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Abstract - This work presents a method for increasing
the efficiency of three-phase induction motor drives over
the entire operation range. The direct field oriented
control of induction motors, including the effects of
magnetic saturation is used. The magnetic saturation
effect in the machine is modeled by the non-linear
magnetization curve of the iron core. Artificial neural
networks are used to predict the optimum reference rotor
flux to be used in the vector control. Details about
the chosen neural networks are given. Simulation and
experimental results are presented and the motor losses
reduction during different load conditions is evaluated.

Keywords – Artificial Neural Network, Energy
Conservation, Induction Motor Drives.

I. INTRODUCTION

Three-phase induction motors are responsible for more than
50% of the energy consumption in industrialized countries [1].
In recent years, most induction machine manufacturers are
concerned with producing efficient motors. However, in the
vast majority of applications, due to erroneous application
or varying load, the motor selected is oversized for its
application. In such situations the motor operates at a load
condition very different from its maximum efficiency point.
As an example, motors in Brazilian industrial plants operate at
approximately 60% of their rated capacity [2]. Although the
motor appears to be inefficient, the problem is actually due to
the fact that the losses are relatively high when compared to
the work being done.

The first studies for minimizing induction motor losses
were based on controlling the power factor, by adjusting
the stator voltage [3]. However it was soon demonstrated
that the points of operation that lead to maximum efficiency
or minimum input current may be very far from that for
constant high power factor [4]. The problem of determining
the stator voltage and frequency leading to minimal losses
in induction motors has been addressed in the last three
decades. The solution was described qualitatively in [5], but
the nonlinearities of the machine model and saturation effects
made the problem too complex for quantitative solutions
without excessive simplifying assumptions [6], since the
saturation effects cannot be neglected [7].

The losses minimization mechanism can be qualitatively
explained as follows. In the vast majority of applications
the motors operate under constant magnetic flux, even if the
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mechanical load is zero or very low. In those low load torque
cases, it is obvious that the core losses could be reduced by
operating under low magnetic flux. In order to improve the
capacity of producing electromagnetic torque, which is needed
if the load increases, the magnetic flux must be augmented.
In this case, the core losses and also the copper losses due
to the stator current component necessary for flux production
increase. On the other hand, if the flux increases the torque
producing component of the stator current is reduced and the
copper losses associated with this component are lower.

Much research effort has been done in the two last decades
for solving the problem of online tuning of the magnetic flux
to the minimum losses value in adjustable speed drives. Some
papers summarized the methods for achieving this goal in
three distinct approaches [8]: a simple state controller (SSC);
a loss-model-based controller (LMC); and a search controller
(SC).

The SSC approaches are based on setting the displacement
power factor or the rotor slip frequency. Although easy
to implement, they are sensitive to flux saturation and
temperature related parameter variations. The optimal control
is restricted to a relatively narrow operational range. It was
the only possible approach in the past, when only simple V/f
drives were available.

The SC schemes provide iterative variations in the magnetic
flux reference based on algorithms for tracking the minimum
input power [9] [10] [11]. The SC schemes are robust
to parameter variations but their precision is reduced when
the flux around the minimum power is too flat. Their
main drawbacks are the slow response and the fact that
even when the motor operates under constant load, the SC
never reaches the steady state and causes flux and torque
pulsations. Further, input power measurement errors may
cause oscillations around the optimum operating point or even
instability.

The main advantage of the LMC methods is the use
of some loss model of the induction machine, making the
response fast and smooth. The main differences among
the schemes proposed are on the loss model used. Many
aspects like saturation, frequency or temperature affect the
induction machine losses and complex precise models would
of course lead to better optimization methods. Implementation
of a LMC for on line determination of the magnetic flux
that leads to minimum losses for each operation condition
in terms of load torque and speed is a complex nonlinear
problem. Due to the capacity of artificial neural networks
(ANN) generalizing knowledge acquired during the learning
process for implementing any mathematical function, some
authors have proposed their use for maximizing efficiency in
induction motor drives [12] - [13]. In [12], the measured
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speed and reference electromagnetic torque are input to an
ANN previously trained for determining the d axis rotor
current corresponding to minimum motor losses. Saturation
is not taken into account and an open loop rotor flux control
is implemented, since there is no rotor flux estimator. No
experimental results are presented. A more complete scheme
is presented in [14], in which the magnetizing inductance and
rotor resistance are estimated and used together with measured
speed and estimated electromagnetic torque as inputs of the
ANN that determines the flux for maximum efficiency of
the drive. However, the rotor flux is estimated using the
induction machine stator equation (voltage model), which
tends to become unstable in low speed operation. Again, no
experimental results are presented. An ANN is used in [13] for
obtaining the amplitude of the stator voltages for maximum
efficiency in fixed speed voltage controlled induction motor
drives.

In this paper neural networks are applied for determining
the rotor flux vector magnitude in a direct field oriented
induction motor drive, leading to operation with maximum
efficiency. A rotor flux estimator based on the rotor
equation (current model) that takes the magnetic saturation
into consideration is used for the flux closed loop control.
Simulation and experimental results demonstrate the proposed
scheme performance.

II. MODELING OF INDUCTION MACHINE WITH THE
INCLUSION OF MAGNETIC SATURATION

The most used vector equations of the induction machine
model in a reference frame rotating in an arbitrary angular
speed ωe are [15]:

−→vs = Rs
−→
is +
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where −→v ,
−→
i e
−→
λ , are space vectors of voltage, current and

flux, Rs e Rr are the resistance of stator and rotor, Lm is the
mutual inductance, Lls e Llr are leakage inductances of stator
and rotor, ωr is the rotor angular speed, J is the drive moment
of inertia, P is the number of poles, Tc and Te are the torque
of load and electromagnetic respectively.

Models of the induction machine including the effects of
magnetic saturation can be found in [16], [17], [18]. In
this study, the effect of saturation is considered by updating
the value of Lm as the mutual flux varies. The values of
Lm are obtained from the magnetization curve, which is
previously determined through a no-load test. Figure 1 shows
the measured points and the plots of approximate functions.

The approximate function of the non-linear part of the
magnetizing characteristic is:

λm = 0.55
[
1− 1.7376 exp(− im

3.62
)
]
. (9)

The parameters of the approximate function (9) were
obtained by varying them in a wide range and calculating the
sum of the squared errors, comparing with the experimental
points. The parameters that led to the least squared errors were
then chosen.

Therefore, except for low values of λm, (6) and (9) are used
to calculate Lm:

Lm =

{
0.062H, if λm ≤0.31Wb
λm

2−3.62 ln(1− λm
0.55 )

, otherwise. (10)

III. ROTOR FLUX ESTIMATOR CONSIDERING
MAGNETIC SATURATION

The rotor flux estimator is based on the current model:

−̇→
λr =

[
− 1
τr
− j(ωe − ωr)

]−→
λr +

Lm
τr

−→
is . (11)

Using a dq reference frame oriented by the rotor angular
position:
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Fig. 1. No-load magnetizing characteristic
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Fig. 2. Block diagram of the flux estimator including the magnetic
saturation.

{
˙λrd = 1

τr
(Lmisd − λrd)

˙λrq = 1
τr

(Lmisq − λrq).
(12)

In the beginning of the simulation, Lm is set equal to the
non saturated mutual inductance of the machine. However,
its value must be adjusted based on the magnitude of the
mutual flux λm. Once the rotor flux components are obtained
by solving (12), the mutual flux magnitude is calculated as
follows:

{
λmd = λrd − Llrird = λrd − Llr(imd − isd)
λmq = λrq − Llrirq = λrq − Llr(imq − isq),

(13)

and

λm =
√
λ2
md + λ2

mq. (14)

The magnetization curve is then used for obtaining current
im and the mutual inductance corrected value is calculated
from

Lm =
λm
im

. (15)

The described flux estimation process is shown in the block
diagram of Figure 2.

IV. ARTIFICIAL NEURAL NETWORKS

The neural networks are a group of simple processing units
(neurons) distributed in different layers which are able to
implement any mathematic function.

These entities, after the process of adjusting their internal
parameters (weights and bias), are capable of generalizing the
knowledge acquired during the learning process.

Figure 3 illustrates a generic multi-layered neural network
having one input layer, two hidden layers with four neurons
each, and one output layer with two neurons.

The possibility of distributing the neurons in different
intermediate layers, allows the solution of problems not

Hidden Layers

Input Layer Output Layer

Input 2

Input 1

Output 2

Output 1

Fig. 3. A generic ANN.

linearly separable. Achievements of studies showed that an
intermediate layer is sufficient to implement any continuous
function [19], while two intermediate layers are sufficient to
implement any mathematical function [20].

V. THE ARTIFICIAL NEURAL NETWORKS USED

For an ANN to perform its task satisfactorily, its input must
contain information that describes the main features of the
problem to be solved. For maximizing the efficiency of an
induction motor, the electromagnetic torque and rotor angular
speed can be used as inputs and the magnitude of the rotor flux
vector as output of the ANN, as in [12] - [13].

In some previous works, ANN’s were used for improving
induction motor drives efficiency. In [12], an ANN with 10
neurons in the first hidden layer using a hyperbolic tangent
activation function and 5 neurons in the second hidden layer
with linear activation function was used. Saturation effects are
neglected and the ANN output is the d axis current component.
Only 16 examples are used as training data. In [14] the training
set is composed of 3100 examples. The ANN has 4 neurons in
the input layer, 5 neurons in the first hidden layer and output
the reference rotor flux.

In order to obtain the data representing the maximum
efficiency conditions, simulations of the machine including
the effects of magnetic saturation were performed. In these
simulations, a direct rotor flux oriented vector control scheme
was used for regulating the rotor speed, considering a certain
load torque. The same simulation was performed for several
different rotor flux magnitudes. The rotor flux magnitude that
results in minimum input power is the optimum flux in terms
of machine efficiency, since that torque and speed conditions
are attended with minimum input power. The same procedure
was repeated for determining the optimal flux value for several
pairs of torque and speed. Table I shows the range of variation
of torque, speed and flux used to construct the ANN training
database. The base values used in the representation in pu are
wrb = 340elect.rad/s, Teb = 20Nm e Firb = 0.425Wb.
The database set is then composed of 420 points. Figure 4
presents the optimum flux surface obtained.

The representation and choice of the ANN was made
following the recommendations of the Proben Report [21].
If only one ANN was used to represent the entire optimum
surface, it would require a lot of neurons in each hidden layer.
Consequently, the computational burden for running the ANN
each sampling period would be very high. In order to reduce
the computational effort for implementing the ANN, in terms
of memory required and processing time, the induction motor
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TABLE I
Limits of the database

Variable Interval [pu] Increment [pu]
Speed 0.05 a 1 0.05
Torque 0 a 1 0.05
Flux 0.1 a 1.175 0.025

TABLE II
Artificial neural network versus operating range

ANN Load Torque [pu]
1 0 a 0.1
2 0.1 a 0.2

...
...

10 0.9 a 1.0

operating range was divided in ten regions, according to the
load torque. One ANN with small structure, and therefore
low computational burden, was then constructed for each load
torque region as described in Table II. The electromagnetic
torque estimated using the estimated rotor flux is then used for
choosing which ANN must be run each sampling period.

In order to avoid any neuron to operate in the saturation
region, where the output values are close to the upper and
lower limits of the activation functions, the database set was
normalized.

Since the input values (speed and torque) are in the range
[0,1], they do not need to be normalized. However, the ANN
output, the reference magnitude of the rotor flux vector, vary
in the interval [0.1,1.175] and was normalized using 0.2 and
0.8 as lower and upper limits of the normalization interval,
respectively. The normalizing and de-normalizing equations
of the ANN output are then:

xnij =
0.155 + 0.6xij

1.075
(16)

xij =
−0.155 + 1.075xnij

0.6
(17)

The data used for performing benchmarks on neural
network learning algorithms were split into three parts: one
set on which the training is performed, called the training set;
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Fig. 4. Database optimum surface.

a validation set used as a pseudo test set in order to evaluate the
quality of a network during training, and another part on which
the performance of the resulting network is measured, called
the test set. The database was divided in training, validation
and test subsets, obeying the proportions of 70%, 20% and
10% respectively [21].

All the networks used in this study have the multilayer
perceptron (MLP) architecture and are trained using Matlab
[22]. The learning algorithm used was the Levenberg-
Marquardt [23]. All networks have one input layer, one or
two hidden layers and one output layer. The number of
neurons in the hidden layers vary between two and eight and
the activation function applied in these layers is a hyperbolic
tangent or logistic sigmoid. Since the output values of the
database are always positive, the activation function used in
the output layers was the sigmoid logistics.

Table III shows the architectures of the ten neural networks
after training. The surface generated by the neural networks,
considering many input pairs of speed and torque is illustrated
in Figure 5.

VI. SIMULATION RESULTS

Some simulations were performed for evaluating the
algorithm ability to select the flux corresponding to maximum
efficiency. The simulation program contains the usual
induction machine model. However, after calculating the
rotor flux, (13) is used for computing the magnetizing flux
and the mutual inductance is corrected through applying
(10), including the effects of magnetic saturation. The rotor
speed control is performed, as in usual drives using field
oriented control, by a PI controller, whose output is the q
axis component reference current. However, the flux reference
is set by the ANN for achieving maximum efficiency. The
described flux observer is used to determine the magnitude
and position of the rotor flux vector from the measured stator
currents and rotor speed. The calculated flux magnitude
and the q axis current component transformed to the flux
oriented reference frame, are used to obtain the estimated
electromagnetic torque. This estimated torque is then used for
selecting which ANN must be used. The estimated torque and
the measured rotor speed are then input to the selected ANN
for obtaining the reference optimum rotor flux magnitude. The
difference between the reference and observed flux magnitude
is input to a PI controller that outputs the d axis component
reference current. The stator currents are also regulated using
PI controllers. A vector PWM scheme is then applied for
imposing the duty cycles necessary to produce the reference
voltages determined by the current controllers. Figure 6
shows the direct field oriented control block diagram including
the neural network.

Two other simulation programs were used for evaluating the
proposed scheme. In the first one, the rotor flux magnitude
reference was maintained equal the rated value and no losses
minimization process was applied. In the second case, the
ANN was substituted by an ideal reference flux calculator,
which uses the training database for obtaining the optimum
flux magnitude.

Figures 7-9 show the relation between average input
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TABLE III
Summary of networks architectures

ANN
Load Torque Hidden Activation
Range (pu) Neurons Functions

1 [0; 0, 1) 3 − 3 tansig − tansig
2 [0, 1; 0, 2] 4 − 2 tansig − tansig
3 (0, 2; 0, 3] 4 − 2 tansig − tansig
4 (0, 3; 0, 4) 3 − 4 tansig − logsig
5 [0, 4; 0, 5] 1 − 6 tansig − tansig
6 (0, 5; 0, 6) 3 − 2 tansig − logsig
7 [0, 6; 0, 7] 2 − 5 tansig − logsig
8 (0, 7; 0, 8) 3 − 2 tansig − logsig
9 [0, 8; 0, 9) 4 − 4 tansig − logsig
10 [0, 9; 1, 0] 3 − 3 tansig − logsig

Speed (pu)Load Torque (pu)

Rotor Flux (pu)

0
0.2

0.4
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0.8
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Fig. 5. Surface generated by neural networks.

power (Pinput) and average input power when the flux
is maintained in the rated value (Prated flux) in the three
simulated conditions:

1. Ideal reference flux calculator;
2. Reference flux set at nominal value (control with no

losses minimization algorithm);
3. Reference flux provided by the ANN.

From the simulation results it can be concluded that with
low load, significant reduction on the input power can be
achieved if the reference flux is reduced. However, almost
no losses reduction is possible if the motor operates with
approximately one half of the rated load. Losses reduction
is also possible if the motor is heavily loaded, by increasing
the rotor flux magnitude somewhat above the rated value.

+

λr

v *sd
i *sd

compensation

+

v *sq

sq

sd

i

i

v

v

sq

sd

i *

compensation

PI

PI PI
ANN

ωr*

ωr* PI
sq

Te

λr*

+ +

+

+-

+ +--

-
ωr

Selected

Fig. 6. Direct field oriented control block diagram including the
neural network.
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Fig. 7. Simulation results. Input power comparison at no-load
operation.
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Fig. 8. Simulation results. Input power comparison for a load torque
equal to 0.5 p.u.

VII. EXPERIMENTAL RESULTS

The proposed scheme was validated using the experimental
setup shown in Figure 10. This system consists of five parts:
an induction motor to be controlled, a dc machine used to
impose the load torque, a frequency converter, a discrete-time
control platform and a PWM interface. The control platform
contains circuits for conditioning the signals to be sent to
an acquisition board installed in a PC microcomputer. The
PC computer processes the control algorithm for determining
the motor stator voltage references. These voltages are then
used for computing the switches duty cycles, which are sent
to dedicated PWM interfaces responsible for producing the
switches command signals. The parameters of the induction
motor were obtained from conventional no-load and blocked
rotor tests and are shown the Table V.

The control system performance during load torque
disturbances was verified by applying and removing the load
torque every three seconds approximately. The drive behavior
with and without using the maximum efficiency scheme
are compared. In Figures 11 - 13 the plots of estimated
rotor flux magnitude, rotor speed, estimated and reference
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TABLE IV
Induction motor parameters

Power = 5 hp Vs = 380 V Is = 8.16A
P = 4 poles 3 phases f = 60Hz

ωr = 1715 rpm Lls = 5.44mH Llr = 5.44mH

J = 0.10 kgm2 Rs = 0.53 Ω Rr = 0.75 Ω

electromagnetic torque, input power, d and q reference and
measured stator current components are presented for both
control strategies. The reference speed is maintained equal to
204 elect.rad/s. As expected, the input power is lower when
the ANN is used. Since in the first seconds of simulation the
load corresponds only to friction and wind losses, the magnetic
flux for maximum efficiency is reduced. Consequently,
the electromagnetic torque production capability is reduced
during this period and control performance after load variation
is somewhat worse. It can also be observed that bigger power
reduction is achieved at low load operation, confirming the
simulations results. Also, as expected, the d axis current
variation is observed only when the ANN is used. In this
case, since the rotor flux is reduced, bigger variations occur
in the q axis current. It should be noted that the control
performance reduction is not expected to happen in cases
where the reference flux output from the ANN is equal or
higher than the rated value since, in those cases, the maximum
electromagnetic torque is not reduced. Figures 14 - 16 present
experimental results for such a case. In fact a better speed
control performance is observed since the magnetic flux is set
a little above the rated value. However, since the machine
operates closer to the nominal values, the relative power
reduction is smaller than that for low load operation.

The ability of the proposed scheme of maximizing the drive
efficiency was experimentally verified through no-load tests
in several angular speeds and also for different load torque
conditions. The induction machine speed was first controlled
with no mechanical load applied, with and without the use
of the ANN, and the respective measured input powers are
compared in Table VI. As expected, a significant power
reduction is observed. In other experiments, the drive is used
for controlling the rotor speed at 272rad.ele/s and different
load torques are applied. Table VII presents a comparison of
the drive input powers with and without using the maximum
efficiency scheme. Again, significant efficiency improvement
is achieved for low load torque operation. However, the power
consumption is almost the same for cases when the rotor flux
set by the ANN is near to the rated value.

VIII. CONCLUSION

This paper presents the use of ANN as a component of a
field oriented induction motor drive for maximizing the system
efficiency. In order to obtain accurate results, a flux observer
considering the effects of magnetic saturation is implemented.
This is necessary because depending on the load torque
and rotor speed, the flux magnitude for maximum efficiency
reaches values in the saturated region of the magnetization
curve.
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Fig. 9. Simulation results: input power comparison at full-load
operation.
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TABLE V
Induction motor parameters

Power = 5 hp Vs = 380 V Is = 8.16A
P = 4 poles 3 phases f = 60Hz

ωr = 1715 rpm Lls = 5.44mH Llr = 5.44mH

J = 0.10 kgm2 Rs = 0.53 Ω Rr = 0.75 Ω

TABLE VI
Input power reduction experiment at no-load and several

angular speeds
ωr∗

PWOANN (W ) PWANN (W )
Power

(elect.rad/s) Reduction (%)
34.0000 335.0130 124.2832 62.9020
68.0000 354.7379 156.0212 56.0179
102.0000 372.4988 178.1349 52.1784
136.0000 375.9838 188.0748 49.9780
170.0000 392.9030 204.9831 47.8286
204.0000 402.7912 214.4312 46.7637
238.0000 409.3746 235.7592 42.4099
272.0000 414.2416 259.9184 37.2544
306.0000 419.1219 285.9092 31.7838
340.0000 423.3273 318.5470 24.7516

PWOANN Input power - control without ANN
PWANN Input power - control with ANN

92 Eletrônica de Potência, vol. 15, no. 2, Maio de 2010



Speed (elect.rad/s)

Time (s)

Rotor flux magnitude (Wb)

r

r

ω

ω

*

λr

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0 5 10 15
180

190

200

210

220

(a)

Speed (elect.rad/s)

Time (s)

Rotor f x magnitude (Wb)

r

r

ω

ω

*

lu

λr

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0 5 10 15
180

190

200

210

220

(b)

Fig. 11. Experimental results. Flux and speed responses to load torque steps. ωr∗ = 204 elect.rad/s: (a) without neural network; (b) with
neural network.
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Fig. 12. Experimental results. Electromagnetic torque and active power responses to load torque steps. ωr∗ = 204 elect.rad/s: (a) without
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Fig. 13. Experimental results. Flux and torque current components during load torque steps. ωr∗ = 204 elect.rad/s: (a) without neural
network; (b) with neural network.
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Fig. 14. Experimental results. Flux and speed responses to load torque steps. ωr∗ = 272 elect.rad/s: (a) without neural network; (b) with
neural network.
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Fig. 15. Experimental results. Electromagnetic torque and active power responses to load torque steps. ωr∗ = 272 elect.rad/s: (a) without
neural network; (b) with neural network.
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Fig. 16. Experimental results. Flux and speed responses to load torque steps. ωr∗ = 272 elect.rad/s: (a) without neural network; (b) with
neural network.
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TABLE VII
Input power reduction experiment at fixed angular speed

and variable load torque
ωr∗

PWOANN (W ) PWANN (W )
Power

(elect.rad/s) Reduction (%)
272, 0000 479, 1414 365, 1314 23,7946
272, 0000 498, 2382 402, 2270 19,2701
272, 0000 507, 8761 408, 8983 19,4886
272, 0000 545, 0132 466, 6384 14,3803
272, 0000 636, 7167 583, 2245 8,4013
272, 0000 824, 4775 831, 7987 0, 8880
272, 0000 877, 7757 884, 9593 0, 8184
272, 0000 930, 6873 942, 6043 1, 2805
272, 0000 1086, 7428 1043, 5501 3,9745

PWOANN Input power - control without ANN
PWANN Input power - control with ANN

The results presented show that the losses reduction
achieved by adjusting the rotor flux is more evident in low
load operation. In these cases, the induction motor operates
with rotor flux below the rated value. As a consequence, the
maximum electromagnetic torque is reduced. Nevertheless,
the dynamic performance of the drive with the optimum
efficiency scheme is not severely affected and can be
acceptable in most practical cases.

It is worth noting that in the proposed method the ANN
is trained offline, before operation. Therefore, parameter
deviations might affect the performance of the scheme for
maximizing the motor efficiency. Some tests for evaluating
this drawback and a correction scheme are under investigation.
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