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Abstract – This paper addresses the design of robust
PI controllers for permanent magnet synchronous motors
in terms of a linear matrix inequality based problem. A
polytopic model of the plant is obtained and validated for
the motor uncertain parameters belonging to intervals.
The design procedure proposed here encompasses: i.
suitable plant uncertainties inclusion and the use of
practical design control constraints; ii. robust PI
computation based on linear matrix inequalities with
a very fast solution; iii. simulation analyses; and iv.
experimental evaluations. The robust PI controller can
produce superior speed regulation than a PI controller
designed only for the nominal parameters, including better
disturbance rejection and H∞ performance. Experimental
results confirm the viability of the proposal, which can be
seen as an efficient alternative to trade off performance
and robustness for PI controllers in this application.

Keywords – Linear Matrix Inequalities, Permanent
Magnet Synchronous Motor, Robust Control, Uncertain
Parameter.

I. INTRODUCTION

Electric motors are used in several areas, as for instance,
in industry and transportation, motivating the research on
constructive features and on high performance drivers [1]–
[3]. One important category of electric motors includes
the permanent magnet synchronous motors (PMSM), which
provides high efficiency associated with high power density,
being especially useful for applications that require motion
control as, for example, industrial robots, railways and wind
energy conversion systems [4]–[11]. However, the control
of PMSMs is challenging due to the nonlinear behavior and
the presence of disturbances and uncertainties affecting the
motor [12]. Nonlinear control techniques can be used, aiming
to ensure the high performance of PMSM drives. In [13], it
is proposed a speed control technique using an adaptive PID
controller. The controller consists of three terms intended
to compensate the nonlinearities, adjust the gains and ensure
the stability of the system. In [14], a nonlinear combined
speed control is developed. This control method combines a
sliding mode technique with a disturbance observer, aiming to
compensate the disturbances and uncertainties of the PMSM.
In [15], a predictive scheme for speed control of a PMSM was
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presented. A comparison with PI controller was carried out to
verify dynamic performance. In [16], a speed controller based
on the combination of fuzzy and sliding mode control schemes
is used, to reduce chattering and to improve robustness to
uncertain parameters, with a load torque observer based on
linear matrix inequalities (LMIs) [17]. In [18], the PMSM is
modeled based on a Takagi-Sugeno fuzzy description. A set of
LMIs is solved to get the fuzzy load torque observer gains, and
another set of LMIs is solved to get the fuzzy speed regulator
gains. In [19], Takagi-Sugeno fuzzy controllers are used with
internal model controllers for PMSM speed regulation, with
results validated in hardware-in-the-loop.

Although nonlinear techniques are important for the
achievement high performance, they are more complex than
fixed-gain PI controllers, which are used in regulation of
variables in several industry applications, providing suitable
performance with a very simple control structure [20]. In
[21], PI controllers are used for current control in grid
connected converters modelled in dq coordinates. This model
is also used in maximum power point tracking in photovoltaic
applications, as in [22]. In [23], the gains of a PI are
obtained to ensure desired transient responses for a second
order closed-loop model in a photovoltaic system. The paper
[24] presents some alternatives of PIs for current regulation
of induction motors, using synchronous frame and stationary
frame PI controllers. In [25], a PI is used for speed control
of a PMSM designed only for nominal model parameters.
To ensure robustness the design of controllers can also be
described in terms of LMIs, as in [26]–[28]. In [29], an H∞
controller is applied to speed regulation of a PMSM, providing
robustness to disturbances, but only for a nominal model of
the motor, and only presenting simulation results with ranges
of currents that are impracticable. Thus, there is a lack of
studies on more detailed designs for PIs, implemented based
only on a single pair of fixed control gains, capable of ensuring
a good tradeoff between performance and robustness against
uncertain parameters in experimental applications to PMSM.

The main contribution of this paper is to provide a
systematic procedure to design, off-line, fixed gain PI
controllers that ensure: i) robust pole location based on
LMIs for a set of uncertainties in the PMSM parameters,
ii) robust stability certification based on LMIs for arbitrary
time variations on the PMSM parameters and iii) evaluate
experimentally the viability of the robust controller. To
achieve this, a polytopic model of the PMSM is obtained
and validated for given intervals of mechanical parameters.
The design parameters in the LMIs are chosen in order to
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Fig. 1. Block diagram of the PMSM control system.

obtain step reference responses that respect upper bounds
of overshoot and settling times suitable for the application.
Several simulations of speed reference tracking are given
under mechanical uncertain parameters, evaluating also the
control signal and the rejection of disturbances, including
the computation of an H∞ guaranteed cost for the closed-
loop system. The proposed controller can provide better
performance than a PI designed only for nominal parameters,
with results experimentally confirmed in a commercial
PMSM.

II. DESCRIPTION OF THE PROBLEM

Consider the control system of an internal PMSM given in
Figure 1, where a rotor field oriented strategy is used. The
system is composed by one speed control loop and two current
control loops. The speed compensator processes the error
between the reference ω∗

m and the actual speed ωm, to generate
the reference of current i∗q. The control strategy imposes
i∗d = 0 to linearize the electromechanical torque. Current
sensors provide the phase currents abc, which are converted in
synchronous axes dq currents, by the transformation given in
[30], based on the measured angular position θr. The outputs
of the controllers PId and PIq provide the voltages vd and vq,
which are transformed in abc voltages and then converted to
pulse-width modulation (PWM) signals, to drive the PMSM.

A representation of the PMSM in dq synchronous
coordinates is given by [1]

did
dt

=−Rs

Ld
id +

Lq

Ld
ωeiq +

1
Ld

vd (1)

diq
dt

=−Rs

Lq
iq −

Ld

Lq
ωeid −

φsrm

Lq
ωe +

1
Lq

vq (2)

where the subscription d and q indicate the direct and
quadrature axes; id , iq, vd and vq are the currents and voltages
in a synchronous reference frame; Ld and Lq are the stator
inductance referred to the synchronous reference frame; Rs is
the stator resistance; φsrm is the magnetic flux of the permanent
magnet, and ωe is the electrical angular speed. Note that the
parameters referent to the inductances are different for axes d
and q, due to the internal magnet machine configuration.

Assuming that the terms depending on ωe in (1) and (2) are

b
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Fig. 2. Control loop with PI and first order plant.

disturbances, one can write the decoupled transfer functions

Gd(s) =
Id(s)
Vd(s)

=

1
Ld

s+ Rs
Ld

(3)

Gq(s) =
Iq(s)
Vq(s)

=

1
Lq

s+ Rs
Lq

. (4)

The dynamic model for the mechanical behavior is
described by [1]

dwm

dt
=

1
J
(τm −Bwm)+δ (wm) (5)

where J is the moment of inertia of the rotor, B is
the viscous friction coefficient, and δ (wm) represents a
nonlinear term of bounded norm. Additionally, τm is the
difference between the electromechanical torque, given by
3
2 P [(Ld −Lq) id +φsrm] iq, and the load torque, being P the
number of pairs of poles of the motor.

The transfer function from the linear part of (5), considering
the mechanical torque as an input and the rotor speed as an
output, is written as

Gn(s) =
Wm(s)
Tm(s)

=
1
J

s+ B
J

. (6)

Note that (3), (4) and (6) are first order systems, which can
be described by the general model

G(s) =
b

s+a
. (7)

The problem to be solved in this paper is to determine the
gains Kp and Ki of a PI controller, given in the feedback loop
shown in Figure 2, such that:
(i) the closed-loop poles are located inside the sector

depicted in Figure 3, for the plant with uncertain
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parameters belonging to real intervals given by

a ∈ [amin amax], b ∈ [bmin bmax] (8)

(ii) the closed-loop system remains robustly stable for
arbitrary time variation of parameters a and b in the
intervals (8).

Notice that the location of the closed-loop poles inside
the sector given in Figure 3 can be associated with transient
responses with settling times and overshoots limited. In
addition, the variations of the motor parameters can be
provoked by changes of temperature, as well as magnetic
saturation, which must be taken into account in the stability
analysis [31], [32].

Here, one assumes intervals for a and b centered at
nominal values ± a percentage of tolerance, to encompass the
uncertainty on the parameters Ld , Lq, Rs, B and J. However,
the approach of polytopic representation of the plant shown in
the sequence can handle any other real interval for parameters
a and b, chosen based on the knowledge of the machine by the
control designer.

The next section describes the computation of the gains of
the PI controllers, based on LMIs, to ensure the desired pole
location and the stability against parametric variations.

III. ROBUST PI CONTROLLER DESIGN

Assuming the disturbances du = 0, the transfer function
from reference r∗ to the output y of the closed-loop system
given in Figure 2, can be represented in state-space as

ẋ = A(a)x+Bu(b)u+Brr∗ (9)

where

A(a) =
[

0 1
0 −a

]
;Bu(b) =

[
0
b

]
;Br =

[
0
1

]

x =
[ ∫

e
e

] (10)

where
∫

e �
∫ t

0 e(τ)dτ .
Thus, the PI design can be accomplished in terms of a state

feedback design, whose control law is given by

u = Kx =
[

Ki Kp
][ ∫

e
e

]
. (11)

To compute the control gains Ki and Kp that ensure the
location of the closed-loop poles inside the sector in Figure 3
for a and b assuming any value in (8), a polytopic model for

(9) can be obtained. This model is given by

ẋ = Ap(α)x+Bp(α)u+Brr∗ (12)

where the matrices are written as

(Ap,Bp)(α) =
4
∑

i=1
αi(Ap,Bp)i;

4
∑

i=1
αi = 1; αi ≥ 0,

i = 1, ...,4.
(13)

The matrices

(Ap,Bp)1 = (A(amin),Bu(bmin))
(Ap,Bp)2 = (A(amin),Bu(bmax))
(Ap,Bp)3 = (A(amax),Bu(bmin))
(Ap,Bp)4 = (A(amax),Bu(bmax))

(14)

in (13) are known as the vertices of this polytopic model.
A solution for the problem described in Section II can be

obtained using the LMI conditions given in Theorem 1.

Theorem 1. Given r > 0, 0 < θ < π
2 and σ > 0, and matrices

Api and Bpi, i = 1, ...,4, if there exist a symmetric positive
definite matrix X ∈R2×2 and a matrix Z ∈R1×2 such that [33]

ApiX +XAi
′
+BpiZ +Z

′
Bpi

′
+2σX < 0 (15)

[
−rX �

ApiX +BpiZ −rX

]
< 0 (16)

[
M11 M12
� M22

]
< 0

M11 = sin(θ)(ApiX +XApi
′
+BpiZ +Z

′
Bpi

′
)

M12 = cos(θ)(ApiX −XApi
′
+BpiZ −Z

′
Bpi

′
)

M22 = M11

(17)

are feasible, for i = 1, . . . ,4, then

K = ZX−1 = [Ki Kp] (18)

provides the gains of a PI controller which ensures: (i) the
location of the closed-loop poles in the sector given in Figure 3
and (ii) the stability of the closed-loop system under arbitrary
variations of a and b in (8).

Two main ideas can be used to prove the conditions of
Theorem 1. The result from [33] is used guarantee the
pole location and the result from [17] is employed to assure
the quadratic stability of the closed-loop system, certifying
the robust stability for arbitrarily fast variations of the time-
varying parameters a and b.

Theorem 1 is expressed as a feasibility problem to allow
the control designer specify values for r, θ and σ , to establish
a region for robust pole location that can meet constraints in
terms of settling time, overshoot and control limit.

For an investigation of the use of Theorem 1, consider the
control loop in Figure 2 with the transfer function of the plant
given by (6).

The symbol � represents symmetric blocks in the LMIs.
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Fig. 4. Validation of the polytopic model: (a) to (d) parameters αi ≥ 0, i = 1, ....,4 of the polytopic model, for J and B respecting (19). (e) Sum
of αi equal to 1, confirming convexity. (f) Values of αi for the case where J is fixed at 0.03877.

To obtain the polytopic model, consider

amin = 0.2502; amax = 0.7506;
bmin = 23.2138; bmax = 28.3725. (19)

The limits of the parameter a were obtained by the
expression (B/J) ± 50%, with nominal values

J = 0.03877kgm2; B = 0.0194Nms (20)

and the limits of the parameter b were obtained by the
expression (1/J) ± 10%.

Writing the four vertices of the polytopic model as in (14),
Figure 4 shows that, for each pair (J, B) respecting the limits
from (19), there exists a set of parameters αi ≥ 0, i = 1, ...,4,

4
∑

i=1
αi = 1 which allows to represent the matrices in (10) by

(13)–(14). Thus, the polytopic model includes suitably the
plant for all the set of uncertain parameters and the design of
robust controllers using the conditions of Theorem 1 can be
addressed based only on the vertices (Ap,Bp)i, i = 1, ...,4 of
the polytope, due to the convexity property [17].

To help the control designer in the choice of σ , r, and θ , in
the use of Theorem 1, an investigation is carried out now in the
space σ , r, with θ fixed at π/10 to ensure small overshoots in
the transient responses. The results are depicted in Figure 5(a)
and Figure 5(b). These figures show, respectively, the settling
times and the overshoots of the responses of the closed-loop
system in Figure 2 to a unit step reference (du is kept equal to
zero).

This investigation indicated that for the sets r ∈ [18.5 25.5]
and σ ∈ [3.5 5], Theorem 1 can provide robust PI controllers
with overshoots lower than 15% and settling times lower than
1 s (for the criterium of 2% of steady state error).

For a more detailed interpretation of Figure 5(a), notice
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π/10.
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that the arrow points to the position corresponding to r =
25.5, σ = 4 (θ = π/10), for which Theorem 1 provides a
robust PI that ensures a settling time of 0.5963 seconds. This
value is actually the maximum settling time obtained from
the simulations of the closed-loop system in Figure 2 with
this robust PI and with unit step reference, for a fine grid in
parameters a and b respecting (19). The same idea is valid
for the arrow in Figure 5(b), which indicates that the robust PI
ensures maximum overshoot of 10% in this case. Notice that
lower settling times could be achieved, at the price of higher
overshoots.

The next section shows a procedure to get a robust PI to
achieve performance in terms of reference tracking and how
a controller designed by Theorem 1 can be superior to PI
designed only for a nominal model.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, a robust PI controller is validated by
simulation and experimental results. To have a comparison,
a PI designed only for the nominal parameters of the plant
(referred from now on as conventional PI) is tested under the
same conditions of the robust controller.

The following procedure is proposed to obtain robust PIs
suitable for experimental tests:
i. provide the maximum and minimum values of the

parameters a and b of the plant model, the maximum
allowed settling time (tsmax), overshoot (ovmax), and
control signal amplitude (umax) for the responses to a unit
step reference;

ii. choose r, θ and σ , and solve the LMIs in Theorem 1 to
obtain the gains of a robust PI;

iii. verify if the closed-loop system in Figure 2 satisfies the
limits tsmax, ovmax and umax, by numerical simulations,
for a grid on the parameters a and b;

iv. evaluate experimentally the robust PI controller. If tsmax,
ovmax and umax are satisfied, stop; otherwise, return to
step ii.

For this example, the limits for a and b are given by (19)
and the limits for step reference responses were chosen as

tsmax= 0.6; ovmax = 1.11; umax = 1. (21)

After a few tests in the sets of r and σ given in Section III,
one has that the parameters σ = 4, r = 25.5 and θ = π/10, for
the LMIs in Theorem 1, provided the robust PI controller

Grob
PIn(s) =

0.9247s+3.657
s

(22)

achieving the design specifications from (21).
To deal with robust controllers for systems that admit a

polytopic model, LMIs are a very efficient alternative. For
instance, to compute the speed loop controller (22), a problem
of 5 variables and 40 lines of linear inequalities is solved very
fast, in an off-line procedure, thus justifying this approach by
the high computational efficiency.1

The closed-loop poles with the controller (22) belong to the
sector chosen for pole location, as confirmed by Figure 6.

1Using a notebook with a Core i7 processor and with 8GB of RAM, the
LMIs in Theorem 1 were solved in 0.14 seconds.
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Fig. 6. Closed-loop poles (in red) for the pole location obtained with
σ = 4, r = 25.5 and θ = π/10.

The matrix

X =

[
0.0048 −0.0229
−0.0229 0.1410

]
(23)

is associated with the quadratic Lyapunov function
v(x) = x′Xx obtained by the solution of Theorem 1,
which certifies the stability of the closed-loop system for any
arbitrary parameter variation satisfying the limits in (19).

For comparison, a conventional PI controller is designed in
the frequency domain, to ensure to the system of Figure 2 a
second order response with cutoff frequency defined as two
times the natural frequency of the nominal plant, and with
damping factor equal to 0.95, the same used for the robust PI
controller. The conventional PI controller obtained is given by

Gconv
PIn (s) =

0.429s+1.4338
s

. (24)

For the design of the robust PIs for the current loops, the
following limits were used:

Rs

Ld
±50%,

Rs

Lq
±50%,

1
Ld

±10%,
1
Lq

±10%

where Rs, Ld and Lq are given in Table I.

TABLE I
PMSM Parameters

Parameter Value

Rated Power 11 kW
Rated Current 19.2 A
Rated Torque 58.4 Nm
Poles (P) 6
Stator Resistance (Rs) 0.5 Ω
Inductance of d-axis (Ld ) 20.1 mH
Inductance of q-axis (Lq) 40.9 mH
Rotor Inertia (J) 0.03877 kgm2

Friction Coefficient (B) 0.0194 Nms
PM flux linkage 0.5126 V/rad/s

The limits for step reference responses were chosen as

tsmax= 0.1; ovmax = 1.03; umax = 1.

Following the same procedure that provided the controller
PIn, Theorem 1, with σ = 20, r = 500 and θ = π/10, provides
the following the robust PI for the direct loop:

GPId(s) =
7.657s+202.6

s
. (25)
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that the arrow points to the position corresponding to r =
25.5, σ = 4 (θ = π/10), for which Theorem 1 provides a
robust PI that ensures a settling time of 0.5963 seconds. This
value is actually the maximum settling time obtained from
the simulations of the closed-loop system in Figure 2 with
this robust PI and with unit step reference, for a fine grid in
parameters a and b respecting (19). The same idea is valid
for the arrow in Figure 5(b), which indicates that the robust PI
ensures maximum overshoot of 10% in this case. Notice that
lower settling times could be achieved, at the price of higher
overshoots.

The next section shows a procedure to get a robust PI to
achieve performance in terms of reference tracking and how
a controller designed by Theorem 1 can be superior to PI
designed only for a nominal model.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, a robust PI controller is validated by
simulation and experimental results. To have a comparison,
a PI designed only for the nominal parameters of the plant
(referred from now on as conventional PI) is tested under the
same conditions of the robust controller.

The following procedure is proposed to obtain robust PIs
suitable for experimental tests:
i. provide the maximum and minimum values of the

parameters a and b of the plant model, the maximum
allowed settling time (tsmax), overshoot (ovmax), and
control signal amplitude (umax) for the responses to a unit
step reference;

ii. choose r, θ and σ , and solve the LMIs in Theorem 1 to
obtain the gains of a robust PI;

iii. verify if the closed-loop system in Figure 2 satisfies the
limits tsmax, ovmax and umax, by numerical simulations,
for a grid on the parameters a and b;

iv. evaluate experimentally the robust PI controller. If tsmax,
ovmax and umax are satisfied, stop; otherwise, return to
step ii.

For this example, the limits for a and b are given by (19)
and the limits for step reference responses were chosen as

tsmax= 0.6; ovmax = 1.11; umax = 1. (21)

After a few tests in the sets of r and σ given in Section III,
one has that the parameters σ = 4, r = 25.5 and θ = π/10, for
the LMIs in Theorem 1, provided the robust PI controller

Grob
PIn(s) =

0.9247s+3.657
s

(22)

achieving the design specifications from (21).
To deal with robust controllers for systems that admit a

polytopic model, LMIs are a very efficient alternative. For
instance, to compute the speed loop controller (22), a problem
of 5 variables and 40 lines of linear inequalities is solved very
fast, in an off-line procedure, thus justifying this approach by
the high computational efficiency.1

The closed-loop poles with the controller (22) belong to the
sector chosen for pole location, as confirmed by Figure 6.

1Using a notebook with a Core i7 processor and with 8GB of RAM, the
LMIs in Theorem 1 were solved in 0.14 seconds.
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Fig. 6. Closed-loop poles (in red) for the pole location obtained with
σ = 4, r = 25.5 and θ = π/10.

The matrix

X =

[
0.0048 −0.0229
−0.0229 0.1410

]
(23)

is associated with the quadratic Lyapunov function
v(x) = x′Xx obtained by the solution of Theorem 1,
which certifies the stability of the closed-loop system for any
arbitrary parameter variation satisfying the limits in (19).

For comparison, a conventional PI controller is designed in
the frequency domain, to ensure to the system of Figure 2 a
second order response with cutoff frequency defined as two
times the natural frequency of the nominal plant, and with
damping factor equal to 0.95, the same used for the robust PI
controller. The conventional PI controller obtained is given by

Gconv
PIn (s) =

0.429s+1.4338
s

. (24)

For the design of the robust PIs for the current loops, the
following limits were used:

Rs

Ld
±50%,

Rs

Lq
±50%,

1
Ld

±10%,
1
Lq

±10%

where Rs, Ld and Lq are given in Table I.

TABLE I
PMSM Parameters

Parameter Value

Rated Power 11 kW
Rated Current 19.2 A
Rated Torque 58.4 Nm
Poles (P) 6
Stator Resistance (Rs) 0.5 Ω
Inductance of d-axis (Ld ) 20.1 mH
Inductance of q-axis (Lq) 40.9 mH
Rotor Inertia (J) 0.03877 kgm2

Friction Coefficient (B) 0.0194 Nms
PM flux linkage 0.5126 V/rad/s

The limits for step reference responses were chosen as

tsmax= 0.1; ovmax = 1.03; umax = 1.

Following the same procedure that provided the controller
PIn, Theorem 1, with σ = 20, r = 500 and θ = π/10, provides
the following the robust PI for the direct loop:

GPId(s) =
7.657s+202.6

s
. (25)

0

0.55

1.15

A
m

p
li
tu

d
e

0 0.25 0.5 0.6 0.75 1

0

0.5

1

C
on

tr
ol

Time (s)

Conventional PI Robust PI

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1.03

1.05

1.07

1.09

1.11

1.13

1.15

Fig. 7. Responses to a unit step reference showing the overshoots,
settling times, and control signals.

In the same way, Theorem 1, with σ = 15, r = 500 and
θ = π/10 provides the following the robust PI for the
quadrature loop:

GPIq(s) =
15.5s+300.4

s
. (26)

These PIs for the current loops are used to test both robust
and conventional PIs for the speed loop in the experimental
results in the sequence.

Figure 7 shows the responses to a unit step reference of
speed for the system in Figure 2, with the robust PI (22)
and with the conventional PI (24), for a grid on the plant
parameters respecting (19), and the corresponding control
signals. Note that the specifications in (21) are achieved and
that the robust controller provides better dynamic responses.

Figure 8 confirms the better performance with the robust PI
controller for a variation on time on parameters a and b.

Figure 9 shows the rejection of unit step disturbances, for
the system in Figure 2 with the robust PI controller (22) and
the conventional PI (24). Better rejection of disturbances is
provided by the robust controller.

For a more detailed analysis, now consider the nonlinear

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.85

1

1.15

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.25

0.5

0.75

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
24

26

28

(c)

Time (s)

Conventional PI Robust PI

Fig. 8. (a) Responses to a unit step reference for the robust PI
and conventional PI under parameter variations. (b) Variation of
parameter a. (c) Variation of parameter b.
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Fig. 9. Responses to a unit step disturbance du on the control signal,
for the robust PI and the conventional PI controllers.

term in (5) represented by a norm bounded disturbance du.
Then, the closed-loop system, given in Figure 2, can be
described in the state space as

.[
x1
x2

]
=

[
0 1

−(bKi) −(a+bKp)

][
x1
x2

]
+

[
0
1

]
du

(27)

y =
[

0 b
][ x1

x2

]
. (28)

Given the gains Kp and Ki and considering a and b with
limits in (19), the system (27) and (28) can be represented in a
polytopic form as

ẋ = Ad(α)x+Bd(α)du (29)

y =Cd(α)x (30)

with

(Ad ,Bd ,Cd)(α) =
4
∑

i=1
αi(Ad ,Bd ,Cd)i

4
∑

i=1
αi = 1; αi ≥ 0; i = 1, ...,4.

(31)

The four vertices from (31) are obtained by the evaluation
of the respective matrices in (27) and (28) for all the
combinations of maximum and minimum values of a and b.

From the condition of H∞ guaranteed cost computation
based on quadratic stability [17], one has that, if there exists a
symmetric positive definite matrix X ∈ R2×2 such that

η∗ = minη
s.t.


AdiX +XAdi
′

Bdi Cdi
′

� −I 0
� � −ηI


< 0

(32)

has a solution for i = 1, ...,4, then γ =
√

η∗ is an H∞
guaranteed cost for the system (29)-(30) [17].

The solution of (32) for the robust PI controller (22)
provides γ equals to 1.0517 dB. For the conventional PI
controller (24), one has γ equals to 5.1469 dB, indicating
again a better performance with the robust PI controller when
concerning disturbance rejection. One can notice by the
frequency domain analysis in Figure 10 that the robust PI
controller yields disturbance attenuations in practically the
entire range of frequencies. This figure also shows a better
overall performance of the robust PI controller when compared
to the conventional PI, with also a lower upper bound for the
magnitude diagram (lower H∞ guaranteed cost).

A simulation closer to the practical implementation is given
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Fig. 11. Responses to a reference with a startup in ramp and with
variations of setpoints, for the robust and conventional PIs.

in Figure 11. This figure shows a test with a reference of
speed with a start up in ramp and with variations of setpoint.
It is clear the good tracking of the reference and the good
recovering at the setpoint variations with both controllers, with
faster responses for the robust PI controller.

To obtain the experimental results, the platform used here
was based on a commercial PMSM with nominal parameters
in Table I. The DSP TI TMS320F28335 is used to implement
the digital control law. The three-phase voltage source inverter
(VSI) is based on IGBT switches. Hall effect sensors are
employed, for voltage and current measurements. An absolute
encoder TRD-NA256NWD provides the actual rotor position.
A geometric PWM modulation is adopted. The switching
frequency used was 10 kHz, the sampling period is 100 µs,
and the PI controllers are discretized using Tustin method.

Figure 12 shows the experimental platform, where an
induction machine (IM), is coupled to the axis of the PMSM.
The electrical load shown in Figure 12 is connected to the IM
to produce a mechanical load disturbance of approximately
25 Nm for the PMSM.

Figure 13 shows the experimental results with the robust PI
controller (22), for a test of tracking of reference similar to
the simulation test in Figure 11. Note the good tracking of the
reference of speed during the startup and after the variations
of setpoints, with the robust PI controller. Currents iq and id

PMSM IM

LOAD

DSP+VSI

Fig. 12. Photograph of the prototype.
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Fig. 13. Experimental results for speed reference tracking with the
robust PI controller.

are shown in Figure 13, being iq, actually, the control signal,
showing the same pattern of the simulated control signal in
Figure 11.

Repeating the tests of reference tracking of Figure 13, for a
comparison among the conventional and robust PI controllers,
one has the experimental results in Figure 14. These
experimental results confirm a better dynamic performance
with the robust PI controller with respect to the conventional
PI controller.
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Fig. 14. Experimental results for speed reference tracking with the
conventional and the robust PI controllers (top) and detail after the
sudden increase of the reference (bottom).

The absolute value of the errors in Figure 14 (bottom) are
shown in Figure 15. It is clear from this figure that the overall
performance with the robust PI controller is superior than that
with the conventional PI. This is corroborated by the integral
of the absolute errors of these waveforms, which results in
151.9404 for the robust PI controller and 240.5828 for the
conventional PI controller.
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Fig. 15. Absolute values of the errors from Figure 14, with the robust
and the conventional PI controllers.

In Figure 16, one has the experimental results for rejection
of a step load disturbance imposed by means of the IM in
Figure 12. It is possible to notice the better rejection of
disturbances provide by the robust PI, when compared to the
conventional PI, with fast transient recovers. This changing
of the load conditions show the performance of the proposed
controller, and illustrates its robustness.
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Fig. 16. Experimental results for the rejection of a load disturbance
for the robust and for the conventional PIs.

Finally, Figure 17 illustrates the responses to a step
in the reference of speed, with simulation results for the
robust PI controller for a grid on a and b, and the
respective experimental response. One can see by the good
correspondence of the simulation and experimental results
in Figure 17 that the linearized model used here suitably
reproduces the average behavior of the physical system. The
ripple observed in the experimental variable in Figure 17 does
not appear in the simulation, since the plant linearized models
are of first order. Although simple, these plant models are
sufficient for the design of the robust controllers shown here.

V. CONCLUSIONS AND PERSPECTIVES

This paper presented the design of robust PIs for speed
control of PMSMs. A polytopic model is used to include
the parameter uncertainties of the motor. A design based
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Fig. 17. Comparison of the simulations of the linearized model with
the experimental result. Reference signal in black, model simulations
in orange, and experimental result in blue, all for the robust PI
controller.

on LMIs provides the gains of robust PI controllers in a fast
numerical solution. A procedure based on the choice of the
parameters of the LMIs is given to obtain time responses with
prescribed upper bounds for overshoots, settling times and
control signals. The simulation and the experimental results
indicate the superior performance of the robust PI with respect
to a PI designed only for the nominal parameters, considering
reference tracking and disturbance rejection. The existence
of a Lyapunov function, provided by the LMIs, proves the
robust stability under arbitrary variations of the parameters of
the motor. The proposed framework is applicable to the design
of robust PIs for the wide class of first order plants in (7), and
will be evaluated in sensorless control for PMSM applications
in future works.
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