Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 25 - Number 4
Publishing Date: dezembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
MELHORIA DE DESEMPENHO DE MOTORES DE RELUTÂNCIA VARIÁVEL VIA ALGORITMO DE ENXAME DE PARTÍCULAS
Filipe Pinarello Scalcon, Thieli Smidt Gabbi, Rodrigo Padilha Vieira, Hilton Abílio Gründling
492-502
http://dx.doi.org/10.18618/REP.2020.4.0038
Portuguese Data

Palavras Chaves: Eficiência Energética

Resumo
Este trabalho apresenta como contribuição um procedimento para otimização dos ângulos de disparo de um motor de relutância variável via algoritmo de enxame de partículas. Com isso, objetiva-se garantir um desempenho com equilíbrio entre reduzida ondulação de torque e elevada eficiência energética. A técnica é destinada a motores de relutância variável operando na região de controle de corrente, abaixo da velocidade base. O procedimento proposto é comparado com uma abordagem tradicional, de varredura de parâmetros, a fim de mostrar a significativa diminuição do esforço computacional. Resultados de simulação e experimentais são apresentados, mostrando que um balanço entre eficiência e ondulações de torque é alcançado.

English Data

Title: PERFORMANCE IMPROVEMENT OF SWITCHED RELUCTANCE MOTORS VIA PARTICLE SWARM ALGORITHM

Keywords: energy efficiency, Particle swarm optimization, Switched Reluctance Motor

Abstract
This paper presents as a contribution a procedure to optimize the firing angles of a switched reluctance motor via the particle swarm optimization algorithm. This aims to ensure performance with a balance between reduced torque ripple and high energy efficiency. The technique is intended for SRMs operating in the current controled region, below the base speed. The proposed procedure is compared with a traditional parameter sweeping approach in order to show the significant decrease in the computational effort. Simulation and experimental results are presented, showing that a performance with a balance between efficiency and torque ripple is achieved.

References

[1] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor, A. Emadi, “Making the Case for Switched Reluctance Motors for Propulsion Applications”, IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7172-7186, Jul. 2020.
Doi: 10.1109/TVT.2020.2993725

[2] M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani, B. Fahimi, “Making the case for applications of switched reluctance motor technology in automotive products”, IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 659-675, Maio 2006.
Doi: 10.1109/TPEL.2006.872371

[3] I. Boldea, L. N. Tutelea, L. Parsa, D. Dorrell, “Automotive Electric Propulsion Systems With Reduced or No Permanent Magnets: An Overview”, IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5696-5711, Out. 2014.
Doi: 10.1109/TIE.2014.2301754

[4] C. R. D. Osório, F. P. Scalcon, G. G. Koch, V. F. Montagner, R. P. Vieira, H. A. Gründling, “Controle Robusto Aplicado a Geradores de Relutância Variável Conectados à Rede”, Revista Eletrônica de Potência, vol. 25, no. 3, pp. 1-11, 2020.
Doi: 10.18618/REP.2020.3.0015

[5] G. Watthewaduge, E. Sayed, A. Emadi, B. Bilgin, “Electromagnetic Modeling Techniques for Switched Reluctance Machines: State-of-the-Art Review”, IEEE Open Journal of the Industrial Electronics Society, vol. 1, pp. 218-234, 2020.
Doi: 10.1109/OJIES.2020.3016242

[6] A. D. Callegaro, B. Bilgin and A. Emadi, “Radial Force Shaping for Acoustic Noise Reduction in Switched Reluctance Machines”, IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9866-9878, Out. 2019.
Doi: 10.1109/TPEL.2019.2891050

[7] A. Dorneles Callegaro, J. Liang, J. W. Jiang, B. Bilgin, A. Emadi, “Radial Force Density Analysis of Switched Reluctance Machines: The Source of Acoustic Noise”, IEEE Transactions on Transportation Electrification, vol. 5, no. 1, pp. 93-106, Mar. 2019.
Doi: 10.1109/TTE.2018.2887338

[8] N. K. Sheth, K. R. Rajagopal, “Calculation of the flux-linkage characteristics of a switched reluctance motor by flux tube method”, IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 4069-4071, Out. 2005
Doi: 10.1109/TMAG.2005.854865

[9] B. Bilgin, A. Emadi, “Electric Motors in Electrified Transportation: A step toward achieving a sustainable and highly efficient transportation system”, IEEE Power Electronics Magazine, vol. 1, no. 2, pp. 10-17, Jun. 2014.
Doi: 10.1109/MPEL.2014.2312275

[10] H. Li, B. Bilgin, A. Emadi, “An Improved Torque Sharing Function for Torque Ripple Reduction in Switched Reluctance Machines”, IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1635-1644, Fev. 2019.
Doi: 10.1109/TPEL.2018.2835773

[11] D. A. Torrey, “Switched reluctance generators and their control”, IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 3-14, Fev. 2002.
Doi: 10.1109/41.982243

[12] C. Mademlis, I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control”, IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp. 448-457, Set. 2003.
Doi: 10.1109/TEC.2003.815854

[13] I. Kioskeridis, C. Mademlis, “Maximum efficiency in single-pulse controlled switched reluctance motor drives”, IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 809-817, Dez. 2005.
Doi: 10.1109/TEC.2005.853738

[14] I. Kioskeridis, C. Mademlis, “A Unified Approach for Four-Quadrant Optimal Controlled Switched Reluctance Machine Drives With Smooth Transition Between Control Operations”, IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 301-306, Jan. 2009.
Doi: 10.1109/TPEL.2008.2005983

[15] C. Mademlis, I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators”, IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 556-565, Set. 2005.
Doi: 10.1109/TEC.2005.852960

[16] P. J. d. S. Neto, T. A. d. S. Barros, M. V. de Paula, R. R. de Souza, E. R. Filho, “Design of Computational Experiment for Performance Optimization of a Switched Reluctance Generator in Wind Systems”, IEEE Transactions on Energy Conversion, vol. 33, no. 1, pp. 406-419, Mar. 2018.
Doi: 10.1109/TEC.2017.2755590

[17] X. D. Xue, K. W. E. Cheng, J. K. Lin, Z. Zhang, K. F. Luk, T. W. Ng, N. C. Cheung, “Optimal Control Method of Motoring Operation for SRM Drives in Electric Vehicles”, IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1191-1204, Mar. 2010.
Doi: 10.1109/TVT.2010.2041260

[18] V. P. Vujičić, “Minimization of Torque Ripple and Copper Losses in Switched Reluctance Drive”, IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 388-399, Jan. 2012.
Doi: 10.1109/TPEL.2011.2158447

[19] T. A. d. S. Barros, P. S. N. Filho, A. B. Morreira, E. R. Filho, “Algoritmos para otimização do desempenho de geradores a relutância variável aplicados em geração eólica”, Revista Eletrônica de Potência, vol. 21, no. 1, pp. 32-41, 2016.
Doi: 10.18618/REP.2016.1.2572

[20] S. E. H. Randy, L. Haupt, Practical Genetic Algorithms, 2 ed., John Wiley, 2004.
Doi: 10.1002/0471671746

[21] L. C. Borin, C. R. D. Osório, G. G. Koch, T. S. Gabbi, R. C. L. F. Oliveira, V. F. Montagner, “Robust Control Design Procedure Based on Particle Swarm Optimization and Kharitonov’s Theorem with an Application for PMSMs”, Revista Eletrônica de Potência, vol. 25, no. 2, pp. 219-229, 2020.
Doi: 10.18618/REP.2020.2.0008

[22] C. Ma, L. Qu, “Multiobjective Optimization of Switched Reluctance Motors Based on Design of Experiments and Particle Swarm Optimization”, IEEE Transactions on Energy Conversion, vol. 30, no. 3, pp. 1144-1153, Set. 2015.
Doi: 10.1109/TEC.2015.2411677

[23] J. Zhang, H. Wang, L. Chen, C. Tan, Y. Wang, “Multi-Objective Optimal Design of Bearingless Switched Reluctance Motor Based on Multi-Objective Genetic Particle Swarm Optimizer”, IEEE Transactions on Magnetics, vol. 54, no. 1, pp. 1-13, Jan. 2018, Art no. 8100113.
Doi: 10.1109/TMAG.2017.2751546

[24] B. Bilgin, J. Jiang, A. Emadi, Switched Reluctance Motor Drives: Fundamentals to Applications, CRC Press, 2019.
Doi: 10.1201/9780203729991

[25] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN’95 – International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4.
Doi: 10.1109/ICNN.1995.488968

[26] S. S. Rao, Engineering Optimization – Theory and Practice, 4 ed., Wiley, 2009.
Doi: 10.1002/9781119454816

[27] T. A. d. S. Barros, P. J. d. S. Neto, M. V. d. Paula, A. B. Moreira, P. S. N. Filho and E. R. Filho, “Automatic Characterization System of Switched Reluctance Machines and Nonlinear Modeling by Interpolation Using Smoothing Splines”, IEEE Access, vol. 6, pp. 26011-26021, 2018.
Doi: 10.1109/ACCESS.2018.2825607

[28] F. P. Scalcon, C. R. D. Osório, G. G. Koch, T. S. Gabbi, R. P. Vieira, H. A. Gründling, R. C. L. F. Oliveira, V. F. Montagner, “Robust Control of Synchronous Reluctance Motors by Means of Linear Matrix Inequalities”, IEEE Transactions on Energy Conversion, 2020.
Doi: 10.1109/TEC.2020.3028568

[29] R.Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, CRC Press, 2001.
Doi: 10.1201/9781420041644

[30] M. V. de Paula, T. A. d. S. Barros, H. S. Moreira, E. H. Catata, M. G. Villalva, E. R. Filho, “A Dahlin Cruise Control Design Method for Switched Reluctance Motors with Minimum Torque Ripple Point Tracking Applied in Electric Vehicles”, IEEE Transactions on Transportation Electrification, 2020.
Doi: 10.1109/TTE.2020.3019997

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.