Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 23 - Number 3
Publishing Date: setembro 2018
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: UDESC
Linear matrix inequality based synthesis of PI controllers for PMSM with uncertain parameters
Gustavo Guilherme Koch, Thieli Smidt Gabbi, Rodrigo Padilha Vieira, Humberto Pinheiro, Thiago Araújo Bernardes, Ricardo Coração de Leão Fontoura de Oliveira, Vinícius Foletto Montagner
310 - 319
http://dx.doi.org/10.18618/REP.2018.3.2786
English Data

Title: Linear matrix inequality based synthesis of PI controllers for PMSM with uncertain parameters

Keywords: Linear Matrix Inequalities, Permanent Magnet Synchronous Motor, Robust Control, Uncertain Parameter

Abstract

This paper addresses the design of robust PI controllers for permanent magnet synchronous motors in terms of a linear matrix inequality based problem. A polytopic model of the plant is obtained and validated for the motor uncertain parameters belonging to intervals. The design procedure proposed here encompasses: i. suitable plant uncertainties inclusion and the use of practical design control constraints; ii. robust PI computation based on linear matrix inequalities with a very fast solution; iii. simulation analyses; and iv. experimental evaluations. The robust PI controller can produce superior speed regulation than a PI controller designed only for the nominal parameters, including better disturbance rejection and H-infinity performance. Experimental results confirm the viability of the proposal, which can be seen as an efficient alternative to trade off performance and robustness for PI controllers in this application.

References

[1] R. Krishnan, Electric motor drives: modeling, analysis, and control, Prentice Hall, 2001.
[2] A. M. EL-Refaie, Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges, IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 107–121, Jan 2010, http://dx.doi.org/10.1109/TIE.2009.2030211
[3] A. Emadi, Y. J. Lee, K. Rajashekara, Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles, IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2237–2245, June 2008, http://dx.doi.org/10.1109/TIE.2008.922768.
[4] B. Hafez, A. S. Abdel-Khalik, A. M. Massoud, S. Ahmed, R. D. Lorenz, Single-Sensor-Based Three-Phase Permanent-Magnet Synchronous Motor Drive System With Luenberger Observers for Motor Line Current Reconstruction, IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2602–2613, July 2014, http://dx.doi.org/10.1109/TIA.2013.2296625.
[5] R. Ni, D. Xu, G. Wang, L. Ding, G. Zhang, L. Qu, Maximum Efficiency Per Ampere Control of Permanent-Magnet Synchronous Machines, IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2135–2143, April 2015, http://dx.doi.org/10.1109/TIE.2014.2354238.
[6] C. Xia, B. Ji, Y. Yan, Smooth Speed Control for Low-Speed High-Torque Permanent-Magnet Synchronous Motor Using Proportional-Integral- Resonant Controller, IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2123–2134, April 2015, http://dx.doi.org/10.1109/TIE.2014.2354593.
[7] J. Jang, M. Humza, B. Kim, Design of a Variable- Flux Permanent-Magnet Synchronous Motor for Adjustable-Speed Operation, IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 2996–3004, July 2016, http://dx.doi.org/10.1109/TIA.2016.2547986.
[8] S. Yamamoto, H. Hirahara, A. Tanaka, T. Ara, K. Matsuse, Universal Sensorless Vector Control of Induction and Permanent-Magnet Synchronous Motors Considering Equivalent Iron Loss Resistance, IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1259–1267, March 2015, http://dx.doi.org/10.1109/TIA.2014.2360962.
[9] T. Bernardes, V. F. Montagner, H. A. Grundling, H. Pinheiro, Discrete-Time Sliding Mode Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine, IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1679–1691, April 2014, http://dx.doi.org/10.1109/TIE.2013.2267700.
[10] G. H. Negri, F. G. Nazário, J. de Oliveira, A. Nied, Back-emf based rotor position estimation for low cost PMSM drive using fully connected cascade artificial neural networks, Eletrônica de Potência, vol. 23, no. 1, pp. 69–77, March 2018, http://dx.doi.org/10.18618/REP.2018.1.2728.
[11] E. de M. Fernandes, A. C. Oliveira, A. M. N. Lima, C. B. Jacobina, Estimação de posição rotórica de motor PMSM com minimização da distorção da tensão de alta frequência, Eletrônica de Potência, vol. 17, no. 1, pp. 447–455, February 2012, http://dx.doi.org/10.18618/REP.2012.1.447455.
[12] S. Li, Z. Liu, Adaptive Speed Control for Permanent-Magnet Synchronous Motor System With Variations of Load Inertia, IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3050–3059, Aug 2009, http://dx.doi.org/10.1109/TIE.2009.2024655.
[13] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, H. H. Choi, Adaptive PID Speed Control Design for Permanent Magnet Synchronous Motor Drives, IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 900–908, Feb 2015, http://dx.doi.org/10.1109/TPEL.2014.2311462.
[14] X. Zhang, L. Sun, K. Zhao, L. Sun, Nonlinear Speed Control for PMSM System Using Sliding-Mode Control and Disturbance Compensation Techniques, IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1358–1365, March 2013, http://dx.doi.org/10.1109/TPEL.2012.2206610.
[15] A. G. Bartsch, G. H. Negri, C. R. Scalabrin, M. S. M. Cavalca, A. Nied, J. de Oliveira, Predictive control approach for permanent magnet synchronous motor drive, Eletrônica de Potência, vol. 20, no. 4, pp. 395–403, November 2015, http://dx.doi.org/10.18618/REP.2015.4.2567.
[16] V. Q. Leu, H. H. Choi, J. W. Jung, Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors With a Load Torque Observer, IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1530–1539, March 2012, http://dx.doi.org/10.1109/TPEL.2011.2161488.
[17] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 1994.
[18] H. H. Choi, N. T. T. Vu, J. W. Jung, Design and Implementation of a Takagi-Sugeno Fuzzy Speed Regulator for a Permanent Magnet Synchronous Motor, IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3069– 3077, Aug 2012, http://dx.doi.org/10.1109/TIE.2011.2141091.
[19] R. C. García, J. O. P. Pinto, E. A. Batista, L. Galotto, Design of a MIMO IMC-TS fuzzy speed controller for PMSM, in Proc. of Brazilian Power Electronics Conference (COBEP), pp. 1–6, 2017, http://dx.doi.org/10.1109/COBEP.2017.8257434.
[20] K. Astrom, T. Hagglund, PID Controllers, International Society for Measurement and Control, 1995.
[21] J. Dannehl, F. W. Fuchs, S. Hansen, P. B. Thogersen, Investigation of Active Damping Approaches for PI-Based Current Control of Grid-Connected Pulse Width Modulation Converters With LCL Filters, IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1509–1517, July 2010, http://dx.doi.org/10.1109/TIA.2010.2049974.
[22] R. Kadri, J. P. Gaubert, G. Champenois, An Improved Maximum Power Point Tracking for Photovoltaic Grid-Connected Inverter Based on Voltage- Oriented Control, IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 66–75, Jan 2011, http://dx.doi.org/10.1109/TIE.2010.2044733.
[23] D. R. Espinoza-Trejo, E. Barcenas-Barcenas, D. U. Campos-Delgado, C. H. D. Angelo, Voltage-Oriented Input-Output Linearization Controller as Maximum Power Point Tracking Technique for Photovoltaic Systems, IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3499–3507, June 2015, http://dx.doi.org/10.1109/TIE.2014.2369456.
[24] D. G. Holmes, B. P. McGrath, S. G. Parker, Current Regulation Strategies for Vector-Controlled Induction Motor Drives, IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3680–3689, Oct 2012, http://dx.doi.org/10.1109/TIE.2011.2165455.
[25] E. de M. Fernandes, D. R. Huller, A. C. Oliveira, M. B. de R. Corrêa, W. R. N. Santos, Simulador em tempo real para motor síncrono como íma permanente baseado em dispositivos lógicos programáveis, Eletrônica de Potência, vol. 20, no. 3, pp. 244–253, August 2015, http://dx.doi.org/10.18618/REP.2015.3.2537.
[26] M. Ge, M.-S. Chiu, Q.-G. Wang, Robust PID controller design via LMI approach, Journal of Process Control, vol. 12, no. 1, pp. 3 – 13, Junuary 2002, http://dx.doi.org/10.1016/S0959-1524(00)00057-3.
[27] H. Zhang, Y. Shi, A. Mehr, Robust Static Output Feedback Control and Remote PID Design for Networked Motor Systems, IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5396 –5405, December 2011, http://dx.doi.org/10.1109/TIE.2011.2107720.
[28] A. Guagnano, G. Rizzello, F. Cupertino, D. Naso, Robust Control of High- Speed Synchronous Reluctance Machines”, IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3990–4000, Sept 2016, http://dx.doi.org/10.1109/TIA.2016.2574774.
[29] X. Sun, Y. Yi, W. Zheng, T. Zhang, Robust PI speed tracking control for PMSM system based on convex optimization algorithm, in Proc. of the 33rd Chinese Control Conference, pp. 4294–4299, 2014, http://dx.doi.org/10.1109/CHICC.2014.6895659.
[30] P. Krause, O. Wasynczuk, S. Sudhoff, Analysis of Electric Machinery and Drive Systems, second ed., Wiley-IEEE Press, United States of America, 2002.
[31] K.-H. Kim, M.-J. Youn, A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique, IEEE Transactions on Industrial Electronics, vol. 49, no. 3, pp. 524–535, Jun 2002, http://dx.doi.org/10.1109/TIE.2002.1005377.
[32] R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, Mechanical Engineering (Marcel Dekker), 1 ed., CRC Press, 2009.
[33] M. Chilali, P. Gahinet, P. Apkarian, Robust pole placement in LMI regions, IEEE Transactions on Automatic Control, vol. 44, no. 12, pp. 2257– 2270, December 1999, http://dx.doi.org/10.1109/9.811208.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.