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Abstract - The inuence of the rotor time con-

stant mismatch on the stability of induction mo-

tors under indirect �eld oriented control is ana-

lyzed. Di�erent mechanisms for the loss of stabil-

ity are detected by means of bifurcation analysis.

Robustness margins and guidelines for drive com-

missioning are derived from these results.

1 Introduction

Indirect Field Oriented Control (IFOC) is a well estab-
lished and widely applied control technique when dealing
with high performance induction motor drives [8, 6, 3].
Yet, it was not until very recently that this control scheme
has been provided a �rm theoretical foundation [10, 9, 4].
The commissioning of an IFOC requires the knowledge

of a single motor parameter, namely the rotor time con-
stant, which can vary widely in practice [5, 7]. It has been
previously shown that the speed control of induction mo-
tors through IFOC is globally asymptotically stable for
any constant load torque if the rotor time constant is per-
fectly known or the error in its estimation is suÆciently
small [4, 1].
In this paper we study the loss of performance and sta-

bility of IFOC drives due to mismatches in the rotor time
constant estimate. Possible instability due to such mis-
matches is classi�ed into two types in our study: mono-
tonic and oscillatory. We have shown in [1] that mono-
tonic instability occurs for certain values of the mismatch
in this estimation and certain load conditions and is asso-
ciated to the occurrence of saddle-node bifurcations. We
have also shown that oscillatory instability is associated
with Hopf bifurcations and can also occur for practical
values in this mismatch [2].
In this paper we further develop the instability mecha-

nisms in IFOC drives due to mismatches in the rotor time
constant estimate. In Section 2 the system modeling and
the control equations are given. A convenient parame-
terization for the system model is introduced. In Section
3, the occurrence of monotonic instability is studied; it
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is shown that this phenomenon does not depend on the
settings of the speed controller. In Section 4, oscillatory
instability is considered; design rules for the PI tuning to
avoid this kind of instability are derived. Simulation re-
sults are provided for a case study to illustrate and clarify
the concepts presented.

2 Problem statement

2.1 Induction motor model

The dynamic model of a current-fed induction motor
expressed in a reference frame rotating at synchronous
speed can be written in the form

_�q = �c1�q � wsl�d + c2iq (1)

_�d = �c1�d + wsl�q + c2id (2)

_w = �c3w + c4[c5(�diq � �qid)� Tm] (3)

where �q and �d are the quadrature axis component and
the direct axis component of the rotor ux, respectively,
w is the rotor speed, wsl, id and iq stand for the inputs -
the slip frequency, the direct axis stator current compo-
nent and the quadrature axis stator current component
respectively; Tm is the load torque, which is assumed con-
stant; the "c" parameters are de�ned in the appendix and
are all positive. In particular, c1 represents the inverse
of the rotor time constant. See [8, 6, 3] for further detail
regarding induction motor modeling.

2.2 Indirect �eld oriented control

In speed regulation applications the IFOC is usually ap-
plied along with a PI speed loop. This control strategy
is described by the following equations [8, 4]:

wsl = ĉ1
iq

id
(4)

id = i0d (5)

iq = kp(wref � w) + ki

Z t

0

(wref (�) � w(�))d� (6)

where ĉ1 is an estimate for the inverse rotor time constant
c1, kp and ki are the gains of the PI speed controller, wref



is the constant reference velocity and i0d is some constant
which de�nes the ux level.
The rotor time constant is a critical parameter for in-

direct �eld oriented control. If ĉ1 = c1, that is, if we have
a perfect estimate of the rotor time constant, we say that
the control is tuned, otherwise it is said to be detuned.
Accordingly, we de�ne

�
�
=

ĉ1

c1
(7)

as the degree of tuning. It is clear that � > 0 and the
control is tuned if and only if � = 1.
The closed-loop system (1)-(3) with the control (4)-(6)

is a fourth-order system that can be described as:

_�q = �c1�q + c2iq �
�c1

i0
d

�diq (8)

_�d = �c1�d + c2i
0
d +

�c1

i0
d

�qiq (9)

_�w = �c3�w � c4[c5(�diq � i0d�q)� Tm �

c3

c4
wref ] (10)

_iq = kc�w � kpc4[c5(�diq � i0d�q)� Tm �

c3

c4
wref ] (11)

where we have de�ned �w
�
= wref�w and kc

�
= ki�kpc3.

We shall analyze the stability properties of the closed-
loop system (8)-(11) and their dependence on the loading
conditions, the degree of tuning � and the settings of the
PI controller.

2.3 The tuned system

IFOC drives have to go through an initializing process
in order to establish constant magnetic ux inside the
motor before they can be turned on. This initialization
is known as uxi�cation phase and consists in applying
constant direct axis current (i0d) with zero load and zero
reference speed until the ux inside the motor reaches a
steady-state value. It is easily seen that this steady-state
value is �d(1) = c2

c1
i0d; meanwhile, the other variables are

identically zero during this phase.
After the uxi�cation phase, the drive is turned on,

with the application of load and reference speed, that is,
Tm and wref are allowed to be di�erent from zero. If the
system is tuned (� = 1), then the terms dependent of �q
in (8)(9) vanish and it can be shown that the uxes do
not change [8]. Substituting the constant values of the
uxes into the remaining equations (10)-(11) we have

�
_�w
_iq

�
= A

�
�w
iq

�
+B

�
wref

Tm

�
(12)

A =

"
�c3 �

c4c5c2i
0

d

c1

(ki � kpc3) �
kpc4c5c2i

0

d

c1

#

B =

�
c3 c4
kpc3 kpc4

�

which is a second-order linear system. We shall refer
to the dynamic system (12) as the tuned system. A
block-diagram of the tuned system is given in Figure 1,

Figure 1: The tuned system.

where the plant is the induction motor under perfect �eld-
orientation (tuned).
As the design of the PI controller is in general based on

the tuned system, our concern in this paper is to provide
guidelines for this design such that stability is guaranteed
for a practical range of �.

3 Monotonic instability

Let us de�ne the dimensionless variables r
�
=

ieq
i0
d

and r�
�
=

T 0

e c1
c5c2(i0d)

2 , where T
0
e

�
= Tm+ c3

c4
wref is the total demanded

torque. The constant r� represents the system loading,
since it is proportional to the electrical torque developed
in steady-state. It also coincides with the steady-state
ratio between the q-axis and the d-axis components of
stator currents in the tuned condition, so that it coincides
with r in that operating condition.
The equilibrium values of the uxes can be obtained

from (8)(9) as

�
c1 c1�r

�c1�r c1

� �
�eq
�ed

�
=

"
1

c2i
0

d

r

c2i
0
d

#
(13)

Solving (13) for �eq , �
e
d yields

�eq =
c2

c1
i0d

1� �

1 + �2r2
r (14)

�ed =
c2

c1
i0d

1 + �r2

1 + �2r2
(15)

Now, from (10) and (11) it is clear that

�!e = 0 (16)

c5(�
e
dr � �eq)i

0
d = Te (17)

Substituting (14)(15) into (17) we get

c2

c1
(i0d)

2 �r
3 + �r

1 + �2r2
=

Te

c5
(18)

Then, from (18), it follows that r must satisfy the follow-
ing polynomial equation

�r3 � r��2r2 + �r � r� = 0 (19)
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Figure 2: Saddle-node bifurcation diagram.

Collecting equations (14), (15) and (16) and the de�-
nition of r we can write the equilibrium point as

2
664

�eq
�ed
�!e

ieq

3
775 =

2
6664

c2i
0

d

c1

1��
1+�2r2

r
c2i

0

d

c1

1+�r2

1+�2r2

0
i0d r

3
7775 (20)

The equilibrium is parameterized in terms of a single
dimensionless quantity r, which satis�es equation (19).
This is a third order polynomial equation whose coef-
�cients are also dimensionless and depend only on the
degree of tuning � and the motor load as denoted by r�.
The real solutions of equation (19) give the equilibrium

values of r for any given degree of tuning - � - and any
given load - r�. It is clear that equation (19) has at least
one and at most three real solutions, depending on the
particular values of � and r�.
The complete characterization of equilibria is given in

Figure 2. The system has a unique equilibrium outside
the region delimited by the two curves and three equi-
libria inside it; exactly on the curves, two equilibria are
present [1]. Notice that this characteristic is not depen-
dent on any motor or control parameters. Monotonic
instability is not observed in any case for � < 3.
As the parameters vary through one of these bifurca-

tion curves monotonic instability can be observed. One
such case is illustrated in Figure 3, which shows the re-
sponse of an IFOC drive with � = 4 to a slow increase
in load, starting from zero. As the load crosses the value
given by the upper curve in �gure 2, the motor escapes
from the operating point to a much higher current level,
which would most likely be unbearable in practice.
Carefully designed IFOC drives usually have no more

than 100% error in the estimate of the rotor time con-
stant. Hence, practical values of � are usually below 2
and monotonic instability is not expected to occur. Yet,
the above result has important operational and design
implications. First, it shows the importance - not always
recognized - of a careful estimate of the rotor time con-
stant: if the estimate is poor to start with then the tem-
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Figure 3: Simulation for slow increase in load with rotor
time constant mismatch � = 4.
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Figure 4: Simulation of load step with current limits en-
forced for � = 1 (dotted line) and � = 2 (solid line).

perature variations during operation can cause � to go
much above 3. Second, proximity to instability usually
implies poor performance, so that unacceptable perfor-
mance can be observed for practical mismatches even for
a carefully designed IFOC, that is, even for � < 2.

Indeed, Figure 4 shows the simulation of an IFOC drive
in which current limits are enforced. In this case, the re-
duction in the delivered torque due to the rotor time con-
stant mismatch causes the motor to be unable to drive
the load, since the supply current is limited. The perfor-
mance loss is clear by comparing with the response in the
tuned case.

4 Oscillatory instability

Oscillatory instability is a major concern, since it can
occur for values of � very close to unity. Also, this oc-
currence is dependent on the settings of the PI speed
controller. Let us study this kind of instability. From
(12), the closed-loop eigenvalues of the tuned system are



the roots of the characteristic polynomial

pT (s) = (s+ c3)(s+ kpK) + (ki � kpc3)K

= s2 + (c3 + kpK)s+ kiK (21)

where K
�
=

c2c4c5i
0

d

c1
. Then the PI parameters kp and ki

can be chosen to arbitrarily assign the closed-loop eigen-
values of the tuned system. Indeed, let the desired closed-
loop characteristic (Hurwitz) polynomial be written as

s2 + a1s+ a0; a0 > 0; a1 > 0 (22)

Then, equating the coeÆcients in (21) and (22) yields

kp =
a1 � c3

K
(23)

ki =
a0

K
(24)

Once the closed-loop poles are chosen the parameters kp
and ki can be calculated from (23)(24).
Calculating the Jacobian matrix of the complete

(not tuned) closed-loop system (8)-(11) and substituting
(23)(24), the Jacobian matrix can be written in terms of
a1, a0 as

J =

2
64

�c1 �c1�r 0
c1�r �c1 0
c1
c2
K �

c1
c2
Kr �c3

c1
c2
(a1 � c3) �

c1
c2
(a1 � c3)r

a0�c3(a1�c3)
K

c2(1� �)=(1 + �2r2)
c2�(1� �)=(1 + �2r2)r
�K(1 + �r2)=(1 + �2r2)

�(a1 � c3)(1 + �r2)=(1 + �2r2)

3
5 (25)

The roots of the characteristic polynomial of the Ja-
cobian matrix J are the eigenvalues of this matrix and
hence determine the stability of the system (8)-(11). This
polynomial is given by

P (s) = s4 + p3s
3 + p2s

2 + p1s+ p0 (26)

whose coeÆcients can be written in the form

p3 = (a1 � c3)v2 + c3 + 2c1 (27)

p2 = a0v2 + c1
�
2c3 + (a1 � c3)v1 + c1(1 + �2r2)

�
(28)

p1 = c1a0v1 + c21
�
c3(1 + �2r2) + (a1 � c3)�v0

�
(29)

p0 = c21a0�v0 (30)

where we have de�ned

v2
�
=

1 + �r2

1 + �2r2
(31)

v1
�
=

�(3� �)r2 + �+ 1

1 + �2r2
(32)

v0
�
=

�2r4 + (3� �2)r2 + 1

1 + �2r2
(33)

We verify that its coeÆcients - and therefore its roots -
do not depend explicitly on the ux level. Hence, the local
stability properties of the closed-loop system depend, for
a given motor, only on �, r� and the dynamics chosen for
the tuned system (expressed by a1 and a0). Moreover,
the only motor physical parameter which appear in the

characteristic polynomial are friction (c3) and the rotor
time constant (or its inverse, c1). For a given motor,
conditions for the stability out of the tuned condition
depend only on three parameters:

� the drive loading;

� the degree of tuning;

� the dynamics assigned for the tuned system.

We have thus reduced the analysis of a general IFOC
drive to three parameters. The stability out of the tuned
condition has been parameterized in terms of the dynam-
ics assigned for the tuned condition. Then we can look
for design rules which will guarantee robustness margins
by looking just at the tuned system. This condition, in
its turn, can be made a function of the rotor time con-
stant, which provides a quite generic design rule for the
PI speed controller.

In most cases temperature variations inside the rotor
can cause the rotor time constant to vary more than 50%
but not more than 100% [5]. Hence, � < 2 in most prac-
tical cases. Although stability is only lost through the oc-
currence of a bifurcation, a nearby bifurcation is enough
to cause unsatisfactory transient behavior. Indeed, if the
system is allowed to present a bifurcation for, say, � = 2:1,
very poor transient performance will be experimented for
� � 2, as shown by an example given below.

On the other hand, for � > 3 there always exist a
range of r� for which an unstable equilibrium point exists,
regardless of the PI settings. Taking these considerations
into account, we choose to search for PI settings that will
avoid Hopf bifurcations in the range 0 to 3 for any loading
condition.

Theorem 1 Let s1, s2 denote the eigenvalues of the
tuned system (12) with c3 = 0. If s1 = s2 = �18:c1 then
the equilibrium of the system (8)-(11) is locally asymptot-

ically stable for all (�; r�) 2 D
�
= f(0; 3]�<g.

3

Proof: First recall that the equilibrium is unique inside
D. The Jacobian matrix of (8)-(11) around the equilib-
rium is given by (25) and its characteristic polynomial
by (26). If the eigenvalues are both equal to �18c1 then
a1 = 2:18:c1 and a0 = 182:c21. Substitution of a1, a0
into (25) and calculation of the characteristic polynomial
yields

P (s) = s4 + �3s
3 + �2s

2 + �1s+ �0 (34)

where

�3 =
2c1[(18�+ �2)r2 + 19]

1 + �2r2
(35)

�2 =
c21[�

4r4 + (432�� 34�2)r2 + 36�+ 361]

1 + �2r2
(36)

�1 =
36c31[�

3r4 + (30� � �3 � 9�2)r2 + 10�+ 9]

1 + �2r2
(37)

�0 =
324c41�[�

2r4 + (3 � �2)r2 + 1]

1 + �2r2
(38)
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Figure 5: Hopf bifurcation for: (+) s1;2 = (�1� |10)c1,
(�) s1;2 = (�5� |10)c1, (�) s1 = s2 = �23c1.

The Theorem is proved by applying the Routh-Hurwitz
criterion to this polynomial1 and verifying that all the
coeÆcients of the Routh-Hurwitz array are positive for
all values of (�; r�) 2 D.

2

The Theorem states that robust stability of the IFOC
out of the tuning condition is guaranteed by proper as-
signment of the dynamics of the tuned system. These dy-
namics can be arbitrarily assigned by the settings of the
PI speed loop according to (23)(24). Stability robustness
against mismatches in the rotor time constant is guaran-
teed if the tuned system is designed to be non-oscillatory
and we are not too greedy regarding its dynamic perfor-
mance.
Figure 5 shows the bifurcation curves for three di�erent

choices of the closed-loop eigenvalues. Each curve repre-
sents the locus of the points at which a Hopf bifurcation
occurs for each di�erent PI setting. For each setting, the
system is locally stable outside the corresponding curve
and unstable inside it. Two bifurcation curves are ob-
served: one for light load (around r� = 0) and another
one for medium/heavy load. As the damping of the poles
is decreased, the lower (light load) branch occurs for lower
values of �, eventually approaching practical values of this
parameter. On the other hand, if the poles are moved
too far away towards the left, the higher (medium/heavy
load) branch tends to occur for lower values of �.

In order to illustrate the e�ects of Hopf bifurcations on
the system's performance, we present simulations for a
1cv induction motor - see parameters in the appendix.
Figure 6 shows the system response to several steps
of load torque, starting from no load until the system
reaches a Hopf bifurcation. The normalized load factor

1This straightforward procedure is omitted here in the interest
of brevity.
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Figure 6: Speed and quadrature axis current for load
torque variations; � = 2:7, s1;2 = (�1:2� |7)c1.

r� is stepped to 2:7 at t = 0 s, then to 4:3 at t = 2 s and
�nally to 4:8 at t = 12 s. It is clear that the dynamic per-
formance of the system is deteriorated as it approaches
the bifurcation, becoming very poor much before reaching
it. After the bifurcation occurs, a sustained oscillation is
observed.

5 Discussion

The occurrence of instability in indirect �eld oriented in-
duction motor control as a result of mismatches in the
rotor time constant has been analyzed. Two classes of
instability have been identi�ed: monotonic and oscilla-
tory. Monotonic instability has been shown to be inde-
pendent of the speed loop settings, contrary to oscillatory
instability.
The parameterization derived in section 3 clari�ed such

dependence by showing that for an actual motor the ex-
istence of Hopf bifurcations depends only on the closed-
loop poles assigned for the tuned system, the degree of
tuning � and the load condition.
The PI setting is closely related to the appearance of

oscillatory instability. Poor PI setting can cause oscilla-
tory instability when the rotor time constant is poorly
known basically in two di�erent ways. One is to make
the closed-loop response highly oscillatory by assigning
complex conjugate eigenvalues with low damping for the
tuned system. The second one is to force the closed-
loop response to be very fast by choosing the closed-loop
eigenvalues too far away to the left in the complex plane.
The second one is more likely to occur, since it seems a
good choice in terms of performance of the tuned system,
contrary to the �rst one.
Rules for the PI setting were provided in Theorem 1

ensuring robust stability of IFOC for a practical range of
�. The suÆcient condition pointed out that the closed
loop poles of the tuned system should be chosen neither
too far to the left hand side of the complex plane nor
with too low damping. Simulation results were presented



showing the performance loss due to rotor time constant
mismatch and poor PI setting (closeness to bifurcations).

A List of motor parameters

� c1: inverse of the rotor time constant;

� c2 = Lmc1 where Lm is the mutual stator-rotor in-
ductance;

� c4: inverse of the momentum of inertia;

� c3 = Bc4 where B is the friction coeÆcient;

� c5 =
3PLm
2Lr

where Lr is the rotor inductance and P

is the number of poles.

B Data for the case study

All the simulations presented are for a real 1 cv squirrel-
cage induction motor with the following parameters:

c1 13:67 s�1

c2 1:56 H:s�1

c3 0:59s�1

c4 1; 176kg�1m�2

c5 2:86
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