Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 24 - Number 1
Publishing Date: março 2019
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
Otimização multiobjetivo para controle robusto aplicado a inversores conectados à rede
Caio Ruviaro Dantas Osório, Gustavo Guilherme Koch, Iury Cleveston, Lucas Cielo Borin, Fabrício Hoff Dupont, Ricardo Coração de Leão Fontoura de Oliveira, Vinícius Foletto Montagner
107-115
http://dx.doi.org/10.18618/REP.2019.1.0041
Portuguese Data

Palavras Chaves: Algoritmos genéticos, Controle Robusto, Desigualdades Matriciais Lineares, Inversores Conectados à Rede, Otimização multiobjetivo

Resumo

Este artigo propõe um novo procedimento de projeto para controladores por realimentação de estados com aplicação prática em inversores conectados à rede, levando a resultados em conformidade com a norma IEEE 1547, inclusive para o caso de implementação utilizando um número reduzido de sensores. O procedimento baseia-se na otimização de objetivos considerando estabilidade, erro de rastreamento e atenuação de distúrbios. Um algoritmo genético é utilizado para buscar, orientado por modelos simples, os ganhos de controle, levando a um conjunto de soluções viáveis (fronteira de Pareto). O ganho de controle escolhido possui estabilidade robusta contra incertezas e variações paramétricas, certificada por meio de análise baseada em desigualdades matriciais lineares. Restrições no espaço de busca permitem encontrar, de forma automática, ganhos por realimentação total ou parcial de estados, superando limitações de desigualdades matriciais de sínteses e levando a resultados experimentais de boa qualidade, o que torna este procedimento uma alternativa útil no projeto de controladores robustos para conversores de potência.

English Data

Title: Multiobjective optimization for robust control applied to grid-connected inverters

Keywords: genetic algorithms, Grid-connected inverters, Linear Matrix Inequalities, Multiobjective optimization, Robust Control

Abstract

This paper proposes a new design procedure for state feedback controllers suitable for practical application in grid-connected inverters, leading to results complying with IEEE 1547 Standard, even with a reduced number of sensors. The procedure relies on the optimization of objectives considering stability, tracking error and disturbance attenuation. A genetic algorithm is used to search, based on simple models, the control gains, leading to a set of viable solutions (Pareto front). The chosen control gain has robust stability against parameter uncertainties and variations certified by means of analysis linear matrix inequalities. Constraints in the search space allow to find full or partial state feedback gains in an automatic way, overcoming limitations of existing synthesis linear matrix inequalities and leading to experimental results of good quality, what makes this procedure a useful alternative on control synthesis for power converters.

References

[1] G. Chiandussi, M. Codegone, S. Ferrero, F. Varesio, Comparison of multi-objective optimization methodologies for engineering applications, Computers & Mathematics with Applications, vol. 63, no. 5, pp. 912 – 942, 2012, https://doi.org/10.1016/j.camwa.2011.11.057.
[2] R. Haupt, S. Haupt, Practical Genetic Algorithms, Wiley-Interscience publication, John Wiley, 2004.
[3] S. Durgadevi, M. G. Umamaheswari, Analysis and design of single phase power factor correction with DC-DC SEPIC converter for fast dynamic response using genetic algorithm optimised PI controller, IET Circuits, Devices Systems, vol. 12, no. 2, pp. 164–174, 2018, https://doi.org/10.1049/iet-cds.2017.0229.
[4] F. H. Dupont, V. F. Montagner, J. R. Pinheiro, H. Pinheiro, S. V. G. Oliveira, A. Péres, Comparison of linear quadratic controllers with stability analysis for DC-DC boost converters under large load range, Asian Journal of Control, vol. 15, no. 3, pp. 861–871, Maio 2013, https://doi.org/10.1002/asjc.561
[5] R. Pena-Alzola, M. Liserre, F. Blaabjerg, M. Ordonez, Y. Yang, LCL-Filter Design for Robust Active Damping in Grid-Connected Converters, IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2192–2203, Novembro 2014, https://doi.org/10.1109/TII.2014.2361604
[6] R. Teodorescu, M. Liserre, P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems, Wiley – IEEE, John Wiley & Sons, 2011.
[7] Standard for interconnecting distributed resources with electric power systems, IEEE Std. 1547 , 2011.
[8] F. Blaabjerg, R. Teodorescu, M. Liserre, A. Timbus, Overview of Control and Grid Synchronization for Distributed Power Generation Systems, IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398 –1409, Outubro 2006, https://doi.org/10.1109/TIE.2006.881997.
[9] B. Liu, Q. Wei, C. Zou, S. Duan, Stability Analysis of LCL-Type Grid-Connected Inverter Under Single-Loop Inverter-Side Current Control With Capacitor Voltage Feedforward, IEEE Transactions on Industrial Informatics, vol. 14, no. 2, pp. 691–702, Fevereiro 2018, https://doi.org/10.1109/TII.2017.2766890
[10] D. Pérez-Estévez, J. Doval-Gandoy, A. G. Yepes, O. López, F. Baneira, Enhanced Resonant Current Controller for Grid-Connected Converters With LCL Filter, IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3765–3778, Maio 2018, https://doi.org/10.1109/TPEL.2017.2770218
[11] N. A. Windarko, O. A. Qudsi, A. Tjahjono, O. A. Dimas, M. H. Purnomo, Optimized PI constant for current controller of grid connected inverter with LCL filter using Genetic Algorithm, in Makassar International Conference on Electrical Engineering and Informatics (MICEEI), pp. 9–13, 2014, https://doi.org/10.1109/MICEEI.2014.7067300
[12] E. Ebrahimzadeh, F. Blaabjerg, X. Wang, C. L. Bak, Reducing Harmonic Instability and Resonance Problems in PMSG-Based Wind Farms, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 73–83, Março 2018, https://doi.org/10.1109/JESTPE.2017.2765460
[13] M. Liserre, A. Dell’Aquila, F. Blaabjerg, Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier, IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 76 – 86, Janeiro 2004, https://doi.org/10.1109/TPEL.2003.820540.
[14] S. E. D. León-Aldaco, H. Calleja, J. A. Alquicira, Metaheuristic Optimization Methods Applied to Power Converters: A Review, IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6791–6803, Dezembro 2015, https://doi.org/10.1109/TPEL.2015.2397311
[15] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia, PA, 1994.
[16] L. A. Maccari, Jr., J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. L. F. Oliveira, V. F. Montagner, LMI-Based Control for Grid-Connected Converters With LCL Filters Under Uncertain Parameters, IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3776–3785, Julho 2014, https://doi.org/10.1109/TPEL.2013.2279015
[17] C. Scherer, Hinf control by state feedback: An iterative algorithm and characterization of high-gain occurence, Systems & Control Letters, vol. 12, no. 5, pp. 383 – 391, 1989, https://doi.org/10.1016/0167-6911(89)90074-1
[18] M. V. Kothare, V. Balakrishnan, M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, vol. 32, no. 10, pp. 1361 – 1379, 1996, https://doi.org/10.1016/0005-1098(96)00063-5
[19] R. C. L. F. Oliveira, P. L. D. Peres, Parameter dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations, IEEE Transactions on Automatic Control, 2007. https://doi.org/10.1109/TAC.2007.900848.
[20] J. Daafouz, J. Bernussou, Parameter dependent Lyapunov functions for discrete time systems with time varying parameter uncertainties, Systems & Control Letters, vol. 43, no. 5, pp. 355–359, Agosto 2001, https://doi.org/10.1016/S0167-6911(01)00118-9.
[21] W. Duesterhoeft, M. W. Schulz, E. Clarke, Determination of Instantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Components, American Institute of Electrical Engineers, Transactions of the, vol. 70, no. 2, pp. 1248–1255, Julho 1951, https://doi.org/10.1109/T-AIEE.1951.5060554.
[22] K. J. Åström, B. Wittenmark, Adaptive Control, Addison-Wesley, Reading, MA, 1995, second edition.
[23] B. A. Francis, W. M. Wonham, The internal model principle of control theory, Automatica, vol. 12, no. 5, pp. 457–465, Setembro 1976, https://doi.org/10.1016/0005-1098(76)90006-6.
[24] L. A. Maccari, A. C. L. Santini, H. Pinheiro, R. C. L. F. de Oliveira, V. F. Montagner, Robust optimal current control for grid-connected three-phase pulsewidth modulated converters, IET, Power Electronics, vol. 8, no. 8, pp. 1490–1499, 2015, https://doi.org/10.1049/iet-pel.2014.0787.
[25] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGAII, IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Abril 2002, https://doi.org/10.1109/4235.996017.
[26] R. C. Dorf, R. H. Bishop, Modern control systems, 11 ed., Prentice Hall, Upper Saddle River, USA, 2008.
[27] R. Cardoso, R. F. de Camargo, H. Pinheiro, H. A. Gründling, Kalman filter based synchronisation methods, IET Generation, Transmission Distribution, vol. 2, no. 4, pp. 542–555, Julho 2008, https://doi.org/10.1049/iet-gtd:20070281.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.