Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 24 - Number 1
Publishing Date: março 2019
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Modulação, modelagem e controle do inversor boost a capacitor chaveado
Gilberto Valentim Silva, Jéssika Melo de Andrade, Roberto Francisco Coelho, Telles Brunelli Lazzarin
73-84
http://dx.doi.org/10.18618/REP.2019.1.0030
Portuguese Data

Palavras Chaves: Capacitor chaveado, Inversor Boost Diferencial, Linearização de Ganho, Modelagem e Controle

Resumo

O presente artigo analisa um inversor elevador bidirecional de estágio único concebido a partir da integração entre o inversor diferencial boost e células a capacitor chaveado. O inversor boost convencional, mesmo sendo elevador, possui limitação de ganho devido às perdas e, por isso, não é capaz de atender a todas as especificações de elevação. A inserção de células multiplicadoras a capacitor chaveado permite ampliar seu ganho estático sem aumentar os esforços de tensão sobre seus componentes. No entanto, a topologia resultante é não linear e apresenta elevada quantidade de componentes armazenadores de energia, o que dificulta sua modelagem. Neste artigo, realiza-se a análise estática e dinâmica do inversor boost diferencial a capacitor chaveado sob diferentes tipos de modulação. Propõe-se um circuito equivalente e um modelo de pequenos sinais de ordem reduzida e dinâmica equivalente, além de uma técnica linearização de ganho estático que reduz consideravelmente a distorção harmônica da tensão de saída, regulada em malha fechada por meio de um controlador ressonante. O artigo ainda apresenta uma comparação entre o inversor diferencial boost e sua versão com célula multiplicadora a capacitor chaveado e valida o estudo por meio de um protótipo com potência de 250 W, tensão de entrada de 60 V, frequência de comutação de 50 kHz e tensão de saída de 220 V.

English Data

Title: Modulation, modeling and control of the switched-capacitor boost inverter

Keywords: Differential Boost Inverter, Gain Linearization, Modeling and Control, Switched capacitor

Abstract

This paper addresses a single-stage bi-directional step-up inverter designed from the integration of a differential boost inverter and switched capacitor cells. The conventional boost inverter, even being a step-up topology, presents a gain limitation due to losses and therefore does not attend all the step-up specifications. The insertion of switched capacitor multiplier cells allows increasing its static gain without elevating the stresses on its components. However, the resulting topology is nonlinear and has a high amount of energy storage elements, which makes its modeling difficult. In this paper, static and dynamic analysis of the switched capacitor differential boost inverter is performed under different types of modulation. It is proposed a reduced order equivalent circuit and a small signal model, as well as a static gain linearization technique that reduces the harmonic distortion of the output voltage, regulated in closed loop within a resonant controller. The paper also presents a comparison between the differential boost inverter and its version with switched capacitor multiplier cells and validates the study by means of a prototype of 250 W of rated power, 60 V of input voltage, 50 kHz of switching frequency and 220 V of output voltage.

References

[1] S. Kouro, J. I. Leon, D. Vinnikov, L. G. Franquelo, Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology, IEEE Industrial Electronics Magazine, vol. 9, pp. 47-61, Mar. 2015, https://doi.org/10.1109/MIE.2014.2376976.
[2] R. O. Caceres, I. Barbi, A boost DC-AC converter: analysis, design, and experimentation, IEEE Transactions on Power Electronics, vol. 14, pp. 134-141, Jan. 1999, https://doi.org/10.1109/63.737601.
[3] A. Kumar, P. Sensarma, A four-switch single-stage single-phase buck-boost inverter, IEEE Transactions on Power Electronics, vol. 32, pp. 5282-5292, Jul 2017, https://doi.org/10.1109/TPEL.2016.2605150.
[4] G. L. Piazza, I. Barbi, New Step-Up/Step-Down DC–AC Converter, IEEE Transactions on Power Electronics, vol. 29, pp. 4512-4520, Sep. 2014, https://doi.org/10.1109/TPEL.2013.2277961.
[5] A. Darwish, D. Holliday, S. Ahmed, A. M. Massoud, B. W. Williams, A Single-Stage Three-Phase Inverter Based on Cuk Converters for PV Applications, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, pp. 797-807, Dec. 2014, https://doi.org/10.1109/JESTPE.2014.2313185.
[6] M. Gao, M. Chen, C. Zhang, Z. Qian, Analysis and Implementation of an Improved Flyback Inverter for Photovoltaic AC Module Applications, IEEE Transactions on Power Electronics, vol. 29, pp. 3428-3444, Jul. 2014, https://doi.org/10.1109/TPEL.2013.2279266.
[7] F. Z. Peng, “Z-source inverter,” IEEE Transactions on Industry Applications, vol. 39, pp. 504-510, Mar. 2003, https://doi.org/10.1109/TIA.2003.808920.
[8] O. J. Moraka, P. S. Barendse, M. A. Khan, Dead Time Effect on the Double-Loop Control Strategy for a Boost Inverter, IEEE Transactions on Industry Applications, vol. 53, pp. 319-326, Jan. 2017, https://doi.org/10.1109/TIA.2016.2613510.
[9] A. Ioinovici, Switched-capacitor power electronics circuits, Circuits and Systems Magazine, IEEE, vol. 1, pp. 37-42, Oct. 2001, https://doi.org/10.1109/7384.963467.
[10] T. B. Lazzarin, R. L. Andersen, G. B. Martins, I. Barbi, A 600-W Switched-Capacitor AC-AC Converter for 220 V/110 V and 110 V/220 V Applications, IEEE Transactions on Power Electronics, vol. 27, pp. 4821-4826, Dec. 2012, https://doi.org/10.1109/TPEL.2012.2203318.
[11] K. Zou, M. J. Scott, J. Wang, Switched-Capacitor-Cell-Based Voltage Multipliers and DC-AC Inverters, IEEE Transactions on Industry Applications, vol. 48, pp. 1598-1609, Sep. 2012, https://doi.org/10.1109/TIA.2012.2209620.
[12] C. K. Cheung, S. C. Tan, C. K. Tse, A. Ioinovici, On Energy Efficiency of Switched-Capacitor Converters, IEEE Transactions on Power Electronics, vol. 28, pp. 862-876, Feb. 2013, https://doi.org/10.1109/TPEL.2012.2204903.
[13] O. Abutbul, A. Gherlitz, Y. Berkovich, A. Ioinovici, Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, pp. 1098-1102, Aug. 2003, https://doi.org/10.1109/TCSI.2003.815206.
[14] M. Evzelman, S. Ben-Yaakov, Simulation of Hybrid Converters by Average Models, IEEE Transactions on Industry Applications, vol. 50, pp. 1106-1113, Mar. 2014, https://doi.org/10.1109/TIA.2013.2272286.
[15] J. C. Mayo-Maldonado, J. C. Rosas-Caro, P. Rapisarda, Modeling approaches for DC-DC converters with switched capacitors, IEEE Transactions on Industrial Electronics, vol. 62, pp. 953-959, Feb. 2015, https://doi.org/10.1109/TIE.2014.2353013.
[16] B. Axelrod, Y. Berkovich, A. Ioinovici, Hybrid switched-capacitor Cuk/Zeta/Sepic converters in step-up mode, in IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1310-1313, May 2005, https://doi.org/10.1109/ISCAS.2005.1464836.
[17] R. D. Middlebrook, Transformerless DC-to-DC converters with large conversion ratios, IEEE Transactions on Power Electronics, vol. 3, pp. 484-488, Oct. 1988, https://doi.org/10.1109/63.17970.
[18] T. Umeno, K. Takahashi, I. Oota, F. Ueno, T. Inoue, New switched-capacitor DC-DC converter with low input current ripple and its hybridization, in Proc. of the 33rd Midwest Symposium on Circuits and Systems, vol.2, pp. 1091-1094, Aug. 1990, https://doi.org/10.1109/MWSCAS.1990.140915.
[19] M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, R. Gules, Voltage Multiplier Cells Applied to Non-Isolated DC–DC Converters, IEEE Transactions on Power Electronics, vol. 23, pp. 871-887, Mar. 2008, https://doi.org/10.1109/TPEL.2007.915762.
[20] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, A. Valderrabano, A DC-DC multilevel boost converter, IET Power Electronics, vol. 3, pp. 129-137, Jan. 2010, https://doi.org/10.1049/IET-PEL.2008.0253.
[21] G. V. Silva, R. F. Coelho, T. B. Lazzarin, Switched capacitor boost inverter, in Proc. of the IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 528-533, Jun. 2016, https://doi.org/10.1109/ISIE.2016.7744945.
[22] G. V. Silva, R. F. Coelho, T. B. Lazzarin, Switched-capacitor differential boost inverter: Static gain and generalized structure, in Proc. of the 12th IEEE International Conference on Industry Applications (INDUSCON), pp. 1-8, Nov. 2016, https://doi.org/10.1109/INDUSCON.2016.7874461.
[23] W. Li and X. He, Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications, IEEE Trans. Ind. Electron., vol. 58, pp. 1239-1250, Apr. 2011, https://doi.org/10.1109/TIE.2010.2049715.
[24] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. New York: Kluwer Academic Publishers, 2004.
[25] G. V. Silva, R. F. Coelho, T. B. Lazzarin, State space modeling of a hybrid Switched-Capacitor boost converter, in Proc. of the IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1-6, Nov. 2015, https://doi.org/10.1109/COBEP.2015.7420239.
[26] G. V. Silva, R. F. Coelho, T. B. Lazzarin, Modelagem do Conversor Boost com Células a Capacitor Chaveado por Meio de um Conversor Equivalente de Ordem Reduzida, Eletrônica de Potência, vol. 22, pp. 288-297, Sep. 2017, http://dx.doi.org/10.18618/REP.2017.3.2688.
[27] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice: John Wiley & Sons, 2003.
[28] S. Ben-Yaakov, Behavioral Average Modeling and Equivalent Circuit Simulation of Switched Capacitors Converters, IEEE Transactions on Power Electronics, vol. 27, pp. 632-636, Feb. 2012, https://doi.org/10.1109/TPEL.2011.2171996.
[29] M. D. Vecchia, T. B. Lazzarin, I. Barbi, Estudo de Conversores Estáticos CA-CA Monofásicos e Trifásicos Baseados no Princípio do Capacitor Chaveado, Eletrônica de Potência, vol. 20, pp. 160-171, May 2015, http://dx.doi.org/10.18618/REP.2015.2.160171.
[30] D. Cortes, N. Vazquez, J. Alvarez-Gallegos, Dynamical Sliding-Mode Control of the Boost Inverter, IEEE Transactions on Industrial Electronics, vol. 56, pp. 3467-3476, Sep. 2009, https://doi.org/10.1109/TIE.2008.2010205.
[31] P. Sanchis, A. Ursaea, E. Gubia, L. Marroyo, Boost DC-AC inverter: a new control strategy, IEEE Transactions on Power Electronics, vol. 20, pp. 343-353, Mar. 2005, https://doi.org/10.1109/TPEL.2004.843000.
[32] K. Jha, S. Mishra, A. Joshi, High-Quality Sine Wave Generation Using a Differential Boost Inverter at Higher Operating Frequency, IEEE Transactions on Industry Applications, vol. 51, pp. 373-384, Jan. 2015, https://doi.org/10.1109/TIA.2014.2330059.
[33] R. Middlebrook, S. Cuk, A general unified approach to modelling switching-converter power stages, in Proc. of the Power Electronics Specialists Conference, pp. 18-34, Jun. 1976, https://doi.org/10.1109/PESC.1976.7072895.
[34] A. G. Yepes, F. D. Freijedo, J. Doval-Gandoy, Ó. Lopez, J. Malvar, P. Fernandez-Comesaña, Correction to “Effects of Discretization Methods on the Performance of Resonant Controllers” [Jul 10 1692-1712], IEEE Transactions on Power Electronics, vol. 27, pp. 4976-4976, Dec. 2012, https://doi.org/10.1109/TPEL.2012.2195031.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.