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Abstract – A correlation is made between the shape of the closed loop
output impedance of a buck converter and its load transient response.
This correlation is used to design the voltage mode feedback loop that
achieves an optimum load transient response for VRM applications.
Additionally, a formula that predicts the peak output voltage
deviation as a function of the loop gain crossover frequency is
derived.  The design approach was validated on a prototype that
meets Intel Pentium III transient response specs.

 I. INTRODUCTION

The demand for faster, more powerful computers keeps
pushing microprocessor manufacturers to pack more
computational power and more features into each new
generation of microprocessors.  As a result, the power
requirements of a microprocessor, as well as the on-chip
power dissipation, have steadily been increasing.  As this
trend continued, adequate cooling of the processor, and the
entire system, became an issue.  In order to deal with the
on-chip power dissipation, the processor core logic supply
voltage had to be lowered. A lower core logic operating
voltage reduces the processor power requirements
providing the clock frequency remains unchanged.  In
other words, for a given power dissipation, a processor
with a lower core logic operating voltage can run at a
higher clock frequency.  Hence, it is quite clear that future
high performance microprocessors will continue to migrate
to lower core supply voltages and higher operating currents
making power distribution and delivery increasingly
difficult.

As the processor core logic supply voltage is reduced,
more precise signal voltage levels are required to insure
error-free operation.  Under the circumstances,
microprocessor manufacturers have had to impose very
stringent requirements on both the static and the transient
output voltage regulation of the point-of-load modules
powering the CPU.  A portion of the latest Pentium III
VRM electrical specifications is given in Table I [1].
Meeting these specs requires careful optimization of both
the power stage and the control loop.  This paper will focus
on the design and optimization of the voltage mode control
loop.  An optimized control loop can save microfarads of
output capacitance, thus reducing the size and the cost of
the point-of-load module.

One way to approach the loop design of a point-of-load
module is to use SPICE to simulate the entire circuit.
However, this process is time consuming, and yields little
insight into which circuit parameters need to be changed to
improve the transient response of the converter.  An
alternative to “brute force” simulation, as it was pointed
out in [2], [3] and [4], is the design oriented approach that
uses the output impedance of the converter to predict its
transient response.  This approach was used in [4] to

optimize the load transient response of a synchronous buck
converter designed to meet the Pentium II VRM
specifications.
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(MHz)
Min Typ Max Unit

Vcccore
Vcc for ��
core 2.0 V

Static
tolerance at
VRM pins on
system board

(K) 450-500 -0.060 0.070 V

Transient
tolerance at
VRM pins on
system board

-0.130 0.130 V

Icccore
Current for
Vcccore

(K) 450
(K) 500

14.5
16.1

A

Iccsgnt
Icc for Stop-
Grant Vcccore

0.8 A

Icc slew rate 20 A/��

In [4] the authors propose the use of constant off-time
current mode control.  This control method inherently
offers attractive features like the relative ease of closing
the loop and the information about the load current that can
be used to achieve the ideal load transient response by
offsetting the nominal output voltage depending on the
load current.  Another control method suitable for
microprocessor power applications is summing mode
control proposed in [5].  Summing mode control is similar
to typical current mode control methods, but is claimed to
have a much higher bandwidth, and thus a better transient
response.  While current mode control schemes advocated
in [2], [4] and [5] demonstrate good transient response, it
comes at the expense of reduced efficiency.  A 7mΩ
current sensing resistor will reduce the efficiency of the
module by 2-3% depending on the output voltage.

In this paper, we will demonstrate how to use the closed
loop output impedance of a buck converter to design and
optimize a voltage mode control loop that will achieve a
transient response similar to the ones reported in [4] and
[5] without sacrificing efficiency.  This loop design
method eliminates the need for time-consuming simulation
of the entire circuit and offers direct insight into where the
compensation poles and zeros need to be placed to achieve
the desired transient response.  In addition, we will be able
to derive a simple formula that accurately predicts the peak
output voltage deviation due to a load current transient as a
function of the output capacitance and the loop gain
crossover frequency.

TABLE I
VOLTAGE AND CURRENT SPECIFICATIONS FOR 2.0V

PENTIUM III (K) PROCESSORS

dt
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The voltage mode control loop will be optimized for a
12V to 2.0V synchronous buck converter intended to meet
the specifications set forth in [1].  An overview of the buck
converter transient response is given in Section II.  Section
III examines the conventional voltage mode loop design.
Section IV introduces the concept of optimum transient
response, and Section V explains how to achieve it with
voltage mode control.  Sections VI and VII are devoted to
transient response simulation and peak output voltage
determination, respectively.  Experimental results are
presented in Section VIII, and conclusions in Section IX.

 II.  OVERVIEW OF THE BUCK CONVERTER LOAD TRANSIENT

RESPONSE

A closed loop buck regulator with voltage mode control
is shown in Fig. 1.  The output of the regulator is
connected to a dynamic (microprocessor) load.  The load’s
current requirements can change from almost zero to
12.5A in a fraction of the regulator’s switching period.  A
typical regulator response to a load current change with a
���� ���� 	
 ����� ����� ��� 	�������� �� t=t0 is sketched
in Fig. 2b.  Fig. 2b shows that after a load current transient,
the output voltage begins to droop because of the power
supply’s inherent inability to instantly change its operating
point.  The controller senses the output voltage error and
attempts to correct it.  Eventually, integral action of the
control loop eliminates any steady state error in the output
voltage and returns it to its nominal value, as shown in Fig.
2b.  Between the time when the load current transient
occurs and when the regulator output voltage returns to its
nominal value, four distinct response intervals, I1 through
I4, can be identified.

The first interval, I1, coincides with the rise-time of the
load current; I2 represents the time needed by the control
loop to react to the disturbance; I3 is the time it takes the
average inductor current to become equal to the load
current, and I4 is the interval during which the output
voltage recovers to its nominal value after reaching its
minimum value at t=t3.

A. Interval I1
Since ∆t1=t1-t0 is much shorter than the switching

period, the control loop cannot immediately react to this
disturbance.  Thus, the converter initially responds to the

sudden change in the load current in an open loop fashion.
As a result, during I1, the control loop can simply be
omitted, and the circuit of Fig. 1 can be modeled as shown
in Fig. 3.  In Fig. 3, the buck inductor is modeled by a
constant current source; the equivalent series resistance
and the equivalent series inductance of the output
capacitors (ESR and ESL, respectively) have also been
included, as they contribute to the output voltage deviation.

The output voltage deviation during ∆t1, ∆Vo1, can be
calculated using the following expression:

ooo IZV ⋅=∆ 1 , (1)

where Zo is the open loop output impedance of the
converter, and Io is the ramping load current.

From Fig. 3, it can, by inspection, be determined that Zo

is the impedance of the output capacitors.  At the
frequency of the load current slew rate, Zo is dominated by
the ESR and ESL of the output capacitors, but the discharge
of the output capacitor has been included for completeness.
Consequently, the resulting peak output voltage drop
during I1 can be calculated using (2).
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From (2), it is clear that ∆V01 depends on the number and
the quality of output capacitors, and the magnitude and the
slew rate of the load current step; ∆V01 does not depend on
any feedback loop parameters.

B. Interval I2
At t=t1 the load current had ramped up to its final value,

and the controller still had not had time to respond.  Since
we are primarily interested in the maximum output voltage
deviation, let us assume that the controller turns the main
switch (Q1) on at t=t2, after the worst case delay, td, given

Fig. 2.  Typical transient response of a synchronous buck converter to a
load current step occurring at t=t0
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Fig. 1.  Closed loop buck regulator with voltage mode control
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Fig. 3.  Equivalent model of the buck regulator output during I1
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212 ttttTDt psd ∆=−=+′= , (3)

where D′ is the duty ratio of the synchronous rectifier, Ts is
the switching period, and tp is the propagation delay
through the PWM comparator and the MOSFET driver.
During ∆t2, the full load current discharges the output
capacitors causing the worst case output voltage drop to
be:

24 t
C

I
V

o

o ∆
∆

=∆ , (4)

where Co is the total output capacitance.  Equation (4)
shows that ∆V4 is determined by the value of the output
capacitor, the magnitude of the load current step, and the
worst case delay, td, which, in turn, depends on the
switching frequency, and the duty cycle, D; again, like
∆V01, ∆V4 does not depend on any feedback loop
parameters since the loop has not had enough time to
respond to the disturbance.

C. Interval I3
At t=t2, the controller finally turns Q1 on, and the

feedback loop attempts to correct the output voltage to its
nominal value.  During the ensuing time interval, ∆t3= t3-t2,
the inductor current starts to ramp up, but the output
voltage continues to decrease until the average inductor
current becomes equal to the load current at t=t3.

During I3, the duty cycle (D) may or may not saturate
(keep Q1 on for more than one whole switching period).  If
D saturates, the formula given in [6] can be used to
calculate ∆V5.  This formula can be used in cases when the
buck inductor is too large to change its state within one
switching cycle and the feedback has enough gain to
command a unity duty cycle based on the disturbance until
the inductor current becomes equal to the load current.  If,
on the other hand, the duty cycle does not saturate either
because the inductor can change its state quickly or
because the loop doesn’t have enough gain to command a
unity duty cycle, the formula given in [6] will not apply.
Instead, a formula that takes into account the dynamics of
the control loop should be used to calculate ∆V5.  Such a
formula will be derived in Section VII.

If the duty cycle does not saturate during I3, the
converter of Fig. 1 can be modeled by its Thevenin
equivalent circuit shown in Fig. 4.  The Thevenin
equivalent model takes into account the action of the
control loop which results in the regulation of the output
voltage and a modification of the open loop output
impedance of the converter. Thus, the Thevenin voltage
source, VTH, is the regulated output voltage; the Thevenin
impedance, ZTH, is equal to the closed loop output

impedance of the converter, Zof.  The closed loop output
impedance can be expressed as:

T1

Z
ZZ o

ofTH +
== , (5)

where Zo is the open loop output impedance of the
converter, and T is the loop gain, both of which can easily
be calculated using standard small signal modeling
methods.

D. Interval I4
At t=t3, the average inductor current becomes equal to

the load current.  Consequently, after t=t3 the output
capacitors will start to recharge to their nominal voltage.

During I4 the converter remains in the normal mode of
operation dictated by the control loop.  Therefore, the
Thevenin equivalent model used to model the converter
during I3 remains valid during I4.

 III.  CONVENTIONAL LOOP COMPENSATION

In the previous section it was pointed out that the
designer’s ability to influence the shape of the load
transient response using the control loop is limited to
intervals I3 and I4.  Thus, these two intervals will be the
focus of the remainder of this work.

In a typical power supply application, the primary goal
of a design is to tightly regulate the output voltage.  In
addition, the regulator will most likely be required to
respond to relatively infrequent changes in the load current
that certainly do not have the dynamics or the magnitude
required by Pentium microprocessors [1].  Consequently,
transient response is frequently a secondary concern.
Under the circumstances, the voltage feedback loop is
usually compensated in such a way to achieve a dominant
low-frequency pole, single slope, loop gain characteristic.
Closing the loop in this manner insures a tight output
voltage regulation due to a high DC gain, and a reasonably
good transient response depending on the achieved
bandwidth.

The load transient response of a buck converter with a
conventional voltage loop can be examined with the help
of the Thevenin equivalent model of Fig. 4.  When the
switch S1 is closed, it produces a step change in the load
current.  From Fig. 4 we can by inspection write an
expression for the output voltage, Vo:
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s
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sV o

th
th

o ⋅−= )()( . (6)

It should, however, be pointed out that (6) is valid only if
the duty cycle does not saturate after the step change in the
load current.  In this case, even though Io(t) is not a small
signal perturbation, the mode of operation of the converter
does not change.  As a result, small signal models used to
derive (6) are still valid, despite the temporary increase of
the duty cycle.

In order to calculate the transient response using (6),
ZTH(s) needs to be calculated.  As it turns out, ZTH(s) can
easily be determined graphically.  First, |Zo| is sketched, as
shown in Fig. 5a.  Since the common single slope loop
gain characteristic is assumed, |T| and |1+T| can easily be
plotted as shown in Fig. 5b; |ZTH|, given in Fig. 5c, is
obtained by simply “doing the algebra on the graph”, i.e.
graphically adding |Zo(s)| and |1+T|.  From Fig. 5c, anFig. 4.  The Thevenin equivalent model of a buck regulator output during

I3 and I4



expression for ZTH(s) can be written by inspection.
Substituting this expression back into (6) results in a
frequency-domain expression for the output voltage.

Fig. 5c shows that with single slope loop gain, the
output impedance starts to quickly decrease below ωo, and
becomes vanishingly small at low frequencies.  When this
result is substituted in (6), it becomes clear why the output
voltage quickly returns to its nominal value after any kind
of disturbance.  Consequently, the peak to peak voltage
deviation due to a loading transient followed by an
unloading transient is approximately equal to twice the
peak output voltage deviation due to a loading transient
alone.  If, on the other hand, the output voltage were to
stay at, or close to, the lowest level it had reached after the
loading transient, extra headroom would be available for
the unloading transient; the peak to peak output voltage
deviation could approximately be reduced in half.

 IV.  OPTIMUM LOAD TRANSIENT RESPONSE

It is by now apparent that the single slope loop gain is
not the best way to close the loop in Pentium power supply
applications.  Instead, the system behavior during intervals
I3 an I4 needs to be influenced by the control loop to
minimize ∆V5 (see Fig. 2) and control the output voltage
recovery during I4.  Therefore, once the power stage
components and the switching frequency have been chosen
based on (1)-(4), optimum control loop design can be
undertaken.  If ∆V3 (see Fig. 2) can be brought within static
tolerances, the loop should be designed to minimize ∆V5

and realize the response shown with a dashed line in Fig. 6.
Otherwise, as will most likely be the case, the loop should
still minimize ∆V5, but will, in this case, have to achieve
the response shown with a solid line in Fig. 6, and allow
the output voltage to return to within the static tolerance
limit.

 V. ACHIEVING OPTIMUM TRANSIENT RESPONSE WITH

VOLTAGE MODE CONTROL

With voltage mode control the information about the
value of the average inductor current is not available.
Hence, it is not possible to offset the output voltage based
on the value of the inductor current.  Instead, the desired
transient response shown in Fig. 6 needs to be achieved by
clever loop design.

The problem with conventional single slope loop gain in
the context of the optimum transient response in
microprocessor applications was clearly outlined by (6)
and Fig. 5c.  The rapid decrease of |Zof| below ω0 is
undesirable, and should be eliminated through more
suitable loop compensation.

An examination of Fig. 4 in conjunction with (6) leads
to a conclusion that the dashed-line response in Fig. 6
requires:

ZTH=RTH=const.  (7)

Similarly, the solid line response shown in Fig. 4 could be
realized with:
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where 
mf

1  must be less than or equal to the time during

which the output voltage can be outside the static limits
[1].  Since the general shape of Zo of a buck converter is
predetermined, equations (7) and (8) define the shape of
the loop gain that needs to be achieved.

A typical open loop output impedance of a synchronous
buck converter is shown in Fig. 7a.  In Fig. 7 

oLC
1

0 =ω

is the filter corner frequency, 
lL R

RQ 0=  is the Q factor

associated with the series resistance of the inductor, Rl,

oC
LR =0  is the characteristic impedance, and

)(
1

oz CESR⋅=ω  is a zero due to the ESR of the output

capacitors.  The loop gain required to achieve ZTH

described by equations (7) and (8) is given in Fig. 7b by
the dashed and the solid line, respectively.  In Fig. 7b ωz1,
ωz2, and ωp1, ωp2 are the two compensation zeros and the
two compensation poles, respectively, and ωc is the loop
gain crossover frequency.

Shaping the loop as shown in Fig. 7b results in a closed
loop output impedance presented in Fig. 7c.  Figures 7b
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Fig. 5.  a) Typical open loop output impedance of a buck converter, b)
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Fig. 6.  Typical transient response of a synchronous buck converter to a
load current step occurring at t=t0
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and 7c demonstrate that only the location of the
compensation zero ωz2 determines whether Zof

approximates equation (7) or (8).  If ωz2 is placed at 
LQ
0ω

,

Zof approximates (7) (see the dashed line in Figs.7b and 7c)
and results in the dashed transient response in Fig. 6.  On

the other hand, if ωz2 is placed between 
LQ
0ω

 and ω0, Zof

approximates (8) (see the solid line in Figs. 7b and 7c) and
yields a transient response shown with a solid line in Fig.
6.

Further examination of Fig. 7 reveals that the
compensation zero ωz1 and its associated pole (assumed to
be at zero frequency and not shown), ωp1, actually hurt the
transient response by reducing Zof at low frequencies.  In
fact, without this pole-zero pair, Zof would have the exact
shape needed to achieve the ideal transient responses
shown in Fig. 6.  Unfortunately, if this pole-zero pair were
omitted from the compensation, the integral action of the
control would be eliminated, and the required tight static
voltage regulation could not be achieved.  Therefore, some
transient performance has to be traded for static voltage
regulation.

Since ωz1 and ωp1 cannot be omitted from the
compensation, their location has to be chosen carefully to
minimize their effect on the transient performance.
Namely, in Zof ωz1 becomes a dominant low frequency
pole.  The location of this pole determines the rate of the
output voltage recovery after a load transient.  As it turns
out, [1] specifies a load toggle rate of 100Hz to 100kHz.
Therefore, placing the dominant low frequency pole
(compensation zero ωz1) in Zof far below 100Hz insures
that the output voltage will not significantly recover before
the worst case unloading transient (100Hz) happens, thus
providing the needed additional headroom for the transient
response.  The pole ωp1 can be placed anywhere from a
decade below ωz1 all the way to zero frequency, depending
on the static voltage regulation requirements.  Placing ωp1

above zero frequency results in a finite closed loop output
impedance at DC, and thus, in a finite output voltage offset
(steady state error).

 VI.  ANALYSIS AND SIMULATION

Once the shape of the closed loop output impedance has
been determined by “doing the algebra on the graph”, we
can by inspection write the expression for Zof.  If

LQ
0ω

<ωz2<
oLC

1
0 =ω , Zof is drawn with a solid line in Fig.

7c, and can be expressed as:
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In a special case, when ωz2=
oLC

1
0 =ω , Zof takes the

shape shown with the dashed line in Fig. 7c, and (9)
reduces to:
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Substituting (9) and (10) into (6), respectively, and
rearranging, we get:
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Equations (11) and (12) are frequency domain expressions
for the converter output voltage during I3 and I4.  The
Mathematica™ software package can be used to calculate
the inverse Laplace transform of (11) and (12) and plot the
resulting time-domain converter output voltage behavior
during I3 and I4.  Simulation results for two compensation
networks designed to approximate (7) and (8) are given in
Fig. 8 by the dashed and the solid line, respectively.

Using Mathematica’s built-in inverse Laplace function,
predicting and plotting the load transient response of the
converter takes only a few seconds compared to several
minutes required for a SPICE simulation on a Pentium II
450MHz workstation.

Mathematica is an efficient tool for calculation and
plotting of the time-domain transient response.  However,
doing the task analytically yields significant additional

Fig. 7.  a) A typical open loop output impedance of a buck converter, b)
Targeted loop gain, c) Optimum closed loop output impedance
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design insight.
Taking the inverse Laplace transform of (11) and (12)

yields time-domain equations for the converter output
voltage given by (13) and (14), respectively.

)()( 2
3

1
21

ttt zzc
oTHo eAeAeAESRIVtV

ωωω −−− ++⋅⋅∆−= (13)

)()( 1
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tt zc
oTHo eAeAESRIVtV

ωω −− +⋅⋅∆−= (14)

where A1, A2, and A3, are constants.  Equations (13) and
(14) show that the converter response during I3 is a
function of the loop gain crossover frequency, ωc, and the
compensation zeros, ωz1 and ωz2.  Furthermore, since
∆Vo(t) in both (13) and (14) is a sum of decaying
exponential terms, the shape of the transient response can
be controlled by appropriately adjusting the time constant
of each of the exponential terms.  In other words, if ωc, ωz1

and ωz2 are properly chosen, the transient response can be
made to resemble the waveforms in Fig. 6.  This is actually
a mathematical restatement of Fig. 7; choosing appropriate
time constants is equivalent to shaping the closed output
impedance according to (7) and (8).  The added value of
(13) and (14) lies in the opportunity to examine the
contribution of each exponential term to the overall
transient response and derive closed form expressions for
peak voltage deviation.

 VII.  CALCULATING THE PEAK VOLTAGE DEVIATION

Equation (14) is particularly suitable for obtaining a
closed form expression for the peak output voltage
deviation during I3.  Finding the peak voltage deviation in
this case is equivalent to finding the maximum of the
expression to the right of the minus sign in (14).  Taking
the first derivative of this expression, setting it equal to
zero, and solving for t yields the time tmin at which the
output voltage reaches its lowest level:
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Substituting tmin back into (14), and making the appropriate
approximations, we get an expression for the peak output
voltage deviation during I3:
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 VIII.  EXPERIMENTAL VERIFICATION

Theoretical results were verified on a prototype
synchronous buck converter.  The input voltage was
chosen to be 12V, and the nominal output voltage was
2.0V.  A voltage mode feedback loop was designed based
on (7), (8) and Fig. 7, and implemented as shown in Fig. 1.

The loop was designed for fz1=20Hz, fz2=
LQ

f0 =2.7kHz, and

fc=250kHz.  The transient response was measured for a
load current step from 0.1 to 15A with a slew rate of
60A/µs and a frequency of 100Hz.  A plot of the converter
output voltage is shown in Fig. 9 on a 50mV/division
scale.

Fig. 9 shows the worst case peak to peak output voltage
deviation due to a 15A load transient to be only 160mV.

This deviation is in fact within the static voltage tolerance
�����
��� �� ��� ���� 	��� � ��� 	
 	����� ������������

The experimental results also verified the validity of (16):
peak measured deviation during I3 was 56mv versus 60mV
predicted by (16) and demonstrated in Fig. 8.

 IX.  CONCLUSION

In this paper we have shown how to correlate the desired
time domain converter response to a step load current
change with the shape of its closed loop output impedance.
The closed loop output impedance is then used to
determine the optimum shape of the loop gain and thus, the
optimum location of the compensation poles and zeros.
Since all relevant equations can be written by inspection,
this design-oriented approach doesn’t require any lengthy
derivations, and offers immediate insight into how each
compensation pole and zero affects the transient response
of the converter.  Thus, the proposed method insures that
the desired load transient response can be achieved without
time-consuming trial and error loop design using a circuit
simulation tool.

The validity of the voltage mode loop design based on
the closed loop output impedance was experimentally
verified on a prototype buck converter built using
exclusively surface mount parts.  Tight static voltage
regulation and the desired shape of the converter transient
response were achieved by proper feedback loop design.  A
transient response typically available with current mode
control schemes was realized with pure voltage mode
control.  Hence, by eliminating the current sensing resistor
the overall efficiency of the module was improved by 2-
3% without degrading the transient response.
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Fig. 9.  The output voltage of the point-of-load module under the worst
case transient conditions (load frequency = 100Hz)




