Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 23 - Number 3
Publishing Date: setembro 2018
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: UDESC
Controlador robusto quasi-deadbeat e relaxações com aplicação em inversores conectados à rede
Caio Ruviaro Dantas Osório, Gustavo Guilherme Koch, Lucas Cielo Borin, Iury Cleveston, Vinícius Foletto Montagner
320 - 329
http://dx.doi.org/10.18618/REP.2018.3.2787
Portuguese Data

Resumo

Este trabalho apresenta o projeto de um controlador robusto de corrente por realimentação de estados baseado em desigualdades matriciais lineares, conduzindo a um conjunto de ganhos fixos capaz de garantir a alocação dos polos de malha fechada em um círculo de raio mínimo, centrado na origem e contido no círculo de raio unitário (controlador robusto quasi-deadbeat). Para aplicações em conversores conectados à rede, o procedimento de projeto proposto produz resultados ilustrando que relaxações a partir do controlador robusto quasi-deadbeat garantem estabilidade e bom desempenho para uma faixa de incertezas e para variações nos parâmetros da rede e do filtro.

English Data

Title: A robust quasi-deadbeat controller and relaxations applied to grid-connected inverters

Abstract

This work presents the design of a robust state feedback current controller based on linear matrix inequalities, leading to a set of fixed gains capable of ensuring the assignment of the closed-loop poles in a circle of minimum radius, centered at the origin and included in the unit circle (robust quasi-deadbeat controller). For applications to grid-connected converters, the proposed design procedure provides results illustrating that relaxations from a robust quasi- deadbeat controller ensure stability and good performance for a set of parametric uncertainties and variations on the grid and filter parameters.

References

[1] R. Teodorescu, M. Liserre, P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems, Wiley – IEEE, John Wiley & Sons, 2011.
[2] R. W. Erickson, Fundamentals of Power Electronics, Chapman & Hall, New York, NY, 1997.
[3] F. Blaabjerg, R. Teodorescu, M. Liserre, A. Timbus, Overview of Control and Grid Synchronization for Distributed Power Generation Systems, IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398 –1409, oct. 2006, https://doi.org/10.1109/TIE.2006.881997.
[4] R. Peña-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, F. W. Fuchs, Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2642 –2646, june 2013, https://doi.org/10.1109/TPEL.2012.2222931.
[5] S. Buso, P. Mattavelli, Digital Control in Power Electronics, Morgan & Claypool Publishers, 2006.
[6] J. Dannehl, F. W. Fuchs, S. Hansen, P. B. Thogersen, Investigation of Active Damping Approaches for PI-Based Current Control of Grid-Connected Pulse Width Modulation Converters With LCL Filters, IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1509–1517, July 2010, https://doi.org/10.1109/TIA.2010.2049974.
[7] L. A. Maccari, Jr., J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. L. F. Oliveira, V. F. Montagner, LMI-Based Control for Grid-Connected Converters With LCL Filters Under Uncertain Parameters, IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3776–3785, July 2014, https://doi.org/10.1109/TPEL.2013.2279015.
[8] L. A. Maccari, H. Pinheiro, R. C. Oliveira, e Vinícius F. Montagner, Robust pole location with experimental validation for three-phase grid-connected converters, Control Engineering Practice, vol. 59, pp. 16 – 26, 2017.
[9] A. Emami-Naeini, G. Franklin, Deadbeat control and tracking of discrete- time systems, IEEE Transactions on Automatic Control, vol. 27, no. 1, pp. 176–181, Feb 1982, https://doi.org/10.1109/TAC.1982.1102818.
[10] D. G. Holmes, D. A. Martin, Implementation of a direct digital predictive current controller for single and three phase voltage source inverters, in IEEE IAS Annual Meeting, vol. 2, pp. 906–913, 1996, https://doi.org/10.1109/IAS.1996.560191.
[11] S. Buso, S. Fasolo, P. Mattaveli, Uninterruptible power supply multiloop control employing digital predictive voltage and current regulators, IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1846–1854, November/December 2001, https://doi.org/10.1109/28.968200.
[12] A. Kawamura, R. Chuarayapratip, T. Haneyoshi, Deadbeat control of PWM inverter with modified pulse patterns for uninterruptible power supply, IEEE Transactions on Industrial Electronics, vol. 35, no. 2, pp. 295–300, May 1988, https://doi.org/10.1109/41.192662.
[13] L. Malesani, P. Matavelli, S. Buso, Robust dead-beat current control for PWM rectifiers and filters, IEEE Transactions on Industry Applications, vol. 35, no. 3, pp. 613–620, May/June 1999, https://doi.org/10.1109/IAS.1998.730323.
[14] W. Jiang, W. Ma, J. Wang, L. Wang, Y. Gao, Deadbeat Control Based on Current Predictive Calibration for Grid-Connected Converter Under Unbalanced Grid Voltage, IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5479–5491, July 2017, https://doi.org/10.1109/TIE.2017.2674620.
[15] Y. He, H. S. H. Chung, C. N. M. Ho, W. Wu, Use of Boundary Control With Second-Order Switching Surface to Reduce the System Order for Deadbeat Controller in Grid-Connected Inverter, IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2638–2653, March 2016, https://doi.org/10.1109/TPEL.2015.2441117.
[16] A. Kawamura, T. Haneyoshi, R. G. Hoft, Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor, in IEEE Power Electronics Specialist Conference, pp. 576–583, 1986, https://doi.org/10.1109/63.4341.
[17] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 1994.
[18] M. Chilali, P. Gahinet, P. Apkarian, Robust pole placement in LMI regions, IEEE Transactions on Automatic Control, vol. 44, no. 12, pp. 2257– 2270, December 1999, https://doi.org/10.1109/9.811208.
[19] J. Daafouz, J. Bernussou, Parameter dependent Lyapunov functions for discrete time systems with time varying parameter uncertainties, Systems & Control Letters, vol. 43, no. 5, pp. 355–359, August 2001.
[20] V. F. Montagner, V. J. S. Leite, P. L. D. Peres, Design of a switched control with pole location constraints for a UPS system, in Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 1, pp. 441– 446, 2004, https://doi.org/10.1109/ISIE.2004.1571848.
[21] J. Daafouz, J. Bernussou, Poly-quadratic stability and H-inf performance for discrete systems with time varying uncertainties, in Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp. 267–272, 2001, https://doi.org/10.1109/CDC.2001.980110.
[22] K. Aström, B. Wittenmark, Computer-controlled systems: theory and design, Prentice Hall, 1997.
[23] B. A. Francis, W. M. Wonham, The internal model principle of control theory, Automatica, vol. 12, no. 5, pp. 457–465, September 1976.
[24] L. H. Keel, S. P. Bhattacharyya, Robust, fragile, or optimal?, IEEE Transactions on Automatic Control, vol. 42, no. 8, pp. 1098–1105, August 1997, https://doi.org/10.1109/9.618239.
[25] D. Majstorovic, I. Celanovic, N. D. Teslic, N. Celanovic, V. A. Katic, Ultralow-Latency Hardware-in-the-Loop Platform for Rapid Validation of Power Electronics Designs, IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4708–4716, Oct 2011, https://doi.org/10.1109/TIE.2011.2112318.
[26] Z. R. Ivanovic, E. M. Adzic, M. S. Vekic, S. U. Grabic, N. L. Celanovic, V. A. Katic, HIL Evaluation of Power Flow Control Strategies for Energy Storage Connected to Smart Grid Under Unbalanced Conditions, IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4699–4710, Nov 2012, https://doi.org/10.1109/TPEL.2012.2184772.
[27] J. Chen, J. Chen, Stability Analysis and Parameters Optimization of Islanded Microgrid with Both Ideal and Dynamic Constant Power Loads, IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3263–3274, 2018, https://doi.org/10.1109/TIE.2017.2756588.
[28] P. Chennamsetty, V. Kanakasabai, R. Naik, A novel capacitor voltage balancing method in modular multilevel converters, in IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2099–2103, 2015, https://doi.org/10.1109/ECCE.2015.7309956.
[29] Standard for interconnecting distributed resources with electric power systems, IEEE Std. 1547, 2011.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.