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Abstract— In this paper an adaptive field oriented control of
induction motor drive is proposed. The adaptive scheme use
a neuro-fuzzy approach for the identification of the rotor
time constant, which is used to adjust the estimate of the slip
angular speed. First a fuzzy logic estimator was developed
and tuned, then the fuzzy estimator was implemented by a
dynamic backpropagation neural network-based controller.
The fast convergence of the fuzzy control is maintained by
using adaptive step size of the control variable. The neural
network implementation adds the advantage of fast
computation, either by a dedicated hardware chip or by
digital signal processor (DSP)-based software. Computer
simulation results are obtained and the performance of the
resulting field oriented controller is analyzed.

Index Terms — Fuzzy Logic, neural networks, field
oriented control, parameter identification, induction motor.

NOMENCLATURE

Ls, Lr Stator and Rotor inductance
Lm Mutual inductance
Rs, Rr Stator and rotor resistance
i,V,A Current, voltage and flux vectors
1, Rotor time constant I,/ R )
TeTL Electromagnetic torque and load torque
Wy Rotor electric speed
We Synchronous frequency
Wg Slip frequency
JIm Moment of inertia
P Number of poles
p Differential operator ¢l / dt)
L

o=1- Leakage factor

LSLI'
(a,B) o — 3 stationary reference frame
(d,q) d-q synchronous reference frame
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industrial
dynamics.

In general two basics schemes are used in field oriented
control [1]. The direct field orientation scheme in which
the position of the flux is directly measured by means of
search coils or is estimated from stator terminals
measurements, and this signal is used in the control to
decouple the torque and flux components of the stator
currents. This method suffers from high cost and the
unreliability of the flux measurement. The second scheme
is the indirect field orientation, for which the slip relation
is employed to estimate the flux position relative to the
rotor, then this estimate is fed forward to the controller.
The controller gains of the indirect field oriented method
are functions of the motor parameters, which change with
temperature, frequency and current amplitude, resulting in
a poor transient response and low efficiency [2]. It has
been shown that changes in rotor resistance have a most
dominant effect on the control performance. An important
requirement to obtain good control performance is to
make the field oriented control parameters coincide with
the actual parameters of the motor.

Many techniques have been reported [3-5] to solve the
problem of motor parameter identification while the drive
is in field oriented control operation. Intelligent
techniques have also been applied to achieve this goal
[6,7]. In the present work a neuro-fuzzy approach for the
problem of rotor time constant identification is presented.
The identification method is presented as an optimization
problem where the objective function is defined as the
total square error between the motor and the commanded
stator currents in the synchronous reference frame. First a
fuzzy logic estimator was developed and tuned, then the
input-output transfer characteristics of the fuzzy estimator
was used to train the neural network, which then replaces
the fuzzy estimator in the control system. The fuzzy logic

applications due to their simple control

An asterisk (*) is added to indicate command signalsPased estimator has the advantage that adaptively change

and bold quantities indicate vectors.

|. INTRODUCTION

the step size of the control variable, thus fast convergence
is achieved [8,9]. The neural network implementation
adds the advantage of fast computation, either by a

Variable-speed ac drives employing induction motorsledicated hardware chip or by digital signal processor
and the field-oriented control method have been developd®SP)—based software [10]. Computer simulation results
in recent years to the point of meeting the high standardge obtained and the performance of the resulting field
of performance set by dc drives, generally used foeriented controller is analyzed.
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The electromagnetic torque is a linear function of the

stator g axis current and the rotor flux:

IDENTIFICATION SCHEME

The rotor time constant identification procedure can be

written as an optimization problem. From (9)-(10) the

(8) error functions between the commanded and the motor
currents in a synchronous reference frame can be

The indirect field oriented controller block diagram isexpressed as follows:

shown in Fig. 1. With an incorrect value of the stipdue

to an incorrect slip calculator time constant, the

decoupling condition cannot be achieved, interaction§l(r_*r) = Ty

would arise and the control performance deteriorates. T T, igs
In detuning conditions the relations between the motor

igs\2
UG (16)
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and the commanded stator currents can be expressed as a

function of a ratia,t, as follows [7,11]:
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The total square error is a non-linear function of the
ratio t,T,. The aim of the neuro-fuzzy identification
scheme is to minimize the total square error:

(10)

min. (1) =2 +¢2 (18)
Ty
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Fig. 2. Indirect field oriented control with neuro-fuzzy identification scheme block diagram.

The block diagram of the control system with the neurointerval. The fuzzy controller rule base is given in Table |
fuzzy identification scheme is shown in Fig. 2. It isand the resulting control surface is shown in Fig. 5.
important to note that even a rotor flux observer is used,
the characteristics of the indirect field oriented control art
maintained.

A. Fuzzy Logic Estimator |

The inputs variables to the fuzzy estimator are the
increment of the total square error and the last change  ; =«
the ratio 1,1,, which are defined as follows at kth .
sampling interval:
Ae(k) =e(k) —e(k-12) (29)

s i

(20) @

LACE)(K) = ACE)(k-1)
T, T,

The output variable of the fuzzy estimator is the chang
step At,t,, which is generated from the input variables
through fuzzy inference and defuzzification. Fig. 3 showvs
the fuzzy estimator block diagram.

The principle of the identification process is that if the
last change in the ratigt,” indicated a decreased in the
total square errog, then proceed searching in the same
direction, and the new change in the ratjp, must be
proportional to the change in the total square ekeorAn
example of a fuzzy rule can be given asAl-s negative
small (NS) and I\(t,t,) is negative (N) THEN\(T,T, ) is :
negative small (NS). The membership functions for the [
fuzzy estimator are shown in Fig. 4, where the universe ¢
discourse for all variables are normalized in the [-1,+1]
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Fig. 4. Membership functions for the fuzzy controller. (a) Change of
(Ag(pu)). (b) Last change of the ratigr,” (LA(T,T,)(pu)). (c ) Change of
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Fig. 3. Fuzzy logic estimator block diagram.

the ratiot,t,” (A(T,T,)(pu)).



TABLE | Sum-Squared Network Error for 131 Epochs

RULE BASE FOR THEFUzzY LOGIC CONTROLLER 10

Ae\ LA(T,T,) N P
PB PM NM
PM PS NS
PS PS NS
ZE ZE ZE
NS NS PS 2

05 20 40 60 80 100 120
NM NM PM Epoch
Fig. 7. Sum - squared error at the network output.
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Fig. 8. Neuro-fuzzy estimator control surface
Fig. 5. Fuzzy estimator control surface. layers, i.e., input layer, hidden layer, and the output layer.
) The input and output layers have neurons equal to the
B. Neuro-fuzzy Estimator. respective number of signals, whereas the hidden layer has

Once the fuzzy estimator was developed and tuned, 29 neurons. The network was trained using the back-
dynamical feedforward neural network was then trained tBropagation algorithm with  momentum. The initial
emulate the fuzzy estimator. The input-output transfelearning rate) and the momentum gafhwere set to 0.1
characteristics of the fuzzy estimator was used to train tiand 0.21 respectively. Fig. 7 show the sum of the squared
neural network, which then replaces the fuzzy estimator ifirror for the first 131 epoch of the training and the
the control system. The neuro-fuzzy estimator design #&esulting control surface is shown in Fig. 8.
shown in Fig. 6. A standard feedforward neural network

with tan-sigmoid activation functions in the hidden and IV. SIMULATION RESULTS
output layers was used in this work. The network has Tq test the proposed method, the indirect field oriented
three control with the neuro-fuzzy identification scheme have
Uray ESTVATOR T been imulated in the following detuned conditions: 1) R
D(=Ffuzzy(PV) =1.4R and2) R=1.6 R. The load cycle for both cases
fe(k) > I is show in Fig. 9 and the ref d 2000
I is show in Fig. 9 and the reference speed was set to
LA(TT)(IOU) > r.p.m. An on-off working cycle of 1.5 seconds was
r adopted for the operation of the neuro-fuzzy controller.
NEURAL NETWORK 1. Thus the controller compensates the rotor time constant
N A neuralPy) for 1.5 seconds, and for the next 1.5 seconds its value is
” % Ir maintained. In real operation conditions the rotor time
— constant varies slowly as a first order system with a
0 time constant equal to the thermal time constant of the
AW (K)| ACKPROPAGATION

A

motor and the off time of the fuzzy controller could be
longer, but in the simulation study only 6 seconds have
been considered.

ALGORITHM

Fig. 6. Neuro-fuzzy estimator design block diagram.



Fig. 9. Load torque cycle
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(b)
Fig. 10. Motor and commanded currentss R4R". Neuro-fuzzy
identification scheme is connected.

@

(b)
Fig. 11. Motor and commanded currentssR6R". Neuro-Fuzzy
identification scheme is connected.

V. CONCLUSION

A neuro-fuzzy approach for the problem of rotor time
constant identification of the induction motors have been
presented in this paper. The neuro-fuzzy estimation have
been performed on-line based on the steady state model of
the indirect field oriented control. From the simulations
results, it can be appreciated that substantial improvement
in the drive performance can be obtained with the fuzzy
approach. Thus in steady state conditions, when the
neuro-fuzzy updating scheme is connected, the motor and
commanded currents are approximately equal even in
strong detuning conditions. The proposed method
maintain the advantages of the fuzzy control by using
adaptive step size of the control variable. Besides, the
neural network implementation adds the advantage of fast
computation, either by a dedicated hardware chip or by

Figs. 10 and 11 show the motor and commandedigitel ~ signal processor DSP)-based software. The
currents for the two detuned conditions when the neur(ggverall controller is being implemented in a laboratory on

fuzzy updating scheme is put into operation. We can s

& Motorola DSP56001 Digital Signal Processor.

the neuro-fuzzy estimator is able to minimize the VI. ACKNOWLEDGEMENTS
difference between the motor and commanded currents

and this improvement is due the better estimation of the
slip frequencywy using the estimated value of the rotor

time constant, at the estimator output.
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APPENDIX
INDUCTION MOTOR PARAMETERS

Ls=0.1191 HR=1.1771Q
L= 0.1130 HR=1.3820Q
L, =0.1185H
J,=0.00135 Kg.r

B, = 0.0008 N.m/rad/s
2-Pole, 120 V, 800 W
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