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Abstract - The performance characteristics of
di�erent PWM strategies are examined in terms
of the amplitude of the ripple current as a func-
tion of the apportioning factor. Also the inu-
ence of the power angle on losses is taken into
account as a function of such apportioning factor.
A hybrid modulator scheme that allows to gen-
erate any continuous or discontinuous PWM has
been implemented. Selected simulation and ex-
perimental results to demonstrate the validity of
the proposed technique are presented.

I. INTRODUCTION

In AC motor drive, a given converter voltage Space
Vector Modulation (SVM) can be realized by a three-
phase PWM voltage converter by switching either three
bridge legs (continuous modulation) or two bridge legs
(discontinuous modulation). In the discontinuous modu-
lation the third phase is clamped to the positive or neg-
ative DC link [1{4]. Identical results can be obtained
from carrier based PWM techniques. In these techniques
(e.g. Sinusoidal Modulation, SM) [5], the discontinu-
ous PWM modulation can be obtained by adding a zero
sequence component, zsc, to the three sinusoidal refer-
ence voltages. As a consequence, the modulating signals
are non-sinusoidal (NSMS) [6, 7]. In both cases there
is an improvement in the waveform quality and an in-
crease in the e�ective system frequency, while the linear-
ity region of the PWM strategy is extended for about
15:5% [3, 6, 8, 9]. As a result the waveform of the ripple
voltage and the amplitude of the ripple current are af-
fected. These strategies are related because the addition
of zero sequence components into the PWM waveform
controls the placement of the null space vector within the
modulation period [8] and vice-versa. References [9, 10]
have developed algorithms based on the apportioning fac-
tor of the null vector time that are suitable for micropro-
cessor and analog implementation. In [11] the modulator
scheme consists of simple logic blocks, and allows a sys-
tematic and straight approach to generate any continuous
or discontinuous PWM. On the other hand, in order to
minimize the losses, some PWM schemes have been de-
veloped [3,12,13], in which variable clamped segments are
distributed according to the power angle, between output
voltage and current. Among them, only the strategy pre-
sented in [13] guarantees the minimization of switching
loss in all the range of the phase angle.
In this paper the performance characteristics of di�er-

ent PWM strategies are examined in terms of the ampli-
tude of the ripple current as a function of the apportion-
ing factor. By adapting the strategy presented in [13]
the inuence of the power angle on losses is taken into
account as a function of such apportioning factor. These
techniques are easily implemented by a hybrid modulator
scheme that allows a systematic and straight approach to

generate any continuous or discontinuous PWM strategy.
Simulated and experimental results demonstrate the va-
lidity of the proposed technique.

II. BACKGROUND

The introduction of a zero sequence component, vh, in
a modulator does not a�ect the inverter line to line volt-
age, but signi�cantly inuences the switching frequency
characteristics. Also, in SVM the split and distribution
of the duration of the zero-state vectors (see Fig. 1) V0
and V7 at the beginning, to1, and at the end, to2, of the
sampling interval, respectively, can be represented by the
apportioning factor � = to1=(to1 + to2).
It has been shown that adding a zero-sequence com-

ponent to the modulating signal in SM or changing the
apportioning factor in SVM leads to the shift of pulse
positions in output line voltages within a switching pe-
riod and that, in both cases, the waveform of the ripple
voltage and the amplitude of the ripple current are af-
fected [8, 10]. The relation between vh and �, for each
Sector is given by [14]

vh = E(
1

2
� �)� (1� �)v�x � �v�z . (1)

where for the reference voltages v�1 ; v
�
2 ; v

�
3 ; v�x =

maxfv�1 ; v�2 ; v�3g and v�z = minfv�1 ; v�2 ; v�3g, within the
modulating interval.
When introduced to (1), constant values of � imply in

NSMS as those indicated by � = 0:5 (�1=2), � = 0, and

� = 1 in Fig. 2(a). However, when � varies alternately
between 0 and 1, as a function of time, only discontinuous
NSMS are obtained, as those indicated by � = c(t); � =

c(t), � = d(t) and � = d(t); in Fig. 2(b). Consider �s =
!mt as the angle of the reference vector, with an angular
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speed !m; in a given sector. In general, by considering
all possibilities of discontinuous modulation, four types of
behaviour of signal � does occur. In the �rst type (Type
�00) � = 0 during all the interval, that is for �s = �=3
degrees. This is the case for strategies � = 0 and � = c(t):
In Type �11; � = 1 within the whole interval (e.g. with
strategies � = 1 and � = c). In the two other types
the value of � changes either from 0 to 1 (Type �01, or
� = d) or from 1 to 0 (Type �10, or � = d) at �s =
�=6. Reference [11] has shown that these types can be
combined along the 360 degrees originating other PWM
strategies.

III. RMS VALUE OF THE CURRENT ERROR

Although the Total Harmonic Distortion (THD) has
been used as a comparison criterion among the di�erent
PWM strategies, the current ripple RMS is single-phase
for measuring losses [3, 15]. In this proposed paper the
amplitude of the ripple current is calculated as a func-
tion of the apportioning factor, being based on the con-
cept presented in [16]. The advantage of the approach
over other existing methods is to obtain a general expres-
sion for all PWM strategies. Next the principle of the
approach is explained.
1) Current ripple per phase: Consider the single-phase
inverter in Fig. 3(a) of which the load model load is that
of Fig. 3(b). In fact, such model corresponds to the high
frequency per phase model of an induction motor. The
output voltage of the inverter, v(t); is a pulsed waveform
assuming either the value +E=2 or �E=2. The di�erence
�v(t) = v(t)� v�(t), where v�(t) is the reference voltage
demanded at the inverter output, causes a current ripple
�i(t) that depends on the load inductance L. Therefore,

d�i(t)

dt
=

v(t)� v�(t)

L
=

�v(t)

L
(2)

represents the slope of the line segments describing �i(t),
as shown in Fig. 3(c). If the switching frequency, fs, is
much greater than the output frequency, fm, the reference
voltage, v�(t), can be supposed to be constant during the
switching interval, Ts. From Fig. 3(c), it can be shown
that

T+ =
�i+ ��i�

E=2� v�
L =

�i(t)

E=2� v�
L (3)

where T+ is the interval of time of �i increase and �i(t)
is the di�erence between the positive and negative peaks
of �i(t).
Also, it can be shown that the interval of �i decrease,

T�, is given by

T� =
�i(t)

E=2 + v�
L (4)

0.5µ= 1µ=
(a)

µ=0

(b)

d(t)µ = µ = d(t)c(t)µ= µ= c(t)

Fig. 2 Non-sinusoidal waveforms
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Since Ts = T++T�, �i(t) can be calculated from equa-
tions (3) and (4) as

�i(t) =
E2 � 4v�2

4ELfs
(5)

2) Current ripple for a three-phase inverter: Consider
now the three-phase in Fig. 4. Since in a three-phase
inverter zero sequence components can be added to the
reference voltages v�j (t); j = 1; 2; 3; the distorted voltage

references can be represented by v
�0

j (t) = v�j (t) + vh(t).
Therefore, for a three-phase inverter, the amplitude of
the current ripple can be given by

�i(t) =
E2 � 4[v�0]2

4ELfs
(6)

The transformation of �ii(t); i = 1; 2; 3 into �� compo-
nents, gives, �i� and �i�, is given by

�
�i�
�i�

�
=

r
2

3

�
1 � 1

2
� 1

2

0 �
p
3

2

p
3

2

� " �i1
�i2
�i3

#
: (7)

It can be shown, after some mathematical work, that
for a modulation index m [17]

�i� = �
r
3

2

m

Lfs
[vh(t) cos!mt+

mE

8
cos 2!mt] (8)

�i� =

r
3

2

m

Lfs
[vh(t) sin!mt� mE

8
sin 2!mt] (9)

From equations (8) and (9) the RMS value of amplitude
of the ripple current, �i2�� = �i2� + �i2� can be calculated
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Fig. 5 Behaviour of �2i�� non-sinusoidal strategies.

for the continuous and discontinuous modulation with a
modulation index m, that is,

�i2�� = k2
m

�
m
2E2

64
+ v2h(t) +

mE

4
vh(t) cos 3!mt

�
(10)

By substituting (1) in (10) for speci�c values of �
and m, in the interval of variation of �s, the �i2�� cor-
responding to the four Types discussed above for Sector
I (v�1 > v�2 > v�3) can be calculated. They are shown in
Fig. 5. It should be noticed that the behaviour of � is
the same at Sectors I, III and V and complementary at
Sectors II, IV and VI.
The RMS value of amplitude of the current ripple in

one sector can be obtained, for the continuous and dis-
continuous modulation, from

i2RMS =
1

�smax

�smaxZ
0

�i2��d�s: (11)

where �smax = �=3:
When applied to the four types of discontinuous mod-

ulation techniques �00; �11; �01;and �10 it gives

i2RMS�
00
=

km
8

2
43m2

�
1 +

p
3

2�

�
16

�
p
3m

�
+

1

3

3
5 ; (12)

i2RMS�
11
= i2RMS�

00
(13)

i2RMS�
01
=

km
8

2
4m2

�
3 +

p
3

�

�
16

� 5m

3�
+

1

3

3
5 : (14)

i2RMS�
11
=

km
8

2
4m2

�
3 + 2

p
3

�

�
16

+
m(5=3� 2

p
3)

�
+

1

3

3
5 :

with

km =

�
3mE

RLfm

�2

(15)

For the purpose of comparison the approach was applied
to some continuous modulation techniques. When ap-
plied to the 3rd harmonic injection technique, i2RMS can
be calculated as a function of the distortion index q; that
is,

i2RMS = k
m
2

48
(q2 � q

2
+

1

8
): (16)
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From this expression it can be easily shown that mini-
mum losses are achieved for q = 1=4; value also found
in [18] by numerical methods. For the purpose of com-
parison the values q = 0 and q = 1=6 (referred here as sen
and q1=6; respectively) as well as the symmetrical vector
modulation (�1=2) have been examined.

A. High performance modulator

Di�erent studies have used i2RMS as a criterion to com-
pare continuous and discontinuous modulation [3, 15].
The strategies, �00(� = 0 and � = c), �11 (� = 1 and
� = c), �01 (� = d) or �10 (� = d) can be compared to
continuous modulation by using the RMS value of am-
plitude of the ripple current, i2RMS , as a function of the
modulation index m, as shown in Fig. 6. These results
studies con�rm that strategy q1=4 is marginally superior
to strategy �1=2, as mentioned in [15]. Strategy �1=2 is,
however, easier to be implemented by the use of the tech-
nique introduced in [11]. It also con�rms that in the high
modulation range all discontinuous methods (of which the
technique � = d is the best) are superior to � = 0:5. It
con�rms, in addition, that the change from � = 0:5 (�1=2)

technique to � = d (�10) technique, at a value of m be-
tween 0:9 and 1; is the best technique for minimizing the
current ripple, of which the behaviour is shown in Fig. 7.
This strategy, however, does not take into account the
load power angle.
Figure 8 describes the behaviour of the e�ective fre-

quency ratio, kfreq , between the switching frequencies
for discontinuous and continuous modulation, against the
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Fig. 9 Relation between �� and �V�I

phase angle, �V�I . It can be seen from that �gure that
for the technique �10; kfreq is maintained around 1:5 for
all range of �V�I . This is due to the voltage clamp-
ing for each phase during 1/3 of the fundamental period.
But for �V�I = 30 degrees, for instance, kfreq = 2 if
the technique �00 is employed. This means that i2RMS ,
which is proportional to 1=k2freq, reduces of 1=4, decreas-
ing losses. For �V�I = 0 degree the technique to be cho-
sen should be �00. For the PWM schemes, each output
of the inverter legs can be alternately left on the positive
or negative rail of the DC link for 120o intervals of the
fundamental period [3]. In [19] the no switching region is
allocated to 0o � 60o of the fundamental period because
this range of phase lag is typical in practical applications
of inverters. Extending this algorithm, the PWM scheme
of [15] allocates the 60o interval of no switching region
to �60o � 60o of the fundamental period according to
a given phase angle. These PWM schemes, however, do
not guarantee the minimization of switching losses in all
the range of the phase angle. This problem has been
solved in [20], of which the technique is based on the
space vector modulation and de�nes a modi�ed voltage
vector (referred to a general frame), of which the phase
angle is a function of the actual phase angle. As a result
the clamping segments of 60o are imposed to be in the
vicinity of both the positive and negative current peak
for a given power angle, �V�I . Minimization of losses re-
sult from two factors: (a) low switching frequency ratio,
and (b) absence of switching intervals in the vicinity of
current peaks in a given phase.
Same technique is applied in this paper but with a dif-

ference in the use of the phase shift. A "modi�ed power
angle" ��, which is a function of �, substitutes �V�I in
the method used by [20]. The relation between �� and
�V�I is given in Fig. 9. The subscript "�" simply indi-
cates that phase shift �� determines the behaviour of the
apportioning factor �. After the position of the modi�ed
reference voltage vector v��� = v�e�j�� is determined,

the zero sequence component is calculated through (1).
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B. Modulator implementation

The optimal technique presented above can be easily
implemented by use of the modulator as described in [11,
14]. Such a modulator is based in the scheme indicated in
Fig. 10, in the logic signal � given by (1) determines the
type of strategy to be implemented. These logic signals
representing � are obtained from the reference signals.
The modulator can be implemented in either analog [11,
14] or digital version. In Fig. 11 experimental results for
its digital implementation show the phase voltages for
�00 (� = c) and �10 (� = d). Each �gure also show
the integration of the phase voltage, which results in the
corresponding non-sinusoidal waveforms presented in Fig.
2.
The proposed technique imposes the clamping interval

to be in the vicinity of the current maxima as requested by
the phase angle of the load, �V�I . This can be achieved
if the signal � = d is shifted as a function of ��, that is,

Table 1 Values of �� related to �V�I .

Varia�c~ao de �V�I Values de ��

0� �! 30� �� = �V�I
30� �! 60� �� = 30�

60� �! 120� �� = �V�I � 30�

120� �! 150� �� = 90�

150� �! 180� �� = �V�I � 60�
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(t )jv* µ
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Fig. 12 Circuits that represent the operations resulting in
the generation of d�

d� = d(t� ��=!) for the law �� vs �V�I as described in
Fig. 9. The expression that determine the shift values of
�� from Fig. 9 are given in Table 1:
By considering the set of three-phase signals

v�1�(t) = cos(!mt���) (17)

v�2�(t) = cos(!mt� 2�

3
���)

v�3�(t) = cos(!mt+
2�

3
���):

the logic signal d� can be obtained as shown Fig. 12.
Simulated results for �V�I = 0o to �V�I = 105o with

increments of 15o are presented in Fig. 13(a) to (d) and
Fig. 14(a) to (d). These results show that the 15o clamp-
ing intervals of phase "1" (full-line) are in the vicinity of
the current peak in the same phase (dotted-line). Also,
the behaviour of signal d� is included (dashed-line), the
phase-shift �� being measured from the edge indicated by
the arrow to the vertical dotted-line indicated in all �g-
ures. These results agree with those presented in [20]. It
should be noticed that cases �V�I = 0o and �V�I = 30o

to �V�I = 60o correspond to the experimental results in
Fig. 11 for � = d and � = c, respectively.

IV. CONCLUSION

The performance characteristics of di�erent strategies
have been examined in terms of the amplitude of the rip-
ple current. Also, it has been con�rmed the fact that re-
duced switching losses can be obtained by distributing the
non-modulated segments in discontinuous PWM strate-
gies along the fundamental period. This feature can be
improved if the distribution of these segments varies ac-
cordingly to the phase angle between output voltage and
current. Such technique has been easily implemented as
a function of the apportioning factor by use of a hybrid
modulator scheme that takes advantage of the correlation
between carrier-based and space-vector modulation tech-
niques. Simulated and experimental results corroborate
the algorithm employed. An important point is that the
modulation technique have been generated from simple
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logic blocks, avoiding both hard calculation and the use
of look-up tables.
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