzarin
466 - 476
http://dx.doi.org/10.18618/REP.2018.4.0005
Portuguese Data

Palavras Chaves: Capacitor chaveado, Conexão com a Rede Elétrica, Controle, Inversor boost, Linearização, Modelagem

Resumo

Neste artigo propõe-se o emprego do inversor boost diferencial a capacitor chaveado (SCDBI) em aplicações que requerem conexão com a rede elétrica. O SCDBI é um inversor elevador, cujo ganho pode ser aumentado a partir da adição de células a capacitor chaveado, e possui saída em tensão, o que permite injetar correntes na rede com baixa ondulação usando apenas um filtro L. Esses atributos favorecem o emprego da topologia em sistemas de estágio único, onde a tensão de entrada é menor que o valor de pico da tensão de saída. Alguns dos desafios atrelados ao uso do SCDBI estão relacionados à característica de ganho não linear e aos modelos dinâmicos de ordem elevada. Neste artigo, é proposta uma modelagem simplificada e uma técnica de linearização estática, que possibilitam a utilização de um controlador proporcional-integral e uma malha de feedforward para controlar a corrente injetada na rede elétrica. O trabalho também aborda a análise estática do conversor com modulação unipolar e apresenta os procedimentos de dimensionamento. A validação do estudo é feita através dos resultados obtidos a partir de um protótipo de 250 W, conectado à rede de 220 V eficaz, com tensão de entrada de 60 V, frequência de comutação de 50 kHz, rendimento de 90% e corrente de saída com THD menor que 5%.

English Data

Title: Switched capacitor boost inverter connected to the grid

Keywords: Boost inverter, Connecting to the electrical grid, Control, Linearization, Modelling, Switched capacitor

Abstract

This paper proposes the employment of the switched-capacitor differential boost inverter (SCDBI) for applications that require grid-connection. The SCDBI is a step-up converter, which allows the increasing of the gain adding more switched capacitor cells. Furthermore, its output voltage characteristic enables injecting currents with low ripple even using just an L filter. Those attributes support the employment of the topology in single-stage systems connected to the grid, in which the input voltage is lower than the output voltage. Some of the challenges of using SCDBI connected to the grid are related to the nonlinear static gain characteristic and high order dynamic models. In this paper, a simplified modelling and a static linearization technique are proposed, which allow the use of a proportional integral controller with a feedforward loop for regulating the current injected into the grid. Furthermore, the static analysis of the converter with unipolar modulation and design methodology are also presented. The validation of the theoretical analysis is achieved through a 250 W prototype connected to 220 V RMS voltage grid, with input voltage of 60 V, switching frequency of 50 kHz, efficiency of 90%, and grid current THD less than 5%.

References

[1] S. Z. Mohammad Noor, A. M. Omar, N. N. Mahzan, I. R. Ibrahim, A review of single-phase single stage inverter topologies for photovoltaic system, in Proc. of IEEE 4th Control and System Graduate Research Colloquium, pp. 69-74, 2013, https://doi.org/10.1109/ICSGRC.2013.6653278.
[2] S. Kouro, J. I. Leon, D. Vinnikov, L. G. Franquelo, Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology, IEEE Industrial Electronics Magazine, vol. 9, pp. 47-61, March 2015, https://doi.org/10.1109/MIE.2014.2376976.
[3] R. F. Coelho, L. Schmitz, D. C. Martins, Proposal of a power flow control strategy applied to a hybrid microgrid, in Proc. of IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, pp. 1-6, 2015, https://doi.org/10.1109/COBEP.2015.7420226.
[4] L. Schmitz, R. F. Coelho, D. C. Martins, High step-up high efficiency dc-dc converter for module-integrated photovoltaic applications, in Proc. of IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, pp. 1-6, 2015, https://doi.org/10.1109/COBEP.2015.7420072.
[5] J. Zeng, M. Zhuo, H. Cheng, T. Kim, V. Winstead, L. Wu, Power pulsation decoupling for a two-stage single-phase photovoltaic inverter with film capacitor, in Proc. of IEEE Energy Conversion Congress and Exposition, pp. 468-474, 2017, https://doi.org/10.1109/ECCE.2017.8095820.
[6] R. Caceres, I. Barbi, A boost DC-AC converter: operation, analysis, control and experimentation, in Proc. of IEEE 21st International Conference Industrial Electronics, Control, and Instrumentation, vol.1, pp.546-551, 1995, https://doi.org/10.1109/IECON.1995.483467.
[7] J. Garcia, M. A. Dalla-Costa, A. Kirsten, D. Gacio, P. Quintana, Study of a flyback-based stage as grid interface topology for micro-generation applications, in Proc. of 15th International Power Electronics and Motion Control Conference, pp. LS7a.2-1-LS7a.2-6, 2012, https://doi.org/10.1109/EPEPEMC.2012.6397502.
[8] S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules, in IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292-1306, Sept.-Oct. 2005, https://doi.org/10.1109/TIA.2005.853371.
[9] G. B. N. de Macedo. Microinversor flyback de estágio único para conexão de módulo fotovoltaico a rede elétrica. 181 f. Dissertação – Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Santa Catarina. Florianópolis, 2017.
[10] B. N. Alajmi, K. H. Ahmed, G. P. Adam, B. W. Williams, Single-Phase Single-Stage Transformer less Grid-Connected PV System, in IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2664-2676, June 2013, https://doi.org/10.1109/TPEL.2012.2228280.
[11] K. K. H. Dia, M. A. Choudhury, Ahammad, A single phase differential Zeta rectifier-inverter, in Proc. of IEEE International WIE Conference on Electrical and Computer Engineering, Dhaka, pp. 284-288, 2015, https://doi.org/10.1109/WIECON-ECE.2015.7443919.
[12] W. Yao, X. Zhang, X. Wang, Y. Tang, P. C. Loh, F. Blaabjerg, Power decoupling with autonomous reference generation for single-phase differential inverters, in Proc. of 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), pp. 1-10, 2015, https://doi.org/10.1109/EPE.2015.7311675.
[13] M. K. Nguyen, T. T. Tran, A Single-Phase Single-Stage Switched-Boost Inverter with Four Switches, in IEEE Transactions on Power Electronics, vol. PP, no. 99, pp. 1-1, https://doi.org/10.1109/TPEL.2017.2754547.
[14] D. Chen, Y. Qiu, Y. Chen, Y. He, Nonlinear PWM-Controlled Single-Phase Boost Mode Grid-Connected Photovoltaic Inverter With Limited Storage Inductance Current, in IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2717-2727, April 2017, https://doi.org/10.1109/TPEL.2016.2571725.
[15] A. Kumar, P. Sensarma, A Four-Switch Single-Stage Single-Phase Buck–Boost Inverter, in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5282-5292, July 2017, https://doi.org/10.1109/TPEL.2016.2605150.
[16] G. V. Silva, R. F. Coelho, T. B. Lazzarin, Switched capacitor boost inverter, in Proc. of IEEE 25th International Symposium on Industrial Electronics, pp. 528-533, 2016, https://doi.org/10.1109/ISIE.2016.7744945.
[17] G. V. Silva, R. F. Coelho, T. B. Lazzarin, Switched-capacitor differential boost inverter: Static gain and generalized structure, in Proc. of 12th IEEE International Conference on Industry Applications, pp. 1-8, 2016, https://doi.org/10.1109/INDUSCON.2016.7874461.
[18] S. Ben-Yaakov, Behavioral Average Modeling and Equivalent Circuit Simulation of Switched Capacitors Converters, in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 632-636, Feb. 2012, https://doi.org/10.1109/TPEL.2011.2171996.
[19] N. C. Dal Pont, M. Dalla Vecchia, G. Waltrich, T. B. Lazzarin, Step-up inverter conceived by the integration between a Full-Bridge inverter and a Switched Capacitor Converter, in Proc. of IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, pp. 1-6. 2015, https://doi.org/10.1109/COBEP.2015.7420138.
[20] D. Cortes, N. Vazquez, J. Alvarez-Gallegos, Dynamical Sliding-Mode Control of the Boost Inverter, IEEE Transactions on Industrial Electronics, vol. 56, pp. 3467-3476, 2009, https://doi.org/10.1109/TIE.2008.2010205.
[21] P. Sanchis, A. Ursaea, E. Gubia, L. Marroyo, Boost DC-AC inverter: a new control strategy, IEEE Transactions on Power Electronics, vol. 20, pp. 343-353, 2005, https://doi.org/10.1109/TPEL.2004.843000.
[22] K. Jha, S. Mishra, A. Joshi, High-Quality Sine Wave Generation Using a Differential Boost Inverter at Higher Operating Frequency, IEEE Transactions on Industry Applications, vol. 51, pp. 373-384, 2015, https://doi.org/10.1109/TIA.2014.2330059.
[23] G. L. Piazza , I. Barbi, New Step-Up/Step-Down DC–AC Converter, IEEE Transactions on Power Electronics, vol. 29, pp. 4512-4520, 2014, https://doi.org/10.1109/TPEL.2013.2277961.
[24] G. V. Silva, R. F. Coelho, T. B. Lazzarin, Modelagem do Conversor Boost com Células a Capacitor Chaveado por Meio de um Conversor Equivalente de Ordem Reduzida, Eletrônica de Potência, v. 22, n. 3, p. 288-297, jul./set. 2017, http://dx.doi.org/10.18618/rep.2017.3.2688.
[25] R. Middlebrook, S. Cuk, A general unified approach to modelling switching-converter power stages, in Proc. of Power Electronics Specialists Conference, pp. 18-34, 1976, https://doi.org/10.1109/PESC.1976.7072895.
[26] A. F. C. Aquino, G. Santos, U. Miranda, M. Aredes, A. C. M. Araujo, Synchronizing circuits applied to nonlinear loads models, in Proc. of IEEE/PES Transmision and Distribution Conference and Exposition: Latin America, pp. 700-705, 2004, https://doi.org/10.1109/TDC.2004.1432465.
[27] H. H. Figueira, H. L. Hey, L. Schuch, C. Rech, L. Michels, Brazilian grid-connected photovoltaic inverters standards: A comparison with IEC and IEEE, in Proc. of IEEE 24th International Symposium on Industrial Electronics, pp. 1104-1109, 2015, https://doi.org/10.1109/ISIE.2015.7281626.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.