Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 27 - Number 4
Publishing Date: dezembro 2022
Editor-in-Chief: Telles Brunelli Lazzarin
Editor Affiliation: UFSC
MODELO HARMÔNICO MULTI-FREQUÊNCIA DE PARQUES EÓLICOS DO TIPO DFIG PARA ESTUDOS DE EMISSÃO HARMÔNICA E ESTABILIDADE RESSONANTE
Giordanni da Silva Troncha, Ivan Nunes Santos
291-303
http://dx.doi.org/10.18618/REP.2022.4.0050
Portuguese Data

Palavras Chaves: Atpdraw Distorções harmônicas, Estabilidade ressonante, Geração Eólica, Modelagem

Resumo
Nos últimos anos, a temática das interações harmônicas e inter-harmônicas, no âmbito de sistemas renováveis de geração, vem ganhando destaque a partir de considerações acerca da sua dinâmica de controle e chaveamento de conversores. Neste contexto, cresce-se a necessidade de análise da ocorrência de oscilações harmônicas, as quais podem variar desde baixas frequências a elevadas. Assim, modelos computacionais têm sido testados e colocados à prova, com o intuito de avaliar sua representatividade frente aos fenômenos desta natureza. O presente informe técnico tem por objetivo esclarecer de forma simples e direta as diferenças conceituais dos fenômenos de emissão harmônica, além de propor uma revisão bibliográfica detalhada dos principais métodos de modelagem de sistemas eólicos, com foco em estratégias no domínio do tempo. Para tanto, três distintos modelos de aerogeradores serão implementados no simulador Atpdraw. Os parâmetros e medições utilizados como base de comparação dos modelos implementados são reais e advindos de um parque eólicos situado no nordeste do Brasil. De posse dos resultados do estudo proposto é possível concluir que os modelos apresentados podem ser utilizados como ferramentas importantes para análise dos fenômenos de interações harmônicas, e se mostram mais atraentes que os equivalentes de Thévenin e Norton para a representatividade da rede equivalente. Neste parque tem se verificado problemas correlatos à queima de equipamentos e mal funcionamentos provocados por interações harmônicas

English Data

Title: MULTI-FREQUENCY HARMONIC MODEL OF DFIG-BASED WIND FARMS FOR HARMONIC EMISSION AND HARMONIC STABILITY STUDIES

Keywords: Atpdraw Harmonic Distortion, Harmonic Instability, modeling, wind generation

Abstract
In recent years, the theme of harmonic and inter-harmonic interactions, in the scope of renewable generation systems, has been gaining prominence from considerations about its dynamics of control and switching of converters. In this context, there is a growing need to analyze the occurrence of harmonic oscillations, which can vary from low frequencies to high frequencies. Thus, computational models have been tested and put to the test, in order to assess their representativeness against phenomena of this nature. This technical report aims to clarify in a simple and direct way the conceptual differences of harmonic emission phenomena, in addition to proposing a detailed bibliographic review of the main methods of modeling existing wind systems, focusing on strategies in the time domain. For that, three different models of wind turbines will be implemented in the Atpdraw simulator. The parameters and measurements used as a basis for comparison of the implemented models are from a wind farm located in the northeast of Brazil. With the results of the proposed study, it is possible to conclude that the models presented can be used as important tools for analyzing the phenomena of harmonic interactions, and are more attractive than the Thévenin and Norton equivalents for the representativeness of the equivalent network. In this park there have been problems related to equipment burning and malfunctions caused by harmonic interactions

References

[1] “Infográficos de Geração – Agência Nacional de Energia Elétrica – ANEEL,” Apr 15, 2021. https://www.aneel.gov.br/documents (accessed Apr. 28, 2021).

[2] “Global Energy Review 2021 – Analysis – IEA,” Apr. 15, 2021. https://www.iea.org/reports/global-energy-review-2021 (accessed Apr. 28, 2021).

[3] M. Ghiasi, “Technical and economic evaluation of power quality performance using FACTS devices considering renewable micro-grids,” Renew. Energy Focus, vol. 29, no. pp. 49–62, June, 2019.
Doi: doi: 10.1016/j.ref.2019.02.006

[4] X. Wang, Y. W. Li, F. Blaabjerg and P. C. Loh, “Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7019-7037, Dec. 2015.
Doi: doi: 10.1109/TPEL.2014.2382565

[5] R. Burch et al., “Impact of aggregate linear load modeling on harmonic analysis: a comparison of common practice and analytical models,” IEEE Trans. Power Deliv., vol. 18, no. 2, pp. 625–630, Apr. 2003,

Doi: 10.1109/TPWRD.2003.810492

[6] Ł. H. Kocewiak, J. Hjerrild and C. L. Bak, “Wind turbine converter control interaction with complex wind farm systems,” IET Renewable Power Generation, vol. 7, no. 4, pp. 380-389, July 2013.

Doi: doi: 10.1049/iet-rpg.2012.0209

[7] J. A. Martinez, R. Walling, B. A. Mork, J. Martin-Arnedo, and D. Durbak, “Parameter determination for modeling system transients-Part III: Transformers,” IEEE Trans. Power Deliv., vol. 20, no. 3, pp. 2051–2062, July 2005.
Doi: doi: 10.1109/TPWRD.2005.848752

[8] S. Yanchenko and J. Meyer, “Harmonic emission of household devices in presence of typical voltage distortions,” 2015 IEEE Eindhoven PowerTech, 2015, pp. 1-6
Doi: doi: 10.1109/PTC.2015.7232518

[9] S. Yanchenko and J. Meyer, “Harmonic emission of household devices in presence of typical voltage distortions,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015.
Doi: doi: 10.1109/PTC.2015.7232518

[10] K. Yang, “On Harmonic Emission, Propagation and Aggregation in Wind Power Plants,” Luleå tekniska universitet, Energy Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, July 2015.
Doi: 10.13140/RG.2.1.2178.7048

[11] X. Wang, F. Blaabjerg and W. Wu, “Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System,” in IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6421-6432, December 2014.
Doi: doi: 10.1109/TPEL.2014.2306432

[12] S. K. Rönnberg et al., “On waveform distortion in the frequency range of 2 kHz–150 kHz—Review and research challenges,” Electr. Power Syst. Res., vol. 150, pp. 1–10, 2017.
Doi: doi: 10.1016/j.epsr.2017.04.032

[13] F. Zavoda et al., Power Quality and EMC Issues with Future Electricity Networks. 2018.

[14] O. Lennerhag, G. Pinares, M. H. J. Bollen, G. Foskolos, and T. Gafurov, “Performance indicators for quantifying the ability of the grid to host renewable electricity production,” CIRED – Open Access Proc. J., vol. 2017, no. 1, pp. 792–795, 2017.
Doi: doi: 10.1049/oap-cired.2017.0178

[15] M. Ghiasi, “Technical and economic evaluation of power quality performance using FACTS devices considering renewable micro-grids,” Renew. Energy Focus, vol. 29, no. June, pp. 49–62, 2019.
Doi: doi: 10.1016/j.ref.2019.02.006

[16] X. Lin et al., “Impact of Characteristic Harmonics on the Small-Signal Stability of LCC-HVDC Station,” in 2020 4th International Conference on HVDC (HVDC), 2020, pp. 705–711.
Doi: doi: 10.1109/HVDC50696.2020.9292813

[17] C. Yoon, H. Bai, R. N. Beres, X. Wang, C. L. Bak and F. Blaabjerg, “Harmonic Stability Assessment for Multiparalleled, Grid-Connected Inverters,” in IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1388-1397, Oct. 2016.
Doi: doi: 10.1109/TSTE.2016.2551737

[18] J. He, Y. W. Li, D. Bosnjak and B. Harris, “Investigation and Active Damping of Multiple Resonances in a Parallel-Inverter-Based Microgrid,” in IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 234-246, Jan. 2013.
Doi: doi: 10.1109/TPEL.2012.2195032

[19] L. Sainz, M. Cheah-Mane, L. Monjo, J. Liang and O. Gomis-Bellmunt, “Positive-Net-Damping Stability Criterion in Grid-Connected VSC Systems,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1499-1512, Dec. 2017
Doi: doi: 10.1109/JESTPE.2017.2707533

[20] C. Li, “Unstable Operation of Photovoltaic Inverter From Field Experiences,” in IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 1013-1015, April 2018.
Doi: doi: 10.1109/TPWRD.2017.2656020

[21] X. Lin et al., “Impact of Characteristic Harmonics on the Small-Signal Stability of LCC-HVDC Station,” in 2020 4th International Conference on HVDC (HVDC), 2020, pp. 705–711.
Doi: doi: 10.1109/HVDC50696.2020.9292813.

[22] S. Song, Z. Wei, Y. Lin, B. Liu and H. Liu, “Impedance modeling and stability analysis of PV grid-connected inverter systems considering frequency coupling,” in CSEE Journal of Power and Energy Systems, vol. 6, no. 2, pp. 279-290, June 2020.
Doi: doi: 10.17775/CSEEJPES.2019.02430

[23] L. Sainz, M. Cheah-Mane, L. Monjo, J. Liang and O. Gomis-Bellmunt, “Positive-Net-Damping Stability Criterion in Grid-Connected VSC Systems,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1499-1512, Dec. 2017.
Doi: doi: 10.1109/JESTPE.2017.2707533

[24] R. Torquato, A. Argüello and W. Freitas, “Practical Chart for Harmonic Resonance Assessment of DFIG-Based Wind Parks,” in IEEE Transactions on Power Delivery, vol. 35, no. 5, pp. 2233-2242, Oct. 2020.
Doi: doi: 10.1109/TPWRD.2020.2964631

[25] Y. Song and F. Blaabjerg, “Overview of DFIG-Based Wind Power System Resonances Under Weak Networks,” in IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4370-4394, June 2017.
Doi: doi: 10.1109/TPEL.2016.2601643

[26] Z. Li, H. Hu, L. Tang, Y. Wang, T. Zang and Z. He, “Quantitative Severity Assessment and Sensitivity Analysis Under Uncertainty for Harmonic Resonance Amplification in Power Systems,” in IEEE Transactions on Power Delivery, vol. 35, no. 2, pp. 809-818, April 2020
Doi: doi: 10.1109/TPWRD.2019.2928565

[27] X. Wang and F. Blaabjerg, “Harmonic Stability in Power Electronic-Based Power Systems: Concept, Modeling, and Analysis,” in IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2858-2870, May 2019.
Doi: doi: 10.1109/TSG.2018.2812712

[28] Marc Cheah-Mane, Luis Sainz, Eduardo Prieto-Araujo, Oriol Gomis-Bellmunt, Impedance-based analysis of harmonic instabilities in HVDC-connected Offshore Wind Power Plants, International Journal of Electrical Power & Energy Systems, Volume 106, March 2019, Pages 420-431.
Doi: doi: 10.1016/j.ijepes.2018.10.031

[29] IEC 61000-3-6:2008, “Electromagnetic compatibility (EMC) – Part 3-6: Limits – Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems,” edition 2.0, 2008.

[30] V. Myagkov, L. Petersen, S. Burutxaga Laza, F. Iov, L. H. Kocewiak, “Parametric Variation for Detailed Model of External Grid in Offshore Wind Farms”. Proceedings of the 13th International Workshop on Largescale Integration of Wind Power Into Power Systems As Well As on Transmission Networks for Offshore Wind Power Plants (wiw2014). Berlin, November 2014.

[31] “Os submódulos versão 2020.12, aprovados pela REN ANEEL nº 903/2020, estão vigentes a partir de 1º de janeiro de 2021.” Aug 28, 2022. http://www.ons.org.br/paginas/sobre-o-ons/procedimentos-de-rede/vigentes – accessed Aug. 28, 2022).

[32] Carli, Miguel Pires de. “Identificação e Análise Das Inconsistências e Dos Critérios Conservadores Da Metodologia de Avaliação Do Desempenho Harmônico de Parques Eólicos No Brasil.” SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA (XXV SNPTEE). N.p., 2019. Print.

[33] J. Arrillaga, B.C. Smith, N.R. Watson, A. R. Wood, “Power System Harmonic Analysis”. John Wiley & Sons, 1997.

[34] J. A. Martinez and B. A. Mork, “Transformer modeling for low- and mid-frequency transients – a review,” in IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1625-1632, April 2005.
Doi: doi: 10.1109/TPWRD.2004.833884.

[35] B. Gustavsen, J. A. Martinez and D. Durbak, “Parameter determination for modeling system transients-Part II: Insulated cables,” in IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 2045-2050, July 2005.
Doi: doi: 10.1109/TPWRD.2005.848774.

[36] J.R. Carson, Wave propagation in overhead wires with ground return, Bell Syst. Tech. J. 5 (1926) 539–554.

[37] Hua Bai, C. Mi, Transients of Modern Power Electronics, Wiley, 2011.

[38] CIGRE TB 568. “Transformer Energization in Power Systems: A Study Guide”, WG C4.307, February 2014.

[39] “Modeling and simulation of the propagation of harmonics in electric power networks. I. Concepts, models, and simulation techniques,” in IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 452-465, Jan. 1996.
Doi: doi: 10.1109/61.484130

[40] F. Bizzarri, A. Brambilla and F. Milano, “Simplified Model to Study the Induction Generator Effect of the Subsynchronous Resonance Phenomenon,” in IEEE Transactions on Energy Conversion, vol. 33, no. 2, pp. 889-892, June 2018
Doi: doi: 10.1109/TEC.2018.2799479.

[41] E. S. Abdin and W. Xu, “Control design and dynamic performance analysis of a wind turbine-induction generator unit,” in IEEE Transactions on Energy Conversion, vol. 15, no. 1, pp. 91-96, March 2000.
Doi: doi: 10.1109/60.849122

[42] R. Pena, J. C. Clare, and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” Proc. IEE Proc. Electr. Power Appl., vol. 143, no. 3, pp. 231–241, October 1996.
Doi: doi: 10.1049/ip-epa:19960454

[43] M. Tazil, V. Kumar, R. C. Bansal, S. Kong, Z. Y. Dong, W. Freitas, and H. D. Mathur, “Three-phase doubly fed induction generators: An overview,” IET Electric Power Appl., vol. 4, no. 2, pp. 75–89, March 2010.
Doi: doi: 10.1049/iet-epa.2009.0071

[44] IEC TR 61400-21-3 ED1: Wind energy generation systems – Part 21-3: Wind turbine harmonic model and its application.

[45] J. Z. Zhou, H. Ding, S. Fan, Y. Zhang and A. M. Gole, “Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter,” in IEEE Transactions on Power Delivery, vol. 29, no. 5, pp. 2287-2296, Oct. 2014.
Doi: doi: 10.1109/TPWRD.2014.2330518.

[46] K. J. ˚ Astr ˚ om and B. Wittenmark. “Computer-Control Systems: Theory and Design”. Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1997.

[47] T. Basar, editor. Control Theory: Twenty-five Seminal Papers (1932–1981). IEEE Press, New York, 2001.

[48] N. Sarma, P. M. Tuohy, J. M. Apsley, S. Djurović, Y. Wang “DFIG Stator Flux Oriented Control Scheme Execution for Test Facilities Utilising Commercial Converters,” IET Renewable Power Generation (RPG) Journal, Volume 12, Issue 12, Pages 1366-1374, October 2018.
Doi: doi: 10.1049/iet-rpg.2018.5195

[49] N. Amiri, S. Ebrahimi, and J. Jatskevich, “Efficient simulation of wind generation systems using voltage-behind-reactance model of doubly-fed induction generators and average-value model of switching converters,” 2017 IEEE 1st Ukr. Conf. Electr. Comput. Eng. UKRCON 2017 – Proc., pp. 605–610, 2017.
Doi: doi: 10.1109/UKRCON.2017.8100313.

[50] Yazhou Lei, A. Mullane, G. Lightbody and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies,” in IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 257-264, March 2006.
Doi: doi: 10.1109/TEC.2005.847958.

[51] A. Shahab, “Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems” Master of Science Thesis, University of Manitoba, Copyright 2013.

[52] J. A. Pomilio and S. M. Deckmann, “Caracterização e compensação de harmônicos e reativos de cargas não-lineares residenciais e comerciais,” Revista Eletrônica de Potência, vol. 11, no. 1, pp. 9–16, março de 2006.
Doi: doi: 10.18618/REP.2006.1.009016

[53] T. Reinaldo, A. Jorge, A. Fabiano, S. Raphael, I. Syed, and K. T. F. R, “Mitigação Do Conteúdo Harmônico Em Aerogeradores Usando Um Pfp Elevador De Chave Única,” Revista Eletrônica de Potência, vol. 12, no. 3, pp. 269–276, novembro de 2007.
Doi: doi: 10.18618/REP.2007.3.269276

[54] A. B. Moreira, T. A. S. Barros, V. S. C. Teixeira, and E. R. Filho, “Aplicação De Controle De Potências Para a Geração Eólica E Filtragem De Corrente Harmônica Com Gerador De Indução Duplamente Alimentado Application of the Power Control for Wind Power Generation and Current Harmonic Filter With Dfig,” Brazilian Journal of Power Electronics, pp. 102–112, novembro de 2016.
Doi: doi: 10.18618/REP.2017.1.2658

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.