Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 24 - Number 2
Publishing Date: junho 2019
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
RETIFICADOR PFC MONOFÁSICO BRIDGELESS BASEADO EM INTERRUPTORES GaN HEMT EMPREGANDO ESTRATÉGIA DE MODULAÇÃO PWM DE ALTA RESOLUÇÃO IMPLEMENTADA EM FPGA
Murilo K. Lohn, André S. de Carvalho, José Augusto Arbugeri, Tiago Kommers Jappe, Samir Ahmad Mussa
235 - 245
http://dx.doi.org/10.18618/REP.2019.2.00271
Portuguese Data

Palavras Chaves: Boost bridgeless, correção de fator de potência, GaN HEMT, Modulador de alta resolução

Resumo

Interruptores de potência baseados em materiais do tipo wide bandgap propiciam o uso de elevada frequência de comutação sem aumento significativo das perdas do conversor. O artigo propõe a validação experimental de um retificador boost bridgeless com correção ativa do fator de potência, empregando interruptores de Nitreto de Gálio e utilizando um modulador de alta resolução. O protótipo, com uso de 500 kHz na frequência de comutação, é validado com tensão de suprimento em 127 V e 60 Hz, acionando uma carga passiva de 915 W com tensão média de 220 V. Os resultados obtidos demonstram a funcionalidade do conversor estático operando com 96% de rendimento em plena carga, assim como a operação da estratégia de modulação PWM de alta resolução e de controle digital implementadas em FPGA.

English Data

Title: GaN HEMT BASED BRIDGELESS SINGLE-PHASE PFC RECTIFIER EMPLOYING HIGH RESOLUTION PWM STRATEGY IMPLEMENTED IN FPGA

Keywords: Boost Bridgeless, GaN HEMT, high-resolution PWM, Power Factor Correction

Abstract

Power switches based on wide bandgap materials provide the use of high switching frequency without significantly increase of the converter losses. The paper proposes the experimental validation of a boost bridgeless rectifier with active power factor correction, employing Gallium Nitride switches and applying a high-resolution modulator. The prototype, using 500 kHz switching frequency, is validated with supply voltage of 127 V and 60 Hz, driving a 915 W passive load with average voltage of 220 V. The obtained results demonstrate the functionality of the static converter operating with an efficiency of 96% at full load, as well as the operation of the high-resolution PWM and the digital control implemented in FPGA.

References

[1] L. Huber, Y. Jang and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
doi: 10.1109/TPEL.2008.921107

[2] A. D. B. Lange, T. B. Soeiro, M. S. Ortmann and M. L. Heldwein, “Three-Level Single-Phase Bridgeless PFC Rectifiers,” in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 2935-2949, June 2015.
doi: 10.1109/TPEL.2014.2322314

[3] T. K. Jappe, R. R. Polla, T. B. Soeiro, A. Fuerback,
M. L. Heldwein, R. Andrich, “An FPGA-based singlephase interleaved boost-type PFC converter employing
GaN HEMT devices”, in 2013 Brazilian Power
Electronics Conference, pp. 1324–1329, Oct 2013.

[4] A. Lidow, J. Strydom, M. de Rooji, D. Reusch, GaN
Transistors for Efficient Power Conversion, Wiley,
2015.

[5] B. J. Baliga, Fundamentals of Power Semiconductor
Devices, Springer, 2008.

[6] E. A. Jones, F. F. Wang and D. Costinett, “Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 707-719, Sept. 2016.
doi: 10.1109/JESTPE.2016.2582685

[7] E. Mitani, H. Haematsu, S. Yokogawa, “MassProduction of High-Voltage GaAs and GaN Devices”,
CS MANTECH Conference, Vancouver, B C, Canada,
pp. 183–186, 2006.

[8] E. A. Jones, F. Wang and B. Ozpineci, “Application-based review of GaN HFETs,” 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, 2014, pp. 24-29.
doi: 10.1109/WiPDA.2014.6964617

[9] Q. Huang, A. Q. Huang, “Review of GaN totempole bridgeless PFC”, CPSS Transactions on Power
Electronics and Applications, vol. 2, no. 3, pp. 187–
196, Sept 2017.

[10] Z. Liu, F. C. Lee, Q. Li, Y. Yang, “Design of GaNBased MHz Totem-Pole PFC Rectifier”, IEEE Journal
of Emerging and Selected Topics in Power Electronics,
vol. 4, no. 3, pp. 799–807, Sept 2016.

[11] S. Dusmez and Z. Ye, “Designing a 1kW GaN PFC stage with over 99% efficiency and 155W/in3 power density,” 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, 2017, pp. 225-232.
doi: 10.1109/WiPDA.2017.8170551

[12] W. Zhang, Y. Cui, F. Wang, L. M. Tolbert, B. J. Blalock and D. J. Costinett, “Investigation of Gallium Nitride devices benefits on LLC resonant DC-DC converter,” 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015, pp. 146-153.
doi: 10.1109/APEC.2015.7104345

[13] W. Zhang et al., “Evaluation and comparison of silicon and gallium nitride power transistors in LLC resonant converter,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012, pp. 1362-1366.
doi: 10.1109/ECCE.2012.6342657

[14] M. Ishida, T. Ueda, T. Tanaka and D. Ueda, “GaN on Si Technologies for Power Switching Devices,” in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3053-3059, Oct. 2013.
doi: 10.1109/TED.2013.2268577

[15] W. Zhang, F. Wang, D. J. Costinett, L. M. Tolbert and B. J. Blalock, “Investigation of Gallium Nitride Devices in High-Frequency LLC Resonant Converters,” in IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 571-583, Jan. 2017.
doi: 10.1109/TPEL.2016.2528291

[16] R. Reiner, P. Waltereit, B. Weiss, R. Quay and O. Ambacher, “Investigation of GaN-HEMTs in Reverse Conduction,” PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2017, pp. 1-8.

[17] GaN Systems Inc, GS66508T Top-side cooled 650 V
E-mode GaN transistor Preliminary Datasheet, 2016.

[18] GaN Systems®, GN001 Application Guide, Oct. 2016.

[19] E. A. Jones, F. Wang, D. Costinett, Z. Zhang, B. Guo,
B. Liu, R. Ren, “Characterization of an enhancementmode 650-V GaN HFET”, in IEEE Energy Conversion
Congress and Exposition (ECCE2015), pp. 400–407,
sep 2015.

[20] S. Buso, P. Mattavelli, Digital Control in Power
Electronics, 2nd Edition, Morgan & Claypool, 2015.

[21] Analog Devices®, AD7276/AD7277/AD7278, 2015.

[22] D. Navarro, Ó. Lucía, L. A. Barragán, J. I. Artigas, I. Urriza and Ó. Jiménez, “Synchronous FPGA-Based High-Resolution Implementations of Digital Pulse-Width Modulators,” in IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2515-2525, May 2012.
doi: 10.1109/TPEL.2011.2173702

[23] T. Kommers Jappe, R. R. Polla, A. L. Fuerback, M. Lobo Heldwein, T. Batista Soeiro, R. Andrich, “An Fpga-based Single-phase Interleaved Boost-type Pfc Rectifier Employing Gan Hemt Devices”, Eletrônica de Potência, vol. 19, no. 4, pp. 414–422, Nov. 2014.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.