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Abstract - The analysis of a loaded induction bearingless
electric motor is presented. The reviewed electromagnetic
model explains some previous reported problems. Other
aspects, like the spatial axis coupling owing to electrical and
mechanical reasons, are also discussed. A laboratory
prototype of this motor was constructed and simulations and
experimental results validated this analysis. These new
contributions suggest the design of more sofisticated
controllers.

I. INTRODUCTION

Bearingless machine is a broad multidisciplinary field
of study. Known approaches rely on the use of additional
windings that share the stator volume with the
conventional windings used to supply torque [1], [2].
These additional windings make the same function of
separated active magnetic bearings.

On the other hand, an alternative approach, which has
been proposed on [3], claims the use of the own
conventional motor windings (responsible for the torque
generation) in order to do also radial positioning. This
original approach is favored for operation in the vertical
position (that means, the effect of the own weight is
minimized). Up to some years ago, experiments were
carried out without load and starting problems, were
reported [3]. The continuation of this research has
established better comprehension of behaviors (electrical
and mechanical) not explained before and also the
limitations of this approach. Additionally, some strategies
of starting and control on loaded conditions are proposed.

II. ELECTROMAGNETIC ANALYSIS

To validate the present approach a laboratory prototype
was constructed. It consists of a four poles biphase
induction motor, whose “a” phase windings are supplied
trough four one phase inverters while a fifth one supplies
the windings of phase “b”. This motor operates in the
vertical position, so the effect of  weight is minimized. In
order to levitate axially the rotor, an electromagnetic
bearing or a superconductor levitator could be used [4].
Meanwhile, in order to simulate this axial bearing, a
mechanical bearing in the bottom side was installed.
Figure 1 shows the actual distribution of stator windings
and figure 2 shows details of the mechanical construction.

Initially, a preliminary analysis without rotor currents
will be considered. Later, the complete dynamic problem
will be analyzed, that is, considering the presence of  the
currents in the rotor cage and also the rotation. As it will
be shown, both speed and load modify the positioning
forces.

Fig. 1 Set of stator windings of the biphase induction machine.

Fig.2 Mechanical structure of the machine.



A. Analysis without rotor currents:

In this item it will be supposed an induction motor
without rotor currents. If time continuous currents [i] are
imposed in each stator winding, an equivalent magnetic
circuit can be solved to obtain their correspondents (with
some simplifications) equivalent polar airgap linkage
fluxes. The equivalent magnetic scheme for phase “a” is
shown in Fig. 3 and its corresponding magnetic circuit in
Fig. 4.

The linked fluxes [λ] are related to the currents [i] as
given by Eq. (1). The magnetic circuit equations are given
in Eq. (2). The net force (Fe) along an axis can be
calculated taking the derivative of the total magnetic
energy inside the airgap (We) with respect to the
displacement (h).
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Where L(h) is the inductance matrix whose components
are a function of the radial rotor displacements. Each

reluctance (R) is calculated as: R h
A

= µ , with “A” being

the mean area of each magnetic pole, “h” the
correspondent airgap (x1, x2, y1 or y2) and
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Fig. 3. Equivalent magnetic scheme.
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Fig. 4. Equivalent magnetic circuit.

With the new variables “x” and “y” such that:
y y h yo1 = = + ∆ ; y h y h yo o2 2= − = −( * ) ∆ ;
x x h xo1 = = + ∆  and x h x h xo o2 2= − = −( * ) ∆ , where
ho  is the nominal airgap in the centered condition, the
first term of the inductance matrix L11(h) will be:
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Analogously, with some simplifications, the other
terms can be calculated and then the derivative of [L(h)]
with respect to the displacement y will be:
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Then, using Eq. (5), the equivalent net force along  y
will be:
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It should  be noted that the radial force depends on all
the winding currents. On the other hand, the positioning
strategy is based on the modulation of the current
amplitude in such a way that while a reference current for
a winding is incremented, the reference current for the
opposed winding is decreased in the same magnitude.
Thus, the instantaneous currents imposed in phase “a”
will be:

( )i i iy o y1 = + ∆ cos tω ,

( )i i i ty o y2 = − ∆ cosω ,

( )i i i tx o x1 = − + ∆ cosω ,

( )i i i tx o x2 = − − ∆ cosω ,

(1)

(3)
(2)

(4)
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where io  is a mean current value which will determine an
average stiffness for the bearing behavior of the motor,
and ∆i  is the incremental value supplied by the position
control. Thus, the net force along the “y” axis may be
expressed as:
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A
y

i i ty o y= − 2 2
2

2N µ ω∆ cos .

As cos2 ωt = (1/2)[1+cos 2 ωt] this force can be split in
two terms: a continuous force and a harmonic component.
As long as the natural frequencies of the rotor are kept
reasonably lower than this harmonic value, the oscillatory
term should produce a negligible effect on the dynamic
behavior of the system. This force is non linear, but for
small displacements (∆y < y) depends basically on ∆iy.

When coils are excited with continuous currents,
equation (13) can be even used doing cos2 ωt equal to the
unit. In both cases, the net radial force is proportional to
the differential current ∆iy.

From the mechanical specifications, one can find the
following dimensions: y=1e-3 m., A= 3.734e-3m2, N= 50
equivalent coils and the height of the rotor l= 85e-3 m.
With io=1.5A, equation (13) can be plotted as shown in
figure 5.
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Fig. 5 Analytical magnetic positioning force.

This analytical approach is very close to simulation
results using the finite elements program ANSYS 5.3 [5],
[9].

B. Analysis with rotor currents:

It is known that for a generic electromagnetic system,
the magnetic energy (Wf) stored in it (airgap), is described
by the following equation [6]:

∫= λdiW f .

And, in the case of  J supply sources:

∫∑
=
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J
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Additionally, if the system is considered magnetically
linear:
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In the present case, the total current vector [i] is given
not only by all the stator currents but also by the modeled
rotor currents.

[ ] [ ]i i i i isA sB ra rb
T=

[ ] [ ]i i i i isA y y x x
T= 1 2 1 2

[ ] [ ]' ' ' 'i i i i isB y y x x
T= 1 2 1 2
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T= 1 2 1 2

On the other hand, the inductance matrix has the
following form:

L L L L
L L L L
L L L L
L L L L

sAsA sAsB sAra sArb

sBsA sBsB sBra sBrb

rasA rasB rara rarb

rbsA rbsB rbra rbrb



















,

where [LsAsA] was just given in equation (2), and [LsAsB]
and [Lrarb] are considered nulls [6]. The stator-rotor
mutual inductances  will depend on the relative position
between them. Now, taking the first derivative of equation
(14) with respect to h, the net force along the direction h
will be:
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where the following terms represent linkage fluxes:

λsAA sAsA sA sAra ra sArb rbL i L i L i= + + ,  (16)
λsBB sBsB sB sBra ra sBrb rbL i L i L i= + + , (17)
λraa rasA sA rasB sB rara raL i L i L i= + + , (18)
λrbb rbsA sA rbsB sB rbrb rbL i L i L i= + + . (19)

As it is seen, rotor currents affect each of these linkage
fluxes. In a compact form, the net radial force can be also
written as:
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On the other hand, because  the energy stored in the
leakage inductances is not a part of the energy stored in
the coupling field, the leakage linkage flux terms should
be subtracted from eq. 20. So the following substitutions
could be done:

[ ] [ ] [ ][ ]λ λsAB sAB ls sABL i⇒ − ,

[ ] [ ] [ ][ ]λ λrab rab lr rabL i⇒ − .

Where [Lls] e [Llr] are the leakage inductances.

(13)

(14)



The contribution of rotor currents can also be foreseen
observing the conventional steady state model of an
induction motor (fig. 6). Imposing a fixed value of stator
currents, a rotor current increment will decrease the
airgap linkage flux, so, radial forces will also decrease.
This happens in the starting as well as in loaded
conditions.

This is one of the reasons that explains the former
starting problems [3] and also supports the special care on
the conception of the position algorithm.

Rs Rr / sLls Llr

LmVs

Figure 6.- Steady state induction motor model.

C. Spatial phenomenon :

One implication with respect to the previous item is
that the mean airgap flux should be monitored (or
estimated) in order to make the adequate adjustment in
the position controller, however, there is another
important point: when both phases of the motor are
supplied with currents, unlike the case when only one
phase is supplied, airgap flux is rotating, so, radial force is
actually an instantaneous effect inside the motor.

In order to explain this fact and in view of that position
sensors are located fixed to the stator, it is of particular
interest the electric model on the stationary reference
frame. The equations given by the conventional theory of
induction machines [6] relate input currents with linkage
fluxes and speed. These are validate both in steady state as
in transient state (starting or step loading). In figure 7,
this model is depicted.

In this figure, the power supplies at the right side of
this model depend on the product of speed and the
orthogonal component of the rotor flux. From this, it is
clear the coupling between the orthogonal components of
the airgap flux.

Supposing rotor currents and an instantaneous
increment in the ids current component, there will be
variations both on the “d” as in the “q”  components of the
airgap flux (responsible for the radial positioning). That
means that the expected net radial force will not be
aligned with the  “d” axis as would be expected, so, a
correction will be necessary. This correction will depend
on the load and the speed.

In figure 8 the effect in a two poles configuration is
illustrated. In (a) the phase “a” current and airgap linkage
flux components are depicted as a function of the time. In
(b), the spatial trajetory of the spatial vector current and
airgap linkage flux are shown. Time instants (t1, t2 and
t3) are indicated for better comprehension.
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Fig 7. Instantaneous dq model for an induction motor in the
stationary reference frame.
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Fig 8. Current and airgap linkage flux after a step increment on
current. Two poles case.

As seen, although the effects in the time are
simultaneous there is an spatial angular difference.

At steady state, the necessity to correct the angular
position of the displacement sensors as load changes is
experimentally observed. This change can be made until
minimum radial vibrations are obtained. As higher the
load, higher also is the angular correction.
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Actually, this phenomenon is related to the natural
phase difference between the stator currents and the
airgap flux. Without load, airgap flux is in phase with
stator current, but with load a non zero phase angle
appears. In the experimental prototype, the angle
correction of the position sensors is made through
software.

In order to illustrate the instantaneous spatial behavior
of the airgap flux, a current pulse perturbation is added to
a phase of the motor while the other phase is unchanged.
Three cases were simulated. In figure 9 the motor is
starting; in figure 10 the motor is rotating at steady state
without load; and in figure 11 the motor is rotating at
steady state but loaded. In all cases the imposed currents
have 4A in amplitude and 60 Hz frequency. Stator current
is identified by the symbol (+) and airgap flux by the
symbol (*).

0.325 0.33 0.335 0.34 0.345
-4

-2

0

2

4

6

8

  
-4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

      a) b)
Fig. 9.- Response to a current pulse perturbation while starting.
a) Phase “a” current (A) component and airgap flux (10-1

Weber) components while starting.
 b) Spatial trajectory of stator current(+) and airgap flux(*)
vectors.
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       a) b)
Fig. 10.- Response to a current pulse perturbation in steady state
without load.
a) Phase “a” current (A) component and airgap flux (10-1

Weber) component.
b) Spatial trajectory of stator current(+) and airgap flux(*)
vectors.

As shown, in starting conditions the airgap flux
amplitude is lower than in steady state and it can also be
noted that the spatial airgap flux vector is not in phase
with the stator current vector. On the other hand,
comparing figures 10 b) and 11 b) the spatial influence of
load on the spatial angle of airgap flux can be noted.
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Fig. 11.- Response to a current pulse perturbation in steady state
with load.
a) Phase “a” current (A) component and airgap flux (10-1

Weber) component.
b) Spatial trajectory of stator current(+) and airgap flux(*)
vectors.

It should be also pointed out that this angle varies with
the supply frequency. In order to illustrate this fact, the
variations of airgap current amplitude (a) and its phase
(b), with respect to the model in figure 6, are shown in
figure 12 for different values of supply frequency. In this
case, the unloaded steady state current is imposed to the
unloaded motor. Although here it is supposed that motor
parameters remain constant along all frequencies, an
accurate model will possible indicate even stronger
influences. Nevertheless, accurate positioning control
should take care of this behavior.
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Figure 12.- a) airgap current amplitude vs speed.

b) airgap current phase vs speed.



III. EXPERIMENTAL RESULTS.

In order to probe the previous analysis, a digital control
was implemented using the prototype motor shown in
figure 2 and a personal computer (133 MHz Pentium).
Two PD (Proportional Derivative) positioning controllers
were designed based on the mechanical model for low
speed [7]. Figure 13 shows the maximum signal trace
furnished by the position sensors (0.25mm/div). In figure
14 the position sensors trajectory without(a) and with(b)
angle correction is compared, while the motor is unloaded
and rotating at 1800 rpm. In this case, the correction
angle was 9 degree. Ideally this angle should be null, but
because the bottom mechanical bearing it is expected a
little load torque.

In figure 15 the behavior of the rotor trajectory
with the motor loaded is compared. In this case, the
correction angle was 15 degree. The rotor load was
implemented using an electromagnetic brake, which
furnish not only torque but also radial force.

The circular shape of the trajectories are mainly due to
mechanical unbalances.

IV. CONCLUSIONS.

A new electromagnetic model for a previously designed
bearingless motor has been described and gives a .better
comprehension of the system.

This more accurate model will allow:
- The realization of numerical simulation of the

dynamical behavior of the prototype with and without
load.

- The design of more sophisticated controllers (e.g.,
multivariable, robust, fuzzy), taking into account the
variables coupling.

Experimental and simulation results validate this
approach.
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Fig. 13.- Maximum trajectory of rotor measured by the
displacement sensors.

a)

b)

Fig. 14.- Unloaded test: a) without sensor angle correction.
  b) with sensor angle correction.

a)

b)

Fig. 15.- Loaded test: a) without sensor angle correction.
   b) with sensor angle correction.
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