Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
SISTEMA DE CONTROLE MULTI-MALHAS PARA INVERSOR MULTINÍVEIS QUASI-Z-SOURCE COM UMA ÚNICA FONTE DE ENTRADA
Ronaldo Antonio Guisso, Tadeu Vargas, Mário Lúcio da Silva Martins, Hélio Leães Hey
15/04/2019
http://dx.doi.org/10.18618/REP.2019.2.0049
Portuguese Data

Palavras Chaves: Controle de malhas em cascata, Conversor cc-ca, Filtro LCL, Inversor multinível em cascata (CMI), Inversor quasi-Z-source (qZSI), Sistema de potência fotovoltaica

Resumo

Uma estratégia de controle baseada na estrutura de malhas em cascata e controladores Proporcional-Integral (PI) e Proporcional-Ressonante (PR) é proposta e apresentada para o inversor Quasi-Z-Source em Cascata com uma Única Entrada (SS qZS-CMI). Este inversor serve como interface para um arranjo fotovoltaico (FV) com um pequeno número de painéis conectados em série. A estratégia de controle proposta permite a injeção de corrente
na rede monofásica com alta qualidade, proporcionando o equilíbrio das tensões dos barramentos de cada módulo inversor e o rastreamento do ponto de máxima potência do arranjo. Resultados experimentais de um protótipo de um inversor SS qZS-CMI com cinco níveis comprovam o desempenho do sistema e os benefícios do emprego desta topologia em relação a outros inversores multiníveis.

English Data

Title: MULTI-LOOP CONTROL SYSTEM FOR A SINGLE SOURCE INPUT QUASI-Z-SOURCE MULTI-LEVEL INVERTER

Keywords: Cascade loop controller, Cascade multilevel inverter (CMI), DC-AC Converter, LCL filter, Photovoltaic (PV) power system, Quasi-Z-source inverter (qZSI)

Abstract

A control strategy based upon cascaded loops structure and Proportional-Integral (PI) and Proportional-Resonant (PR) controllers is proposed and presented for the cascaded Quasi-Z-Sourcer inverter with a single source (SS qZS-CMI) input. This inverter interfaces a small PV string with the single-phase grid. The proposed control strategy enables high quality current injection into the single-phase grid in addition with the voltage balance of the DC buses of each inverter module and maximum power point tracking of the array. Experimental results of a 5-level SS qZS-CMI inverter prototype
emonstrate the system's performance and the benefits of employing this topology in comparison with others cascaded inverters.

References

[1]- Y. Li, S. Jiang, J. G. Cintron-Rivera, F. Z. Peng, “Modeling and Control of Quasi-Z-Source Inverter for Distributed Generation Applications”, IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1532–1541, April 2013, doi: 10.1109/TIE.2012.2213551.

[2]- E. C. dos Santos, J. F. Bradaschia, M. C. Cavalcanti, E. R. C. da Silva, “Voltage Type Z-Source Converters: Overview Of The Main Topologies”, Eletrônica de Potência, vol. 17, no. 4, pp. 730–743, Set./Nov. 2012.

[3]- Y. Chen, D. Xu, J. Xi, “Common-Mode Filter Design for a Transformerless ZVS Full-Bridge Inverter”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 405–413, June 2016, doi: 10.1109/JESTPE.2015.2503428.

[4]- S. Iturriaga-Medina, C. A. Limones-Pozos, P. R. Martinez-Rodriguez, G. Escobar, J. M. Sosa, A. A. Valdez-Fernandez, J. F. Martinez-Garcia,
“A comparative analysis of grid-tied single-phase transformerless five-level NPC-based inverters for photovoltaic applications”, in 2016 13th International
Conference on Power Electronics (CIEP), pp. 323–328, June 2016, doi:10.1109/CIEP.2016.7530778.

[5]- F. Filho, H. Z. Maia, T. H. A. Mateus, B. Ozpineci, L. M. Tolbert, J. O. P. Pinto, “Adaptive Selective Harmonic Minimization Based on ANNs for Cascade
Multilevel Inverters With Varying DC Sources”, IEEE Transactions on Industrial Electronics, vol. 60, no. 5, pp. 1955–1962, May 2013, doi: 10.1109/TIE.2012.2224072.

[6]- W. I. Bower, J. C. Wiles, “Analysis of grounded and ungrounded photovoltaic systems”, in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion – WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), vol. 1, pp. 809–812 vol.1, Dec 1994, doi:10.1109/WCPEC.1994.520083.

[7]- Y. Liu, H. Abu-Rub, B. Ge, “Front-end isolated quasi-Z-source DC-DC converter modules in series for photovoltaic high-voltage DC applications”, in
2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1214–1219, March 2016, doi: 10.1109/APEC.2016.7468023.

[8]- Y. P. Siwakoti, F. Blaabjerg, P. C. Loh, G. E. Town, “High-voltage boost quasi-Z-source isolated DC/DC converter”, IET Power Electronics, vol. 7, no. 9, pp. 2387–2395, Sep. 2014, doi:10.1049/iet-pel.2013.0845.

[9]- Y. Ding, L. Li, “Research and application of high frequency isolated Quasi-Z-source inverter”, in IECON2012 – 38th Annual Conference on IEEE Industrial Electronics Society, pp. 714–718, Oct 2012, doi: 10.1109/IECON.2012.6388664.

[10]- A. Chub, D. Vinnikov, T. Jalakas, “Galvanically isolated quasi-Z-source DC-DC converters with combined energy transfer for renewable energy sources
integration”, in 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2896–2900, March 2015, doi:10.1109/ICIT.2015.7125525.

[11]- R. A. Guisso, T. Vargas, M. L. S. Martins, H. L. Hey, “Single-DC-Source Quasi-Z-Source Cascaded Multilevel Inverter With Active Power Sharing”, in
CBA 2018 – Congresso Brasileiro de Automatica, September 2018, doi:10.20906/CPS/CBA2018-0081.

[12]- Y. Liu, B. Ge, F. J. T. E. Ferreira, A. T. de Almeida, H. Abu-Rub, “Modeling and SVPWM control of quasi-Z-source inverter”, in 11th
International Conference on Electrical Power Quality and Utilisation, pp. 1–7, Oct 2011, doi: 10.1109/EPQU.2011.6128914.

[13]- Y. Liu, B. Ge, H. Abu-Rub, F. Z. Peng, “An Effective Control Method for Quasi-Z-Source Cascade Multilevel Inverter-Based Grid-Tie Single-Phase
Photovoltaic Power System”, IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 399–407, Feb 2014, doi:10.1109/TII.2013.2280083.

[14]- Y. Liu, B. Ge, H. Abu-Rub, F. Z. Peng, “An Effective Control Method for Three-Phase Quasi-ZSource Cascaded Multilevel Inverter Based Grid-Tie
Photovoltaic Power System”, IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6794–6802, Dec 2014, doi:10.1109/TIE.2014.2316256.

[15]- Y. Liu, B. Ge, H. Abu-Rub, “Modelling and controller design of quasi-Z-source cascaded multilevel inverterbased three-phase grid-tie photovoltaic power system”, IET Renewable Power Generation, vol. 8, no. 8, pp. 925–936, 2014, doi:10.1049/iet-rpg.2013.0221.

[16]- D. Sun, B. Ge, X. Yan, D. Bi, H. Zhang, Y. Liu, H. Abu-Rub, L. Ben-Brahim, F. Z. Peng, “Modeling, Impedance Design, and Efficiency Analysis of Quasi-ZSource Module in Cascaded Multilevel Photovoltaic Power System”, IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6108–6117, Nov 2014, doi:10.1109/TIE.2014.2304913.

[17]- P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, Y. R. Lim, C. W. Teo, “Transient Modeling and Analysis of Pulse-Width Modulated Z-Source Inverter”, IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 498–507, March 2007, doi: 10.1109/TPEL.2006.889929.

[18]- Y. Jia, J. Zhao, X. Fu, “Direct Grid Current Control of LCL-Filtered Grid-Connected Inverter Mitigating Grid Voltage Disturbance”, IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1532–1541, March 2014, doi:10.1109/TPEL.2013.2264098.

[19]- M. Xue, Y. Zhang, Y. Kang, Y. Yi, S. Li, F. Liu, “Full Feedforward of Grid Voltage for Discrete State Feedback Controlled Grid-Connected Inverter With LCL Filter”, IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4234–4247, Oct 2012, doi: 10.1109/TPEL.2012.2190524.

[20]- S. A. O. da Silva, L. P. Sampaio, F. M. de Oliveira, F. R. Durand, “Sistema Fotovoltaico com Condicionamento Ativo de Energia Usando MPPT Baseado em PSO e Malha Feed-Forward de Controle de Tensão do Barramento CC”, Eletrônica de Potência, vol. 21, no. 2, pp. 105–116, Mar./Jun. 2016, doi: 10.18618/REP.2016.2.2615.

[21]- Y. Li, J. Anderson, F. Z. Peng, D. Liu, “Quasi-Z-Source Inverter for Photovoltaic Power Generation Systems”, in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 918–924, Feb 2009, doi:10.1109/APEC.2009.4802772.

[22]- H. Hu, S. Harb, N. Kutkut, I. Batarseh, Z. J. Shen, “A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems”, IEEE Transactions on Power Electronics,
vol. 28, no. 6, pp. 2711–2726, June 2013, doi: 10.1109/TPEL.2012.2221482.

[23]- A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, F. Blaabjerg, “Evaluation of Current Controllers for Distributed Power Generation Systems”,
IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 654–664, March 2009, doi: 10.1109/TPEL.2009.2012527.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.