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Abstract|The semiconductor technology has made a con-

siderable advance in the last two decades. Several industrial
processes now use adjustable speed drives based on semicon-
ductor components. Furthermore, some of these, e.g. oil

boosting and paper and pulp processes, demand an inclu-
sion of an electric cable to connect the converter to the mo-

tor. The converter switched voltage creates traveling pulses
in the cable and, to correctly assess the voltage ringings, a
frequency dependent model is needed. As the cable length

increases it is also important to consider the distributed na-
ture of the cable. This paper describes how a frequency

dependent cable was implemented in EMTP. Instead of us-
ing the conventional modal domain, which presents several
restrictions with respect to cable modelling, a phase domain

approach is considered. The model is an extension of a pre-
vious one developed for transmission lines. The e�ect of a
PWM voltage at the cable input is also commented.

I. Introduction

Some countries do oil prospecting in deep water, where
the sub-sea system consists of Electric Submersible Pumps
(ESP) directly in the well. In Brazil, this type of extrac-
tion is mainly used in oil exploitation [1]. One problem of
peculiar concern in this type of system is its inaccessibil-
ity. After being installed the motor winding or its rotating
parts cannot be accessed. Fig. 1 shows the basic compo-
nents of the system. Nowadays, medium voltage drives
usually have a step-up transformer, the converter switches
are usually low voltage.
With respect to electrical system, the modelling can be

divided in two major groups: one dealing with the design
and test of controllers and the other with a more accurate
implementation of the physical behaviour of the equipment.
In either case, detailed information is priceless. Moreover,
in the particular case under study here, the frequency e�ect
in the equipment is of the out-most importance. It de�nes
the limits and the frequency range and dictates how the
models can be implemented.

II. Cable Model

There are several types of cables used for motor
drives [2]. They are commonly three-phase pipe cable.
The submarine cables are three-phase, specially designed

to work in depths up to 1000m to feed induction motors
that drive the oil pumps. These cables are one of the most
expensive part in oil exploitation systems with ASD, their
long cable length contributes to damp the high frequency
ringing at the motor terminals. This happens due to the
distributed nature of the cable capacitance. It can cause
over-voltages, therefore increasing the stresses on the mo-
tor.

Long cables are not easy to model. Simple cable models
with lumped parameters or ideal distributed parameter will
give answers far from reality, and lumped �-circuits could
even lead to wrong responses.

The motors designed for use in deep oil well applica-
tions are, in essence, induction motors with unusual elec-
trical and mechanical parameters, they are usually called
ESP (electric submersible pump) motors. They consist of
a tandem connection of small rotors cooled by internal and
external oil 
ows. The motor diameter is about 20cm and
its length can reach 15m, depending on the motor power
level.

The cable model must consider the frequency depen-
dence if near real values are wanted. To solve the Sys-
tem equations involved here there basically are two op-
tions, frequency-domain or time-domain analysis. Indeed
some works [3][4] have already considered the e�ect of a
long cable in a drive system using frequency domain anal-
yses. The frequency domain has the advantage of an easy
implementation of frequency dependence, however, it lacks
the capability to represent non-linearities.

The cable model can be represented by two distinct
forms, distributed or lumped parameters. Numerically
speaking lumped parameters are more easily implemented,
however to represent the actual distributed nature of the
cable several cascade sections of lumped � circuits should
be used. The frequency dependence can be done via Foster
circuits (series association of R-L parallel circuits) repre-
senting the cable resistance and inductance at di�erent fre-
quencies. On the other hand, distributed models present
some challenges concerning the representation of the fre-
quency dependence losses. To correctly asses the frequency
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Fig. 1. Basic System Topology

of oscillations created by the inverter in the cable is impor-
tant to take into account the frequency phenomenon. This
work uses a hybrid formulation. The losses, which are es-
sential for realistic voltage levels in the simulation are taken
as lumped parameters. The frequency independent part of
the cable model is modelled as distributed parameters.

The cable model consists of an extension of a model
previously applied in overhead transmission lines. It is in
phase coordinates and is not only reliable, but is numeri-
cally stable and allows an extension of the accuracy until
the highest frequency of interest. There is a large variety
of cable design and is rather diÆcult to develop a de�ni-
tive way to classify them. They can be classi�ed in such
di�erent approaches as power level, physical structure or
insulation material. In power electronic applications the
cables can be classi�ed as: Single-Core Cable SC (a core
and an enclosing sheath), and Pipe-Type Cable PT (three
cores with individual sheaths and enclosing pipe).

The cable parameters are frequency dependent due to
skin e�ect and proximity e�ect of other conductor and the
armour and the sheath. Solving Bessel equations [5][6] or
using �nite elements methods [7] are de�nitely the best
solutions concerning the cable parameters. Both methods
nonetheless require details concerning the material and di-
mension of the cable, and this type of information is not
always available. Another option is to use manufacturer
information, the cable manufacturer usually provides the
cable impedance in symmetric components from frequen-
cies in the range of 50Hz up to 6kHz. Impedances in sym-
metric components can be transformed in self and mutual
impedances using the Karrenbauer transformation [8]. Af-
ter calculating the self and mutual values, linear interpo-
lation and extrapolation are used to extend the frequency
range from 0.01Hz{20kHz. The value of 10kHz is taken as
the maximum frequency of interest. Fig 2 shows the ca-
ble impedances for a 6kV submarine PT cable using EPR
(ethylene propylene). One can note from the mentioned �g-
ure that the mutual impedance is considerably lower than
the self impedance. Accordingly to manufacturer informa-
tion, as the voltage level increases, the coupling impedance
will be higher.

The cable information is adapted so it can be represented
via the existing transmission line models. Electrical cables
have a higher capacitance and a smaller inductance in com-
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Fig. 2. cable impedances

parison with overhead transmission lines. In transient phe-
nomena, the surge impedance and propagation velocity of
a cable is smaller than those of an overhead transmission
line, usually around half the light speed (1:52� 108m/s).
The behaviour of an electric cable is fully described by

the �rst-order di�erential equations shown in (1). The fre-
quency dependent parameters are R(!) and L(!). There
are also nonlinear e�ects in case of steel pipes, which is
ignored here.

8>><
>>:

�
d _V

dx
= (R+ j!L)_I

�
d _I

dx
= (G+ j!C) _V

(1)

Nonlinear e�ects cannot be expressed directly in the
frequency-domain equations while frequency dependent ef-
fects cannot be expressed directly in time domain equa-
tions. The solution of (1) is in continuous time and deal
with transcendental functions, (2) shows the general solu-
tion in the frequency domain.

V(!;x) = e��xVf (!) + e�xVb(!)

I(!;x) = Yc(!)fe
��xVf (!)� e�xVb(!)g

(2)

where Vf (!), Vb(!) are forward and backward traveling
wave vectors respectively, and e��(!)x is the propagation
matrix and Yc(!) is the characteristic admittance matrix.
The modelling of such set of equations in a time domain

program can be categorized in:
� Modal Domain
{ Fitting transcendental functions with rational functions
(frequency domain �tting).



� Phase Domain
{ Fitting the functions directly in continuous time using
Fourier Transform techniques.
{ Fitting directly in discrete time using the z Transform.
{ Separating the frequency dependent losses from the ca-
ble characteristic impedance and use ideal (lossless) seg-
ments to represent the wave propagation.
In a three-phase or multi-phase con�guration the cable

might be considered as a MIMO(Multi Input Multi Output)
system. The evaluation of the stability can therefore be
troublesome. The �rst solution method presented above
uses Modal Transformation. The rational function �tting
implies in using of minimal phase functions with negative
poles. The other three techniques represent the develop-
ment in the representation of frequency dependent wave
equations in time domain programs done in the last decade.
The last solution is simple but rather elegant procedure.
When one extracts the losses, the function to be �tted is
the trivial (it is a lossless wave equation). Indeed, this last
solution is actually the only one capable of being imple-
mented in EMTP or without any code change.
In EMTP programs, traditional frequency-dependent ca-

ble models are elaborated in the modal domain. The
modal transformation turns a coupled system with n � n

matrices into n decoupled systems. The main advantage
of modal transformation is that each mode has its own
propagation velocity. Thus each mode will behave like a
single-phase line. This is particularly useful when the fre-
quency dependence of the propagation factor and charac-
teristic impedance is modelled via rational-functions syn-
thesis. Let's consider again (1) using eigenvalue theory it
turns into:

d2

dx2
Vmode = �Vmode (3)

where � is a diagonal matrix. The interface between phase
and modal domains is done via the transformation

Vphase = TvVmode

Iphase = TiImode

(4)

Strictly speaking a di�erent transformation may be used
for the current and for the voltage. The voltage and cur-
rent equations have di�erent eigenvectors though the eigen-
values are the same. The transformation are, fortunately,
related to each other as

Ti = ((Tv)
T )�1 ;

therefore only one transformation must be calculated. This
is particularly useful when the frequency dependence of
the propagation matrix and characteristic impedance are
modelled via rational-functions synthesis. For some ca-
ble con�gurations, the transformation matrices become fre-
quency dependent. This happens because the penetration
depth varies with frequency and is normally smaller than

the thickness of the sheath. It should also be noted that
these matrices are highly frequency dependent in the range
from 1 up to some kHz. Usually at very high frequencies
the transformation becomes constant once more. If the
frequency e�ect in the transformation is ignored and con-
stant matrix transformations are used, one might use the
concept of critical frequency. Thus there will be a low-
frequency and high frequency cable model. The modelling
accuracy will then depend upon which side of the critical
frequency one is interested in. Whether it is right for one
side of the transformation, it will be wrong for the other
side. Unfortunately, this kind of solution may lead to nu-
merical instability.

The frequency dependence of the modal transformation
matrices can be introduced by convolution. Nevertheless
this requires a detailed �tting of every element of the trans-
formation matrices. The model presented in [9] deals with
these problems by synthesizing the transformation matri-
ces with rational functions. When all functions involved in
the transformation matrices are minimal phase, this model
works very well, though there are situations where this as-
sumption does not hold true. This is a heavy constraint,
mainly in the cable modelling which usually presents trans-
formation matrices with several non-causal elements (they
cannot be represented as minimal phase functions). Fur-
thermore, the numerical advantage if compared with phase
modelling is lost if the transformation matrices are not real.
Both approach requires then 2n2 convolution operation,
where n is the number of conductors. One way to avoid
the diÆculties related with frequency dependent transfor-
mation is to formulate the cable model in phase coordi-
nates.

As said before, the cable model have two distinct parts,
one to represent the losses and other to model the dis-
tributed phenomenon. The action of extracting the losses
from the wave equation and representing them as a lumped
network implies that instead of using time discretization,
as in the conventional EMTP solution, one is dealing with
space discretization. In time discretization one has to
cope with superposition of propagation modes with di�er-
ent traveling times. In space discretization propagation is
represented on a discretized segment of ideal line plus wave
shaping by the cable losses. Physically, space discretization
establishes that wave distortion due to the frequency de-
pendence in the conductors are grouped into one frequency
dependent network, while the ideal wave propagation in the
medium due to the external magnetic and electric �eld are
represented by a lossless segment.

Referring again to (1), the series impedance matrix Z
presents frequency dependent elements. The cable resis-
tance will increase with frequency due to the skin e�ect,
this same phenomenon will cause the inductance to de-
crease with frequency. As the frequency becomes higher
one can observe that the inductance will tend to a con-
stant value. Thus, the equation of the elements of Z can
be written as:



zij(!) = rij(!) + j!(Lext
ij +�Lij(!)) (5)

where ! is the frequency, Rij is the conductor resistance,
Lext
ij is the inductance associated to the external 
ux and is

constant, and �Lij is the inductance related to the 
ux in-
side the conductor. If one groups the frequency dependent
terms in (5) it can be rewritten as:

Z = Z
loss + j!Lext (6)

where

zlossij = rij(!) + j!�Lij(!) (7)

The matrices associated with external magnetic and elec-
tric �elds are frequency independent, therefore can be rep-
resented by an ideal cable. Fig. 3 shows the basic structure
of the cable model with a general number of RL blocks.

Zloss Lext  C

Fig. 3. Cable Model

In a lossless medium all modes travel at the speed of
the light and there is a single time delay. Then the classi-
cal model developed by Dommel in [10] can be used. The
model implementation is practically straight forward after
the impedance Zloss is extracted from the total parame-
ters. The elements of the loss matrix are �tted via rational
function approximations. The basic block for the loss part
is a parallel RL circuit.
The main di�erence between the Zline applied to trans-

mission lines and to cables are the parameters. According
to the manufacturer, the capacitance matrix is not diago-
nal as in underground cables. Nonetheless, the o� diagonal
elements are rather small and do not contribute to the wave
propagation because the Lext is diagonal. So it was decided
to model capacitive coupling as a lumped capacitance at
the cable terminals.

A. Minimal number of loss elements

In normal operation most types of ASD's will not have
signi�cant harmonics above a few kHz. Thus, with only

one RL block a relatively accurate model can be obtained.
The maximum frequency of interest is 10kHz. Fitted Zloss

match the original function at that frequency and at 60Hz.
In the range of 100{10kHz, the model will present a higher
impedance than the actual value, so conservative results
are to be expected. Above 10kHz the �tted impedance is
basically constant and large errors are expect if any har-
monics exists above that frequency. If more than one block
is used, not only the �tted impedance would be more close
to the actual value but it would also have a higher cut-o�
frequency. Unfortunately, this would also imply in using
coordinate �tting procedures to obtain a numerically sta-
ble solution. Another advantage of using only one block
is that analytical expressions can be used to calculate the
values of the RL circuit. For instance, the �tted Zloss can
for the self elements be given by:

Rlossfit =
(!0Ls)

2

Rs �Rdc

+Rs �Rdc

Llossfit =
Rs �Rdc

!2
0L

+ Ls

(8)

and for the mutual:

Rlossfit =
(!0Lm)

2

Rm

+Rm

Llossfit =
R2
m

!0Lm

+ Lm

(9)

where !0 is the cuto� frequency, Rs, Ls, Rm and Lm are
elements of the self and mutual Zloss at frequency !0 re-
spectively.

The cable might produce an amplifying e�ect in the har-
monics due to the wave re
ection. It is important to assess
whether or not resonances at very high frequency harmon-
ics may be excited by the cable. A simple test was used to
evaluate whether or not the number of RL blocks should be
increased. This test system consists of a three-phase PWM
inverter with a maximum switching frequency of 5kHz, and
a cable with the receiving end left open. In this example
the three-phase where considered to be decoupled, so a
three-phase model is just three independent single phase
models. This case consists of a worst case scenario where
all the traveling pulses from the converter will be re
ected.
Fig. 4 shows the results. In that �gure one sees the line
voltage generated by the converter and the line voltage at
the end of the cable. One can notice the importance of
the loss representation, without any loss the voltage out-
put can reach values as high as 5 pu. Even with the usual
EMTP representation unrealistic voltage are obtained. For
very short cables the voltage output can surpass 2 pu [11]
but it is very unlikely that it can reach more than 2.2 pu.
If the two possible frequency dependent cable models are
compared (item (c) and (d) in Fig. 4) one can observe that
in terms of maxima and minima both models has the same
value. From the results in Fig. 4, the miminal realization
of Zloss (1 RL block) does seem reasonable.
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(c) Zloss with 1 block

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ms

pu

(d) Zloss with 5 blocks

Fig. 4. E�ects of the frequency dependency

III. Simulation & Experimental Verification

In most con�gurations today, the inverter works near
maximum output voltage to produce high output torque.
Thus the PWM-VSI (Pulse Width Modulated Voltage
Source Inverter) works almost like a square wave, gener-
ating low order harmonics, but decreasing motor perfor-
mance. The �rst system is a Square-Wave inverter with
a step-up transformer with ratio 480:1350V, the motor is
950V, 135HP, the motor lead is 2.45km long. The second
drive system uses a PWM-VSI with a step-up transformer
with ration 460:1050V, a 1.5km lead and a 950V, 100HP
motor. Figs. 5 and 6 show the results for the two systems.

IV. Conclusions

The importance of the representation of the skin e�ect
in the cable was shown. The drive system consists of an
ESP motor supplied from a remote frequency converter.
This system is typical in o�shore oil industry applications.

Simulation results were compared with experimental ones
in order to validate the system model. The frequency e�ect
in the cable as well as in the motor must be considered if
accurate results are to be expected. However the results
show that simpli�ed switch models can be used. It is im-
portant to model the recti�er and the inverter in the con-
verter so the system can infer the oscillations in the voltage
created by the dc link when the inverter is operating with
a low switching frequency. All simulated waveforms were
slightly more conservative than the experimental ones, due
to the simpli�cations in the model. The induction motor
modelling is presented in a companion paper.
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