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I. ABSTRACT

This paper proposes a quasi time{invariant model to
characterize three-phase unbalanced ac machine. The
primary three-phase machine model is transformed into a
modi�ed odq representation that take in account the num-
ber of coil turns of each the stator winding. Except for a
very small term depending of the machine resistance, the
odq model can be considered as similar to an odq balanced
machine model. The vector model is suitable for deriving
control schemes for unbalanced operation and useful for
computer simulation studies as will be presented in the
paper.

II. INTRODUCTION

It is well known that induction motors are widely used
in several types of industries. Consequently, failures of
such motors should degrade the performance of the in-
dustry by stopping the production ow resulting and in
some cases causing life risks like the fault of a cooling
system in a nuclear power plant. Then, it is very impor-
tant to detect incipient failures and to take the necessary
safety precautions. The most frequent failures in induc-
tions motors occurs with the coils of the stator windings.
There is a relatively large number of papers that discuss

the operation of induction motors under fault conditions
[1], [2], [3], [4], [5]. However, none of works have been
addressed the use of coordinate transformations to obtain
a simpli�ed, useful and elegant model for describing the
behavior of the induction motor under fault conditions.
The main objective of this paper is to propose a modi-

�ed odq coordinate transformation to simplify the repre-
sentation of the dynamic behavior of an induction motor
when there exist failures in the coils of the stator wind-
ings. The proposed model can also be extended to study
failures that occur in the coils of the rotor windings in
the case of wound-rotor induction motor.

III. THREE-PHASE MACHINE

A. Three-Phase Model

Fig. 1 shows a circuit representation of a three-phase
machine. In the equations given below for the three-phase
machine, the superscripts s and r indicate the stator and
the rotor reference frame, respectively.
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In the above equations, vss123, i
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r123 are column vectors representing stator voltages,

stator currents, stator uxes, rotor voltages, rotor cur-
rents and rotor uxes, respectively. The column vector
representing the stator voltages is de�ned as vss123 = [vss1
vss2 vss3]

T , while the other vectors are de�ned similarly.
Also, Te, Tm, �r and p represent the electromagnetic
torque, load torque, shaft position and the number of
poles, respectively.
To complete the model given by equations (1)-(5) it

is necessary to de�ne the matrices rs123, rr123, ls123 and
lr123 that represent the resistances and inductances of the
stator and rotor respectively.
It is important to remark that all the hypothesis as-

sumed in the development of the standard Park's model
are also considered in this case. The basic di�erence of
the proposed approach with respect to the standard mod-
elling is that the number of coil turns of each winding
appears explicitly in the inductance as well as in the re-
sistance matrices. In this way any failure related with
the coils of the stator and rotor can be represented by
changing the number of turns in the model equations. In
this case the stator inductance matrix ls123 is given by:
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and P1 = P�s + Pms, P2 = �Pms=2 where P�s , Pms de-
note permeances of the respective magnetic circuits while
ns1, ns2, ns3 and nn are the number of turns of each stator
winding and a normalizing number of turns respectively.
Following the same reasoning, the matrix correspond-

ing to the mutual inductance between stator and rotor
lsr123 is given by:
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where P3 is the permeance between a stator phase and a
rotor phase when � = 0;

a1 = cos (�)

a2 = cos (� + 2�=3)

a3 = cos (� � 2�=3)

and
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where nr1, nr2, nr3 denote the number of turns of each
rotor winding.
Similarly, the matrix corresponding to the rotor induc-

tance matrix lr123 is
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where P4 = P�r + Pmr, P5 = �Pmr=2
The resistances of each stator and rotor windings are

also assumed to be dependent on the respective number of
coil turns. Then, the stator and rotor resistance matrices
are given by:

rs123 =

2
4

r0s1n
2

s1 0 0
0 (r00s2 + r0s1ns2)ns2 0
0 0 (r00s3 + r0s1ns3)ns3

3
5

or by
rs123 = r

00

s123Ns + r
0

s123Ns

and by

rr123 =

2
4

r0r1n
2

r1 0 0
0 (r00r2 + r0r1nr2)nr2 0
0 0 (r00r3 + r0r1nr3)nr3

3
5

or by
rr123 = r

00

r123Nr + r
0

r123Nr

B. Modi�ed odq model

If the standard odq transformation is directly applied
in the case ns1 6= ns2 6= ns3 and nr1 6= nr2 6= nr3 the re-
sulting odq model will have time-varying parameters that
depend on the rotor angular position and on the dq po-
sition angle. A time-varying odq model is very hard to
work with and has the same complexity of the to prim-
itive three-phase representation. However, a quasi-time
invariant model can be obtained if the matrices Ns and
Nr are adequately used as shown in the following:
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The next step in the modelling is to use the 123� odq
coordinate transformation matrix de�ned by:
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and consequently
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with Ps = P(�) and Pr = P(� � �r) where � is angular
position of the dq axis. Applying these transformations
to the three-phase equations yields:
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where !r = d�r=dt is the shaft speed and !a = d�r=dt is
the speed of the dq axis.
After some algebraic manipulations it follows that:
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The I matrix is an identity matrix of appropriate order
and the elements of the stator resistance matrices are
given by:
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The rotor resistance matrix is obtained similarly only
by replacing the subscript s by r and � by � � �r in the
above stator matrices.
Notice that except for the disturbance terms "as and "ar

that have time-varying parameters, all the other param-
eters of the model given by (16)-(19) are time-invariant.
The dependency with !r is the same as of a standard odq
balanced machine.
The values of r00s12 � r00s33 and r00r12 � r00r33 can be ap-

proximated by their average values. Besides, if the rotor
reference frame is used, only "rs will depend on �r but it
may be neglected, except at very low speed.

IV. SIMULATION RESULTS

Fig. 1 shows the simulation waveforms of the start-up
of a three-phase machine that operates balanced up to
t = 3:5s. After t = 3:5s the number of coils turns of
phase s1 is changed by 10%. The parameter of the three-
phase machine used this simulation study is given in [6].
Fig. 1a presents a comparison of the model proposed
(top) and the primitive three-phase model (1)-(5). Fig.
1b presents the dq current in the synchronous reference
frame as obtained with the proposed model.

V. CONCLUSIONS

In this paper was presented a mathematical model suit-
able for the dynamic simulation of an induction machine
with interturn short circuit in the stator or rotor wind-
ings. With the results from simulation is possible to ver-
ify the behaviour of the currents when the short circuit
occur.
For the next step, some experiments will take place and

the results that will be obtained must validate the model
presented.
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Figura 1 Current waveform during start-up and after
changing the number of coil turns of phase s1 of a three-
phase machine. (a) Simulated with the proposed model
(top), simulated with the primitive three-phase model.
(b) dq currents (bottom) obtained with the proposed
model in the synchronous reference frame.
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