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Abstract - This paper presents the analysis of a water The pump used was an under-water vibratory pump.
pumping system from photovoltaic cells using a current-fed  This kind of pump is very used due its simplicity, low cost,
parallel ~ resonant push-pull inverter, for residential  ang robustness. Besides, this pump can effectuate the
applications  in rural areas. The power structure Is  numping in well with profundity around 80 meters. In
particularly simple and robust. It works in a ZVS normal conditions the pumping is approximately 1500

commutation. Its main features are: one power processing . . :
stage, simple control strategy, lower harmonic distortion of liters per hour. In Fig.1 we can observe the behavior of the

the load voltage and natural isolation. The principle of Pump for various profundities:
operation, design procedure and experimental results are

presented. 0 2000
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The increasing research by alternative means for 3
obtaining electrical energy in a simple manner, without ; 500 11 [ T
pollution, that at the same time do not cause a hard 2 oL Ll |_| 0|

ecological impact on the environment, has led some
professionals of the Electrical Engineering area to opt for 0O 10 20 30 40 50 60 70 80
solar energy conversion.

This kind of energy, apparently unfailing, presents a
series of advantages, among them we can point out: non- Fig. 1. Performance of the pump
aggression to natural conditions, and no cause of any type
of pollution. However, its treatment for industrial The technical characteristics of the pump are shown in
applications and even for residential ones, represents yetable 1.
relatively high cost. Nowadays the studies of the

height (meters)

conception and materials manufacture area for TECHNICAL CHARIéTBé;Isms OF THEPUMP

photovoltaic cells are rapidly being developed with gre tM 3ol BK N 3 - 80

success. The main objective is to obtain systems for ode - m

converting solar energy into electrical energy in a simplg,>YStem Vibratory

cheap, and safe way. Apparent Power 1,100 VA
Considering the objective mentioned above, this papgRMS Voltage 220V

describes a system for residential applications in rurglFrequency 60 Hz

areas, where power from a utility is not available or is top Pressure Tube 3/4”

costly to install. The system consists of a water pumpingWeight 5.5 Kg

from photovoltaic cells using a current-fed paralle} Flow of Water 1800 liters

resonant push-pull inverter with battery storage.

Many works for residential applications are available in The equivalent electric model is obtained
technical literature [1,2,3]. Their power circuits areexperimentally, connecting the pump directly in the utility.
somewhat sophisticated and use many controlled switchesigs 2 end 3 show the waveforms of the voltage and
The power structure proposed in this paper is particularlyurrent in the pump. The equivalent electric model is
simple and robust. It works in a ZVS commutation. Itspresented in Fig.4.
main features are: one power processing stage, simple

control strategy, lower harmonic distortion of the load > Vin =217.8 V (Utility rms voltage)
voltage, natural isolation and low number of controlled > Ip =4.9 A (Pump rms current)
switches. » =74.68°(Phase angle)

» f =60 Hz (Operation frequency)
Il. EQUIVALENT ELECTRIC MODEL OF THE

WATER PUMPING
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Fig. 2. Voltage and current in the pump
(Start condition)
Scale: 100V/div; 5A/div; 10ms/div
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Fig. 3. Voltage and current in the pump
(Steady-state condition)
Scale: 100V/div; 5A/div; 5ms/div

l1l. PRINCIPE OFOPERATION

Considering the application mentioned in this paper the
Current-Fed Self-Oscillator Parallel Resonant Push-Pull
Inverter is proposed [4, 5], of which the resonant capacitor
is connected in parallel with the load (pump), in the
secondary side of the transformer. Mosfet's were used for
the main switches, simplifying the self-oscillator drive
circuit. The complete structure, including the self-oscillator
drive circuit, is shown in Fig.5. To simplify the analysis,
the following assumptions are made: the operation of the
circuit is steady-state; the semiconductors are considered
ideal; the transformer is represented by its magnetizing
inductance; and the input current is maintained constant
without ripple. The parallel resonant push-pull inverter has
two operation stages shown in Figs. 6 and 7.

Water Pump Model
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We can verify that the load (pump) has an inductive
characteristic, with a large circulation of reactive energy
and low power factor (c#¥. Therefore, an equivalent
parallel RL circuit (Fig.4) can easily represent the electric
model, where:
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Fig. 4. Electric model of the pump

1* Stage (b, t1) - Fig. 6: This stage start ig When the
voltage Vout reaches zero the switcht@ns off and the
switch S turns on instantaneously. The commutations of
the switches occur to the zero voltage.

Due to the resonance betweena@d L,, Vout increases
sinusoidaly.

2" Stage (i, t,) - Fig. 7: By the time,f the switch $
turns off and the switch ;Sturns on. The voltage Vout



decreases sinusoidaly until the timg where a new where: Im,. — magnetizing current referred to the

operation period restarts. secondary side of the transformer.
The main waveforms are shown in Fig.8: E. Input current and inductor ), Li,)
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Fig. 8. Main Waveforms

IV. DESIGN PROCEDURE AND EXAMPLE
where: Leq = Lp//Lng¢
A. Specifications

G. Number of Parallel Batteries

Input Data:

Vce = 12V (Converter input voltage) The average power and current delivery by the batteries
will be:

Water Pump Data:

Vout = 220 (rms voltage) Pout

Sout = 1085 VA (apparent power) Poay = T =350W (10)
Pout = 281 W (active power)

Lp = 120 mH (equivalent parallel inductance) P

Rp = 170Q (equivalent parallel resistance) | gay = Bav ~30A (12)
f = 60 Hz (operation frequency)» od = 377 rad/s Vee

n = 80% (efficiency) o
The number of parallel batteries is given by:

B. RMS 4z voltage

BA - Bav _ :
The rms \4s voltage is given by the following equation Ng = B, 1.5 batteries (12)
[3].
where:
Vag(ms) = Veexz _ 26.65 V (3) Ng — minimum number of parallel batteries,
V2 Ba — battery autonomy: 3 hours;

Bc — battery capacity: 60Ah (one-hour rate).
C. Transformer Turns Ratio (a)
Two lead-acid batteries (12V - 100Ah (20-hour rates))
Vou were chosen.
_ VOUkms) _ g 55 (4)

V ag(rms) H. Number of Photovoltaic Modules

a

D. Magnetizing inductance referred to the secondary side The photovoltaic modules used in this project can
of the transformer (Lga) deliver 3Ah (Ampere-hours) with a solar radiation of 1.000
W/m? In the worst case the average solar radiation, in our

Sout region (Floriandpolis/Santa Catarina — Brazil), is about

IMgeo=0.1-5 4 ®) 2500 Wint per day. Thus:

| pe-R
Lm,, = —ABms __ 485 (6) ARy =" =7.5Ah (13)
od - Imsec S



where:

Ahy — Ampere-hours delivery per photovoltaic module
for one a day.

R., — average solar radiation: 2500 W/fday (worst
situation),

Rs — standard solar radiation: 1000 W/m

Irs— delivery of current by the photovoltaic module
for the R, radiation: 3Ah.

Thus, the number of photovoltaic modules is given by:

Np= % =4 photovoltac modules (14)

where:
Ah. — Ampere-hours delivery to the load per day.

V. EXPERIMENTAL RESULTS

A laboratory prototype rated 300W was built to evaluate
the proposed circuit. The specifications are given in the
item IV. Mosfet’s were used for the main switches.

The main waveforms of the complete system are
presented below:
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Fig. 9. Voltage and current in the batteries
(Start-transient)
Scales: 10V/div; 20A/div; 10ms/div
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Fig. 10.Voltage and current in the batteries
(Steady-state condition)
Scale: 10V/div; 10A/div; 2ms/div
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Fig. 11.Voltage and current in the pump
(Start-transient)
Scale: 100V/div; 5A/div; 10ms/div
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Fig. 12.Voltage and current in the pump
(Steady-state condition)
Scale: 100V/div; 5A/div; 2ms/div
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Fig. 13.Voltage and current in the main switches
(Start-transient)
Scale: 10V/div; 20A/div; 10ms/div
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Fig. 14.Voltage and current in the main switches
(Steady-state condition)
Scale: 10V/div; 10A/div; 2ms/div
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Fig. 15.Gate voltage in the switches
(Start-transient)
Scale: 5V/div; 10ms/div
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Fig. 16.Gate voltage in the switches
(Steady-state condition)
Scale: 5V/div; 2ms/div

Tek stop: Single Seq S.OOKS/s‘ o
I

10Jun 1997
U0 1909

Vout

N

i
i

2

L
ARV
W

V

|

Ty
R

WA
z I

[Sigh]

Fig.

Tek stop

. 25.0kS/s 17 Acgs
—

T.00 h25.00mv T MT0TOims TR 7T TE0

17.Voltage and current in the resonant capacitor
(Start-transient)
Scale: 100V/div; 5A/div; 10ms/div
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Fig. 18.Voltage and current in the resonant capacitor
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Fig. 19.Voltage and current in the secundary side of the transformer

(Start-transient)
Scale: 100V/div; 2A/div; 10ms/div
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Vout
” This paper has presented the analysis of a water
\ / k pumping system from photovoltaic cells using a current-
\ .7\\ fed self-oscillator parallel resonant push-pull inverter
\4 I ~ | \n operating a under-water vibratory pump, for residential
\ l/ I9ec \l applications in rural areas. The converter shows to be

<

extremely well adapted with this kind of pump, providing a
sinusoidal voltage with low harmonic distortion without

by
—
A
J
o~

\ T /\’ \ necessity of any type of modulation. According to the
v*—< i Ve results obtained we have a DC-AC converter with the
N / following features: it is particularly simple and robust; it
N~ uses low cost technology; it can operate with only one
PP I EIFAPS [ o power pr_ocessing stage;_it has a simple control_circuit with
Fig. 20.Voltage and current in the secondary side of the transformer its tem_“na!s e‘fi”hed in the same grou”d'”g’ IOwer
(Steady-state condition) harmonic distortion of the Io_ad current, natural isolation
Scale: 100V/div; 1A/div; 2ms/div and low number of control switches. Therefore, the authors
believe that this topology can be very useful for some
1.0% residential applications.
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Fig. 22.Harmonic analysis of the pump current

The experimental results of the converter show that the
voltage across the pump is practically sinusoidal, and the
self-oscillator drive circuit presented a good behavior for
this application. Besides, the over-voltage across the pump
and the Mosfet's does not put in risk the structure. The
start current of the converter is inside the limit specified by
the manufacturer of the switches.

An efficiency of 80% was obtained at full load
condition.





