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Abstract— A new algorithm for discrete-time sliding mode
torque and flux control is proposed. The induction motor
equations are written in a stator flux reference frame. The
torque and flux controllers are shown to be robust to errors
in the machine parameters. The controllers provide d and
q reference voltages to be applied to the induction motor
and no current controllers are present. However, differently
from most sliding mode techniques, the calculated voltage
vector serves as a reference for a vector PWM scheme and
a fixed switching frequency is used. Simulation and experi-
mental results are presented to show the strategy effective-
ness.

I. INTRODUCTION

Stator flux oriented induction motor drives [1], [2] have
been thoroughly studied recently. In most schemes, torque
and flux current commands can be calculated without rotor
speed or position measurement.

In the first schemes proposed [1], the torque and flux
current commands are obtained from the torque and flux
errors and current regulators are used to determine the
firing signals to the inverter.

Some authors have proposed methods to generate a dq
voltage reference based directly on the torque and flux er-
rors and PI controllers [2]. The current controllers are then
avoided, but the use of linear controllers still limit the tran-
sient performance of these techniques.

Alternative strategies to avoid using current controllers,
based on the so called Field Acceleration Method (FAM)
have been proposed [3], [4]. Torque and flux errors are
used as inputs to hysteresis controllers which determine the
space voltage vector necessary to reduce both torque and
flux errors. These techniques are usually called DTC (Di-
rect Torque Control). They are robust and generally lead
to very good transient performance. However, a variable
switching frequency must be used to guarantee the errors
to remain inside the hysteresis bands. If a fixed switching
frequency is used, one voltage vector is chosen and applied
during one entire switching interval. For the usual switch-
ing frequencies, the torque oscillations are then relatively
high. Further, the strategies as originally proposed have
problems for low speed operation.

Some deadbeat DTC strategies have been presented [5],
[6]. These methods allow the excellent transient response to
be maintained. The problem of using a variable switching
frequency is solved and high torque and flux oscillations
are avoided. However, the robustness is reduced, once the
determination of the stator voltage vector to be applied
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for the deadbeat control requires the knowledge of many
machine parameters.

A deadbeat stator flux oriented DTC strategy has been
recently presented [7]. Writing the equations in a stator
flux reference frame makes the torque and flux control al-
gorithms very easy to implement, reducing the computa-
tional effort for this technique as compared to the previous
deadbeat DTC strategies. However the robustness problem
persist.

In this paper, a new stator flux oriented DTC strategy
using discrete-time sliding mode controllers for both torque
and flux control is proposed. The controllers are designed
to be robust to errors in the machine parameters. As in
any DTC strategy, the flux and torque controllers produce
voltage commands and no current controllers are neces-
sary. However, instead of applying one voltage vector dur-
ing each sampling period, d and ¢ voltage references are
generated and a PWM algorithm is applied to produce the
commanded voltage vectors. Thus, a fixed switching fre-
quency is used and the torque oscillations are reduced.

II. CONTROL STRATEGY

In a stator flux reference frame, the induction motor
model is described by the equations below:

B = Refo + X+ jweke (1)
0=R,i, + S\;T +j(we —wy) X, (2)
Xs = Lyis 4 Lypiy (3)

Xr = Lynis + Lyiy (4)

where v is the stator voltage vector, Zs and Zr are the
stator and rotor current vectors, XS and XT are the stator
and rotor flux vectors, Ls, L, and L,, are the stator, rotor
and mutual inductances, R, R, are the stator and rotor
resistances, w, is the stator flux vector speed and w,. is the
rotor speed.

A. Fluxz Control

Since the equations are written in a stator flux reference
frame, the ¢ axis component of the stator flux is zero and



the flux dynamics can be imposed only by the d axis stator
voltage component:

Vsd = Rsisd + j\sd (5)

Defining a sliding surface based only on the error would
not allow the imposition of the dynamics for the error cor-
rection. As an alternative, some authors define the sliding
surface using the error and its integral.

S =x2+ 171 (6)

where x5 is the error and Z; is the integral of the error.
With this choice, the sliding mode operation makes the
system to have a first order dynamics:

S=8=0 (7)

— I9tcires =0 (8)

However, the switching surface is reached only when the
error is equal to —c1%;. Choosing c¢; large enough to en-
sure a fast dynamic response would generally lead to a big
overshoot.

In order to reduce the overshoot, a nonlinear sliding sur-
face will be written in terms of two state variables defined
as:

T9 = )‘:d — )\sd (9)

T = /f(atg) Todt :/e*pxgargdt

It should be noted that limy,,| .o f(22) = 0. Thus,
when the flux error is high the effect of the integral term
is greatly reduced and high overshoots are not expected to
occur. On the other hand, when the flux error is becoming
small, the system tend to have a first order dynamics with
a time constant imposed by the sliding surface parameter
c1, since

(10)

limof (r9) =1= lim S(z)=20+c; /:vgdt (11)

xTo—> xo—0

For the sliding mode flux controller design, the d axis sta-
tor equation must be written in terms of the state variables
zq1 and x2 above. From (5), (9) and (10):

|+

][22

To 0 0
0 0 .
|: -1 :| Vsd + |: 1 :| Rslsd

Assuming that teh sampling interval 7" is small, as com-
pared to the flux time constant, Eqn. (12) can be written
in a discrete-time form as:

[=[5 PG ][ e ]

)

(12)

L1, k41
T2 k41

[ e [ E | i
or
Thp1 = Frxp + Grvsa e — GrRslsak (14)
The sliding surface is:
x
Se=[a 1]{3:;:]_ (15)
The following control law is proposed:
N 1
Up = Vigp = —%f (ar) © TﬂSk (16)
where
AaTf(xer) <B<caTf(xar)+2 (17)

It can be easily proved that if control law (16) is applied,
then the system representative point will move monotoni-
cally to a sliding surface neighborhood defined by the in-
equalities:

t .
Berxik — ¢ GrRelsak

—C1T1 < T2k < — B—alf (952,16) (18)
_ﬂclgl’f ;;;Cil;]jiz)s‘“ < Top < —C1T1k (20)
2B aziy — GrRsisak <o < —crer, (21)

2—-B4+aTf(zor)

The system representative point will tend to remain in
sliding movement on one border of the region defined by
inequalities (18)-(21). Considering that a small sampling
time is used, this region is narrow and a dynamic behavior
very similar to the imposed by the sliding surface can be
assumed to occur.

B. Torque Control

In a stator flux reference frame

3P

T, =22 22
53 (22)

)\sdisq
and
(23)

Vsq = Rsisq + WeAsd

Considering that the flux is conveniently controlled, the
torque depends only on the g axis current. This current is
strongly related to the stator flux vector speed as it can be



seen from the quadrature component of Eqn. (2), rewritten
in terms of stator flux and current components:

L. - .
Tolsq + 0 Lslsg

(24)

We = Wy + -
¢ " )\.sd - O—lesd
where 7, is the rotor time constant and o is the leakage
coefficient.
Using equations (23) and (24), the following state equa-
tion can be written:

g 1 + 1 )\sd - O—Lsisd .
lsqg = — — )i,
1 OTy OTg Asd 4
Asd - ULsisd 1 )\sd - O—Lsisd
Dod _T0eled ) —w, o _Taled (o5
Na oL, T oL, (25)

If the stator flux has been previously established and is
well controlled, it can be assumed that

Asd =0 (26)
and
. 3P .
Te = §E>\sd7/sq (27)

From (22), (25), (27) and considering that the sampling
interval is small as compared to the time constants for 74,
Asq and w,., the above state equation can be written in
terms of the electromagnetic torque in a discrete-time form
as:

Te i1 = ApTe  — Brvsg,k + BrAsd,kwr i (28)

where

1 1 Aeap—0Lsisar
Ak_1< _M>T (20)
oT, OTs Asd,k
and
3P Aeg —0Lslsqn

By, — o= Zsdk 7 Thstsdk (30)

272 oL,

A and By, must be calculated each sampling interval,
since they depend on A\sg and 4.

As in the sliding mode flux controller, it would be advan-
tageous to write the sliding surface not only in terms of the
error, but using also some nonlinear function of the error.
By doing so, overshoots would be avoided and a first order
dynamics for the correction of the error could be ensured.
However, the system state equations should be written in
terms of the variables used to define the sliding surface.
The system state matrix would then contain terms depen-
dent on the torque error. If the sampling interval were
small enough, the torque could be considered constant dur-
ing each sampling interval and a discrete-time linear model
could be obtained each sampling interval. Unfortunately,
this is not the usual case. With the aim of reducing the
computational effort and to make the sliding mode design

as simple as possible,; a sliding surface defined only be the
torque error will be used.

S=z=0 (31)

where

e=T'—T. (32)

Considering T = 0:

Tpt1 = ArTi + Brsgr + (1 — Ap) T — BrAsa xwr i
(33)

Imposing x; 1 = 0, a deadbeat control law can be easily
obtained [7]:

Vsq,k = 7B];1Akl‘k — B;l (1 — Ak) T: + ASd,kwnk (34)

However, this control law is dependent on the exact
knowledge of the many parameters involved and on the
stator flux and rotor speed.

In order to improve the robustness of the torque con-
troller, a discrete-time sliding mode technique according to
Gao et al [9] will be used.

The discrete-time state equation for the torque error (33)
can be rewritten to explicit the uncertainties:

Tpy1 = Akl‘k + Bkvsqyk + (1 — Ak) Te*

—BiAsapwrp — AARTe o + Fi, (35)
where —A AT, i represents the uncertainties present in the
first and third terms of equation (35) and F}, represents the
uncertainties present in the second and fourth terms.

The following convergence condition must be satisfied for
the discrete-time sliding mode according to Gao et al. [9]
to occur.

Sk+1 = (1 - qT) S —eT'sgn (Sk) — AAkTe,k + Fp,

~(S1+ F1) — (S2 + F) sgn (Sk) (36)
where

S, — sup (—AAT) ;— inf (—AAT,) (37)

S, — sup (—AAT) 2— inf (—AAT,) (38)

P sup (F) ;rinf (F) (39)

o sup (F) — inf (F) (40)

2

It can be proved [9] that if the defined convergence con-
dition is satisfied, then the sliding surface is reached in a



finite time interval and after that it will be crossed every
sampling interval. Further, if

qTeT

SQ+F2<m

(41)
the distance from the system representative point to the
sliding surface, after the sliding surface to be crossed for
the first time, is limited to the quasi sliding mode band
below:

el
1—4qT

5] < (42)

The only problem now is to choose an input such that
the convergence condition is imposed. From (31), (35) and
(36) the ¢ axis stator voltage can be obtained by

Vsg o = By = Agzy — (L — Ap) T} + Brdsapwrk

+(1—=qT)xp —eTsgn (zy) — (S1 + F1)

— (82 + F2) sgn ()] (43)

The first three terms correspond to the deadbeat control
law (34) and the additional terms are necessary to improve
the robustness of the controller.

In fact, if the control law (43) is applied to Eqn. (35):

1 = (1 —qT) z, — eTsgn (z)

—(S1+ F1) — (S2 + F2) sgn (vg) — AARTe  + Fr,  (44)

Then, if z; > 0,

1 = (1 — qT) zg, — eT'sgn (z)

— [sup (—AARTe k) — (—AARTe k)] — [sup (Fi) — (Fi)]
(45)

= 1 < (L—qT) a2 — eT'sgn (k) (46)
Since 0 < (1 —¢T) < 1, the error will decrease by at
least —eT'. Furthermore, if 0 < z, < IEZT, then the error
will become negative.
Similarly, if x5 < 0, the error will increase by at least €T’

and if —% < xp < 0, then it will become positive.

B.1 Designing a Robust Torque Controller

The torque controller design can be easily made in order
to ensure robustness to parameter deviations and measur-
ing errors.

The first step is to compute the maximum deviations
that are expected and, based on them, to calculate Sy , Ss,
Fy and F,. Then, control law (43) is obtained. However,
it should be noted that condition (41) must be satisfied. If
large parameter deviations are expected, in order to impose

condition (41) e and ¢ will be chosen so that the ratio
eT'/(1—qT) is big. In this case, the torque oscillations
will be confined to a large quasi sliding mode band.

Physically, the voltage vectors to be applied need to be
increased for the robustness to be improved. In practice,
the ability to guarantee robustness will be limited, since
the magnitude of the voltage vectors are limited by the
inverter. The maximum robustness that can be obtained
will then correspond to a mode of operation very similar
to the conventional DTC strategies.

As an example of the torque controller robustness to er-
rors in the system parameters, the torque controller will be
designed considering that the rotor time constant can vary
from 2/3 to 2 times its previously measured value.

Rotor time constant is present only in the parameter
AA in Eqn. (35). Thus, the disturbances term F' will be
neglected in the present example.

From (29):
1. 1 — 0L teq N
1( A5+ Asdk — O slsd,k>T<Ak_Ak+AAk
0T, 0T, Asd,k
05 1 Asgp — 0Lsis
<1_< : +_M>T (47)
0T, 0T, Asd,k
0.5 0.5
= ——T < AA, < —T (48)
oTy 0Ty

Considering the torque to be limited to some saturation

values +7,_, ., Sy and Sy, are determined:
0.5
Sy = —TL.,, (49)
o7y
0.5
Sy =—7T1T.,,, (50)
oy

Thus, S; =0 and So = Sy. The control law is then

Vsq e = By, = Ay, — (1 — Ap) T} + Brdsapwri

TTesat sgn (Ik)]

(1 qT) 2k — cTsgn (ax) — (51)

oty

Figs. 1 and 2 show the torque response to a 5N.m. step
command with the measured rotor time constant equal to
0.5 and 1.5 times the actual value respectively. The sam-
pling interval is 0.25ms. The quasi sliding mode band is
reached in two sampling intervals. A faster dynamic re-
sponse is not possible due to a limit imposed in the maxi-
mum ¢ axis voltage the inverter can generate.

Sometimes a voltage command saturation may be nec-
essary to avoid overcurrents. As expected, after crossing
the sliding surface for the first time, the system represen-
tative point crosses it again each sampling interval and is
confined to the quasi sliding mode band. Any combina-
tion of parameter variations is allowed, since S and F' are



10

-10

0 0.002 0.004 0.006 0.008 0.01

Fig. 1. Torque response to a step command considering 7, = 0.57,.
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Fig. 2. Torque response to a step command considering 7, = 1.57,.

maintained between their lower and upper limits. The big-
ger the S and F expected variations, the bigger the quasi
sliding mode band necessary to ensure the robustness. The
designer must seek a solution with the minimum torque os-
cillations (or minimum quasi sliding mode band) that can
be obtained to ensure robustness to acceptable parameter
variations and measuring errors in the system.

III. FLux ESTIMATION

For flux estimation, a reduced order Gopinath stator flux
observer was implemented [7]. In a stator fixed dg reference
frame, the stator flux can be calculated from the induction
motor stator voltage equation. The observed flux is ob-
tained by adding a correction term based on the stator
current derivative error:

(52)

(53)

The stator current derivatives in Eqn. (53) can be cal-
culated from stator voltage, stator current and stator flux,

using the induction motor state model:

;.’ 1 — 2 R’r‘ . N
iy = oL. [vs — Rjis + (Lr —ij> AS}

— <%: — jwr> oLl (54)
> 1 - R, S
is = [vs Rlis+ (— - ij> AS}
O'Ls r
- (% - jw,,) 0 Lgis (55)
where R, = R; + RTLL—’Z".
The stator flux error is then governed by
oS3 1 1
E=As — As = L|{— —jw, )&
5 e <7—r Jjw )5 (56)

or, considering L = [ b~ ]:

b b

o1 [ h e, (& )

g= T T §n Er) 12 = A (57)
oL ;_i- — lw, ;J’- — lw,

Any observer dynamics can be easily imposed by an ad-
equate choice of [; and /5. However, in order to make the
real part of the eigenvalues to be independent from the
speed, l2 will be chosen equal to zero. The observer poles

are then
1 11
— =+ jw,l
oL, (TT J 1)

As it can be seen, w, influences only the imaginary part
of the eigenvalues. However, [y cannot be arbitrarily chosen
for the discrete time flux computation requires a limited
sampling rate.

Stator current differentiation in (53) is avoided by defin-
ing a new variable:

(58)

81,2 =

o~

=X, + Li, (59)

From (53), (54) and (59), a state equation to obtain Zis:

R! 1 -
S L—(—1I- )
oL, <TT wTJ)] bs

Z= Agpez + [AobsL ~ R —

1
I L) ¥, 60
+< += I >v (60)
10 0 -1
where [ = 0 1 and J = 1 0
Eqn. (60) is solved each sampling period and the ob-

served stator flux is obtained from (59).
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Fig. 3. Speed, Torque and flux responses to steps in the commanded
speed. Simulation Results.
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Fig. 4. Speed, Torque and flux responses to steps in the commanded
speed. Experimental Results.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The prototype implemented to obtain the experimental
results contains an AC/DC/AC converter, a 2hp induction
motor coupled to a DC generator that serves as a load
torque, a signal conditioning circuit and a 133MHz Pen-
tium microcomputer equipped with an acquisition board
and two PWM interfaces.

The induction motor data are:

e Power: 2hp

« Rated voltage: 220/380V

o 4 Poles

e Inertia: 0.018kg.m?

e R;=3.850, R, =3.7T7Q

e Ly, =25TmH, Ly = 266mH, Ly, = 269mH

Some simulation results are presented. The system data
used for the simulations are equal to the measured ones of
the prototype used to obtain experimental results.

Fig. 3 shows speed, torque and flux simulation responses
to steps in the speed command, using the proposed strat-
egy. Torque and flux follow their command values with-
out significant ripples. A speed command of 150 electrical
rad/s is applied and a speed reversal is commanded at 2.0s.
The experimental results to the same speed commands are
presented in Fig. 4. The experimental results corrobo-
rate with the simulation and with the theoretically pre-
dicted results. Simulation and experimental responses to
load torque steps are presented in Figs 5 and 6 respectively.
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Fig. 5. Speed, Torque and flux responses to steps in the load torque.
Simulation Results.
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Fig. 6. Speed, Torque and flux responses to steps in the load torque.
Experimantal Results.

V. CONCLUSION

The proposed control strategy provides a solution for
conventional DTC schemes, in which a variable switching
frequency must be used to ensure the torque and flux errors
to remain inside the hysteresis bands. Further, differently
from deadbeat DTC strategies, the discrete-time sliding
mode torque and flux controllers are shown to be robust to
parameter variations. Instead of applying one voltage vec-
tor during all switching period, a vector PWM algorithm
is used and the torque oscillations are reduced. However,
some torque oscillations are expected, since some terms
must be added to the deadbeat control law to guarantee
the system robustness. The simulation and experimental
results confirm the theoretical analysis presented.
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