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Abstract

Rotor speed and position estimations in permanent magnet
synchronous motor (PMSM) suffer from accuracy due to
variation of the machine parameters such as torque constant,
stator resistance and inductance, especially at low speeds.  Also,
due to nonlinearities, conventional linear estimators are not
adaptive to the operation points.

This paper presents two neural network-based model
reference adaptive systems (MRAS) for speed and position
estimation in PMSM drives.  The first network estimates the
rotor speed and adapts on-line to any change in stator resistance
with a rough rotor position sensor. The second network
estimates the rotor position and speed without rotor position
sensor. A q-axis model for stator inductance according to the
current is used.  In both cases, the model reference adaptive
system adjusts the neural weights to give the optimal
performance over a wide speed range.

The neural network estimators are simulated and
implemented using a DSP TMSC320C30 (40 MHz) controller
which utilizes a voltage vector control to produce PWM gate
signals for an IGBT VSI inverter.  Simulation and experimental
results have shown that the neural estimation adjusts very well
to changes in the motor operating points.

1.0 Introduction

In a PMSM, the torque constant (or rotor flux
linkage), stator resistance and stator inductance are time
varying parameters.  Accurate acquisition of these
parameters is necessary for deadbeat controller, speed and
position estimation in sensorless algorithms.   Since a
high-resolution position sensor is one of research targets
on PMSM drive, high quality of position and speed
estimation became a trend.  It has been shown in [1] and
[4], for low-resolution encoder or sensorless operation,
that the speed and/or position estimations are sensitive to
parameter variation. In [2], [3], [4] and [5], the rotor
positions were extracted from the back-emf estimation via
current observers.  The observer gain design in those
papers was tedious and the adaptive observer pole design
[4] over a wide speed range is obtained using trial and
error method.

This paper presents neural network estimators of
rotor speed and/or position with on-line parameter
adaptation in PMSM.  Two neural network estimators are

proposed.  The first uses a crude position sensor.  The
rotor speed is estimated even at low speed, with adaptation
of the stator resistance.  The q-axis inductance is modeled
off-line according to q-axis current. A constant
magnetizing current is injected into the phase windings,
and low-pass filters and limiters are used to facilitate
implementations of the estimation. The effect of mismatch
of torque constant on the speed estimation has been
studied.  The second network estimates the rotor position
and speed in a sensorless algorithm.

The neural network estimators are able to track the
varying parameters, speed and position at different speeds
with consistent performance.  Compared to other methods,
they are adaptive to operation conditions and easy in
design.  The simulation and experimental results justifying
the claim are presented.

2.0    PMSM Model

A PMSM can be conventionally modeled in the
stationary (αβ) and synchronous (dq) reference frames as
shown in the Fig. 1.  The abc and αβ reference frames are
fixed in stator.  Abc windings have 120o spatial angle
differences.  The α-axis is in line with the a-phase and β-
axis leads α-axis by 90o of spatial angle.  The dq reference
frame is locked with the rotor.  The d-axis is aligned to the
magnet flux direction and q-axis lags the d-axis by 90o of
spatial angle.  The rotor position is used to regulate the
stator currents so that the current frequency is always in
synchronism with the rotor.  The most commonly used dq-
reference model is:
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where id , iq are the dq axes stator currents, vd , vq  are

the dq axes stator voltages, R is the stator phase
resistance, Ld , Lq  are the dq axes phase inductances, J is



the rotor and load inertia,  F  is the coulomb friction,  B
is the viscous load, Tl  is  the load torque, p  is the number

of poles,ω  is the rotor speed, θ is the rotor position and

ke  is the torque constant.

The rotor speed state equation shows that if the d-axis
current is controlled to be a constant, the generated torque
is proportional to q-axis current.  Therefore, for the motor
torque, the q-axis current is the only control variable.
This is similar to the torque control technique used in DC
machines.

The αβ model is given below.
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where vα andvβ are the αβ stator voltages, iα and

iβ are the αβ stator currents and L is the phase

inductance L L Ld q≈ +0 5. *( ) .

The current dynamics involves the position
information and can be used for position estimaton.

3.0 Rotor Speed and Stator Resistance Estimation
with A Crude Position Sensor

The speed estimator is shown in Fig.2.  A parallel
model reference adaptive system (MRAS) is used.  The
procedure is in 3 steps. First, a model of q-axis stator
inductance presented in  [7] is used and the d axis current
is kept constant, and the variation of d-axis inductance is
negligible.  Secondly, the model of PMSM is used as an
adjustable model in parallel with the actual motor used as
reference model.  Thirdly, the errors between reference
and adjustable model currents are inputs to a feed-forward
neural network for the adaptation algorithm to adjust for
changes in the rotor speeds and stator resistance.

The PMSM synchronous d-q reference frame model is
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where Ts is the sampling period, i kd ( )+1 i kq( )+1 are

the dq axis stator currents, v kd ( ) , v kq( )  are the dq axis

stator voltages, R is stator resistance per phase, Ld , Lq

are the dq axis phase inductance, ke  is the torque

constant and ω  is the rotor speed.
The adjustable model has a similar formula with the

estimated rotor speed �ω , estimated resistance �R and

torque constant�ke  replacing the real values.   The current

error dynamics are
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The error currents vanish when the speed and all the
parameters are correctly estimated.  In the real
implementation, if the d-axis current is controlled to be
zero, the d-axis current error will not be sufficient to give
the correct estimation.  To solve this problem, a constant
magnetizing current is injected into the stator windings to
facilitate the estimation.  The undesirable effect is
additional copper loss and lower efficiency.   In this
method, the mismatch of torque constant will cause some
steady error in speed estimation.

To avoid the effect of current noise, low pass filters for
the current errors are used.  The filtered current errors and
the changes of these filtered current errors are the inputs to
the neural network.  The outputs of the network are the
changes of the estimated parameters.

The low pass current filters used are as follows:
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where m is the number of  sub-cycles for the low pass
filter, and z is the delay operator.

The other two inputs to the neural network are the
changes of the current errors described below:
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The error index is defined as:
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The neural network weight adaptation is based on the
least square method given by:
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where E is the index of the filtered current errors, vij is

one of the neural weights and γ is the learning rate.  For

example, v11 is the weight from the first input neuron to

the first hidden neuron (Fig.3) and the derivative of the
error index to the weight is:
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in the neural net.  For simplicity, 1
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∂  are used.  f y in'( )1  is the derivative of the

threshold nonlinear function, zin1  is the summing output

of the first hidden neuron, z1  is the output of the first

hidden neuron, yin1 , yin2  are the summing outputs of the

first and second output neurons, x1 is the input to the first

input neuron.
The adaptation law can finally be written as:
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3.1 Simulation Results of Rotor Speed and Stator
Resistance Estimation

A 920 W, 3-phase 6-pole PMSM was used in the
simulation to test the neural estimators. The other
parameters are:

R =0.035 Ω, Lq =34 µH, Ld =34 µH, ke=0.0094 N-m/A,

rated torqueTN =2.9 N-m, rated speedωN =314 rad/s.

A standard feed-forward neural network is designed
with 3 layers and a 4-4-2 neural structure (4 input
neurons, 4 hidden neurons and 2 outputs).  Back
propagation algorithms is used to train the neural network
with a learning rate at 0.1, a nonlinear threshold function

of f x e ex x( ) ( ) / ( )= − +− −1 1 ,

and initial neuron weights between  -0.01 ~0.01. The
output neuron gains for rotor speed, resistance and
αβ back-emf changes, are: 15/speedcommandK =ω ,

15/tmeasuremenRlineoffKR −= , and

15/voltagelinkdcK E = .

The limiter of estimated speed is [-5~5] times of the
reference speed.  The limiter of estimated back-emf is [-
1~1] times of the dc link voltage. The switching
frequency, the electrical control and estimation
frequencies are 4.0 kHz and mechanical control frequency
is 1.0 k Hz.

At first, the neural speed estimator is used without
any parameter adaptation at 3.5 and 15 rad/s. To show the
effect of detuning ofRand keon the speed estimation.

Fig.4 and Fig.10 are the accurate speed neural estimation
with the accurateke  and R. (Fig.4 at 3.5 rad/s, Fig.10 at

15 rad/s respectively.)   When theke  is 150% detuned

(Fig.5 at 3.5 rad/s, Fig.11 at 15 rad/s respectively.)  or R
is 150% detuned, (Fig.6 at 3.5 rad/s, Fig.12 at 15 rad/s
respectively.), the steady errors in the speed estimation
appear.  The estimation is the worst if both of the ke  and

R are 150% detuned in Fig.7 and Fig.13. (Fig.7 at 3.5
rad/s, Fig.13 at 15 rad/s respectively.)

The neural estimator is then used for both of the rotor
speed and stator resistance with the d-axis current
command set to 5 A.   When ke  is accurate, the speed

estimations work well both at 3.5rad/s (Fig.8) and 15 rad/s
(Fig.14). When the torque constant is 150% guessed, a
steady error appears in speed estimation as shown in
Fig.9a and Fig.15a and the resistance estimations are
nearly the same as the previous one.  (Fig.9b at 3.5 rad/s,
Fig.15b at 15 rad/s respectively.)

3.2 Experimental Results: Rotor Speed and Stator
Resistance Estimation

The NN estimators are implemented using a DSP
TMSC320C30 (40 MHz) controller.   The DSP controller
utilizes a voltage vector control to produce PWM gate
signals for IGBT VSI inverter. (Fig.16) 2 line currents and
dc link voltage is fed into DSP through 3, 12-bit A/D
converters.  An 18,000 ppr encoder monitors the rotor
position, speed and shaft torque.  It is also used as a 300
line crude encoder in the algorithm.

At first, the neural speed estimator is used without any
parameter adaptation at 3.5 and 15 rad/s. To show the
effect of detuning of Rand keon the speed estimation.

Fig.17 and Fig.23 are the accurate speed neural estimation
with the accurateke  and R. (Fig.17 at 3.5 rad/s, Fig.23 at

15 rad/s, respectively).   When theke  is 150% detuned

(Fig.18 at 3.5 rad/s, Fig.24 at 15 rad/s respectively.) or R
is 150% detuned, (Fig.19 at 3.5 rad/s, Fig.25 at 15 rad/s)
steady errors appear in the speed estimation.  The
estimation is the worst if both of the ke  and R are 150%

detuned  (Fig.20 at 3.5 rad/s, Fig.26 at 15 rad/s).
The neural estimator is then used for both of the rotor

speed and stator resistance with the d-axis current
command set to 5 A.  When ke  is accurate, the speed

estimations given in Fig.21and Fig.27 work well both at
3.5 rad/s (Fig.21) and 15 rad/s (Fig.27). When the torque
constant is 150% guessed, a steady error appears in speed
estimation (Fig.22a at 3.5 rad/s Fig.28a at 15 rad/s) and
the resistance estimations are nearly the same.  (Fig.22b at
3.5 rad/s, Fig.28b at 15 rad/s respectively).

4.0 Rotor Position, Speed and Torque Constant
Estimation in Sensorless Control

Since the synchronous frame does not have the
position information, the αβ  reference frame is used. As

the model is highly nonlinear, direct estimation of the
rotor position by neural net requires lots of neurons or
hidden layers, which makes it impractical for the real time
control.   The alternative way is to get the rotor position
from the estimation of the αβ  back-emfs.  The position

estimator with the torque constant and speed is shown in
Fig.29.   The αβ  discrete currents are
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The adjustable model is similar to the previous one
except that the back-emfs and resistance are their
estimated values.  The current errors are
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If the resistance and the inductance are correctly
guessed, the current errors will go to zero when the
αβ back-emfs are accurately estimated.  The estimated

position, speed and torque constant are obtained from the
estimated back-emfs.
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4.1 Simulation Results: Rotor Position Estimation

For the estimations of rotor speed and rotor position,
the motor runs at the operation point of 3.5 rad/s and 20%
of rated torque. At this low speed, signal to noise ratio is
low and the estimations become difficult. In Fig.30, the
initial position guess is 0 rad.  Fig.31 shows the
αβ back-emf estimations.  Fig.32 shows the estimated

and real speeds.  Initial speed guess before 5 sec is 0 rad/s.
At low speed of 15 rad/s, in Fig.33, the initial

position guess is 0 rad. Fig.34 shows the αβ back-emf

estimations.  Fig.35 shows the estimated and real speeds.
Initial speed guess before 5 sec is 0 rad/s.

4.2 Experimental results: Rotor Position Estimation

For the estimations of rotor speed and rotor position,
the motor runs at the operation point of 3.5 rad/s and 20%
of rated torque. At this low speed, signal to noise ratio is
lower and the estimations become difficult. In Fig.36, the
initial position guess is 0 rad. The training of random
neural weights needed about 500 msec, which is 80% of
an electrical cycle.  Fig.37 shows the αβ back-emf

estimations.  Fig.38 shows the estimated and real speeds.
Initial speed guess before 5 sec is 0 rad/s.

At low speed of 15 rad/s, in Fig.39, the initial
position guess is 0 rad. The training of random neural
weights needed about 80 msec, which is 60% of an
electrical cycle.  Fig.40 show the αβ back-emf

estimations.  Fig.41 show the estimated and real speeds.
Initial speed guess before 5 sec is 0 rad/s.

5.0 Conclusions

Neural network estimators are shown to track the
varying parameters, speed and position at different speeds
of PMSM drives with consistent performance.  Compared
to other methods, the NN are adaptive to operation
conditions and are easy in design.  Simulation and
experimental results are used to justify the claim.
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Fig. 3 Neural network Structure.

Fig.4 Neural estimator for rotor speed only at 3.5 rad/s.   The ke  and R
are at their accurate values.



Fig.5 Neural estimator for rotor speed  with

ke  150% detuned and R  is at accurate value.

Fig.6 Neural estimator for rotor speed only at 3.5 rad/s.   The  ke  is at its

accurate value and R  is 150% detuned.

Fig.7 Neural estimator for rotor speed only at 3.5 rad/s.   The ke  and R

are at their 150% values.

Fig.8 Neural estimator for rotor speed with stator resistance adaptation at

3.5 rad/s. ke  is at its accurate value (a) real and estimated speeds.  (b) R
estimation.

Fig.9 Rotor speed estimation with stator resistance adaptation at 3.5 rad/s.

ke  is 150% detuned. (a) real and estimated speeds.  (b) R  estimation.

Fig.10 Neural estimator for rotor speed at 15 rad/s. ke  and R  are at their

accurate values.

Fig.11 Neural estimator for rotor speed only at 15 rad/s.   Theke  is 150%

detuned and R  is at its accurate values.

Fig.12 Neural estimator for rotor speed only at 15 rad/s.   The ke  is at its

accurate value and R  is 150% detuned.

Fig.13 Neural estimator for rotor speed only at 15 rad/s.   The ke  and R
are at their 150% values.

Fig.14  Rotor speed estimation with stator resistance adaptation at 15 rad/s.

ke  is at its accurate value (a) real and estimated speeds.  (b) R  estimation.



Fig.15  Rotor speed estimation with stator resistance adaptation at 15 rad/s.

ke  is 150% value (a) actual and estimated speeds.  (b) R estimation.
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Fig.16 The PMSM experimental set-up.

Fig.17 Speed estimation at 3.5 rad/s, real speed (upper one) 2.5 rad/s /div,
estimated speed (lower one) 2.5 rad/s/div, time 500ms/div.  Estimation starts

at midpoint.  Before the estimation,  both parameters Ke and R are 100%
tuned at off-line values.

Fig.18 speed estimation at 3.5 rad/s, real speed (upper one) 2.5 rad/s /div,
estimated speed (lower one) 2.5 rad/s/div, time 500ms/div.  Estimation starts
at midpoint.  Before the estimation, Ke 150% detuned,  R is 100% tuned.

Fig.19 Speed estimation at 3.5 rad/s, actual speed (upper trace) 2.5 rad/s
/div, estimated speed (lower  trace) 2.5 rad/s/div, time 500ms/div.

Estimation starts at midpoint.  Before the estimation, R is 150% detuned and
Ke is 100% tuned.

Fig.20 Speed estimation at 3.5 rad/s, real speed (upper one) 2.5 rad/s /div,
estimated speed (lower one) 2.5 rad/s/div, time 500ms/div.  Estimation starts

at midpoint.  Before the estimation, both Ke and R are 150% detuned.

Fig.21 Speed and resistance estimation at 3.5 rad/s, real speed (upper one)
2.5 rad/s /div, estimated speed (middle one) 2.5 rad/s/div, resistance (lower
one) 0.02 ohm/div, time 500ms/div.  Estimation starts at midpoint.  Before

the estimation, R is 150% tuned.  Ke is 100% tuned.

Fig.22 Speed and resistance estimation at 3.5 rad/s, real speed (upper one)
2.5 rad/s /div, estimated speed (middle one) 2.5 rad/s/div, resistance (lower
one) 0.02 ohm/div, time 500ms/div.  Estimation starts at midpoint.  Before

the estimation, R is 150% tuned.  Ke is 150% tuned

Fig.23 speed estimation at 15 rad/s, real speed (upper one) 10 rad/s /div,
estimated speed (lower one) 10 rad/s/div, time 500ms/div.  Estimation starts

at midpoint.  Before the estimation, both Ke and R are 100% tuned.

Fig.24 speed estimation at 15 rad/s, real speed (upper trace) 10 rad/s /div,
estimated speed (lower  trace) 10 rad/s/div, time 500ms/div.  Estimation
starts at midpoint.  Before estimation, Ke 150 % detuned, R 100% tuned.



Fig.25 speed estimation at 15 rad/s, real speed (upper one) 10 rad/s /div,
estimated speed (lower one) 10 rad/s/div, time 500ms/div.  Estimation starts

at midpoint.  Before the estimation, R 150 % detuned , Ke 100% tuned.

Fig.26 speed estimation at 15 rad/s, real speed (upper one) 10 rad/s /div,
estimated speed (lower one) 10 rad/s/div, time 500ms/div.  Estimation starts

at midpoint.  Before the estimation, both Ke and R are 150 % detuned.

Fig.27 speed and resistance estimation at 15 rad/s, real speed (upper one) 10
rad/s /div, estimated speed (middle one) 10 rad/s/div, resistance (lower one)
0.02 ohm/div, time 500ms/div.  Estimation starts at midpoint.  Before the

estimation, R is 150% detuned.  Ke is 100% tuned.

Fig.28 speed and resistance estimation at 15 rad/s, real speed (upper one) 10
rad/s /div, estimated speed (middle one) 10 rad/s/div, resistance (lower one)
0.02 ohm/div, time 500ms/div.  Estimation starts at midpoint.  Before the

estimation, R is 150% detuned.  Ke is 150% detuned.

Fig.29 NN estimator block diagram for rotor position and speed.

Fig.30 Position estimation at 3.5-rad/s. (a) estimated (b) actual  position.

Fig.31 Back-emfs estimation at 3.5 rad/s

Fig.32 Estimated and actual rotor speeds at 3.5 rad/s. Dotted line is
estimated speed.



Fig.33 Rotor position estimation at 15 rad/s. (a) estimated position. (b)
actual position.

Fig.34 αβ back-emf  estimation at 15 rad/s.

Fig.35 Estimated and actual rotor speeds at 15 rad/s. Dotted line is
estimated speed.

Fig.36 Position estimation at 3.5 rad/s, estimated position  (upper ) 3.14
rad/div, real position (lower) 3.14 rad/div, time 500ms/div.  Estimation

starts at midpoint.

 Fig.37 Position estimation at 3.5 rad/s, α  backemf  (upper ) 0.2 v/div,

β  backemf (lower) 0.2 v/div,  500ms/div.  Estimation starts at midpoint.

Fig.38 Speed estimation at 3.5 rad/s, real speed (upper one) 2.5 rad/s/div,
estimated speed (lower one) 2.5 rad/s/div, time 500ms/div.  Estimation starts

at midpoint.

Fig.39 Position estimation at 15 rad/s, estimated position  (upper one) 3.14
rad/div, real position (lower one) 3.14 rad/div, time 100ms/div.  Estimation

starts at midpoint.

Fig.40 Position estimation at 3.5 rad/s, α backemf  (upper) 0.4 v/div,

β backemf (lower) 0.4 v/div, 100ms/div.  Estimation starts at midpoint.

Fig. 41 Speed estimation at 15 rad/s,  actual speed (upper) 10 rad/s/div,
estimated (lower) 10 rad/s/div, 100ms/div.  Estimation starts at midpoint.




