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Abstract: Simple power electronic drive circuit and fault
tolerance of converter are specific advantages of SRM
drives, but excessive torque ripple has limited its
application. This paper presents a novel method of
controlling the motor currents to minimize the torque
ripple, using a neuro-fuzzy compensator. In the proposed
control concept, a compensating signal is added to the
output of a classical PI controller, in a current-regulated
speed control loop. The compensating signal is learned
prior to normal operation, in a self-commissioning run,
but the neuro-fuzzy methodology is also suitable for on-
line self-learning implementation, for continuous
improvement of the compensating signal.

I - INTRODUCTION
Many authors have proposed the dynamic control

of a SR drive using fuzzy logic and neural networks
[1-4]. This type of control is today well established in
the area of motion control and particularly in drive
systems. Artificial intelligence-based fuzzy, neural and
fuzzy-neural controllers have a number of advantages
over conventional controllers [5], and even helping to
incorporate some "intelligence" into them [13-17]. The
most remarkable advantages for SR Drives are: no
requirement of an accurate model; possibility of
design based exclusively on linguistic information
derived from experts or from the use of clustering
techniques and capacity of incorporation of new data
and information as they become available by learning
mechanisms.

Fuzzy logic control of a SR drive has been
implemented with success in [2], and has shown to be
effective for the speed control in applications where
some degree of torque ripple is tolerated, as is the case
in many industrial applications [18]. Nevertheless, in
servo control applications or when smooth control is
required at low speeds, the elimination of the torque
ripple becomes the main issue for an acceptable
control strategy. In this case, even using a fuzzy PI-
like control as the one described in [2] is not
satisfactory, because the controller's output signal,

which is used as a reference signal for the current
control in the power converter, gives rise to sustained
torque pulsations in steady-state. Furthermore, this
torque ripple changes with the speed of the SR motor
and with the load applied to it.

II - TORQUE PULSATION
With a PI-like control alone, it is not possible to

obtain a ripple-free output speed at any speed range,
because it would also require a ripple-free output
torque, for this purpose. If it is supposed that the
output speed is constant and equal to the reference
speed in steady-state, then the PI controller's output
signal (i.e. the reference current) would be constant.
However, a constant current reference would produce
an oscillating torque (Fig. 1), rendering the ripple-free
speed control unfeasible. The simulation results shown
in Fig. 1 correspond to the current-regulated, full-load
operation of a 750W SR motor, at rated speed
(1800rpm).
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 Figure 1 -Torque ripple produced by constant
current reference signal (simulation).



 At high speeds, the torque pulsations would occur
at higher frequencies, thus causing less speed ripple,
due to the natural filtering provided by the mechanical
load inertia. Furthermore, SR drives are usually
operated in single-pulse mode at high speeds, without
current control. In this case, the most effective way of
reducing vibrations caused by torque pulsation is by
way of turn-off angle control.

At lower speeds, it is more convenient to
compensate for the torque pulsations through phase
current waveshaping. In this case, the current
reference signal should vary as a function of position,
speed and load torque, in order to produce the desired
compensation. In fact, the optimum compensating
signal is a highly non-linear function of position,
speed and load. Several works [7-12] have been
published, which use many different strategies to
produce a compensating signal. Some authors [8,10]
use the inverse of the static torque-current-position
relationship, which are tabulated previously and stored
in memory. However, this method is quite laborious
and sensitive to parameter variations.

In this work, a novel compensation method is
proposed, which is based upon a self-tuning neuro-
fuzzy compensator. The proposed compensation
scheme is described in the next section.

III - PROPOSED METHOD
Figure 2 presents a simplified block diagram of

the SR-drive speed control system, showing the
proposed neuro-fuzzy compensating scheme. The
basic idea of the proposed method is illustrated in Fig.
3. The output signal produced by the compensator,

compI , is added to the PI controller's output signal,

refI , which should be ideally constant in steady-state

but producing significant ripple, as shown in Fig. 3(a).
The resulting signal after the addition is used as a
compensated reference signal for the current-
controlled SR drive converter, as shown in Fig. 3(b).
The compensating signal should then be adjusted in
order to produce a ripple-free output torque.
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Figure 2 - Diagram of proposed compensation scheme.

The compensating signal is adjusted iteratively,
through a neuro-fuzzy training algorithm, where the
training error information is derived from some
internal variable of the SR drive system. In the
simulation tests, the torque ripple itself has been used
as the training error variable, but this approach would
not be very practical for on-line implementation in a
real system, since the dynamic torque is a variable
which is difficult to measure. For continuous on-line
training, other variables could be more appropriate,
such as acceleration or speed ripple. However, the
torque could still be used directly in an off-line
training system, e.g. for converter programming on a
test rig at the factory.
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Figure 3 - Basic idea of proposed compensation method:
(a) torque ripple produced by constant current reference;

(b) ripple-free torque produced by compensated reference.

IV - SIMULATION MODEL
The neuro-fuzzy compensator is a Sugeno-type

fuzzy logic system with five fixed triangular
membership functions for each input. The rotor
angular position θ and the PI controller's output signal

refI , are used as inputs to the compensator

representing a relation as ),( refcomp IfI θ=∆ .

The training procedure consists on adjusting the
rule consequents by a hybrid training algorithm, which
combines back-propagation and least-squares
minimization. At each training iteration, the dc
component is removed from the compensating signal,
so that the ripple compensator does not try to change
the mean value of the output torque. As a result, when
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the control system operates in steady-state, after the
training, the PI controller will really produce a
constant output signal, while the neuro-fuzzy
compensator will produce a zero-mean-value
compensating current reference, the compI∆  signal.

Training data are obtained from simulations of steady-
state operation of the complete SR drive system. At
each training iteration, the dc component is removed
from the torque signal, so that just the ripple remains.
This torque ripple data is then tabulated against the
mean value of the PI output reference current, and
against the rotor angular position. This data set is then
passed to the training algorithm, so that the torque
ripple is interpreted as error information for each
current-angle pair. The output of the neuro-fuzzy
compensator is then readjusted to reduce the error
(which is in fact the torque ripple), being this process
repeated until some minimum torque ripple limit is
reached.

 Figure 4 shows the process for training the
system. The output of training block are all variables
from the system, and only θ and Iref are reloaded in the
system to train it again. The compensating current
reference is also produced and loaded in the system
(shown in dotted line).
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 Figure 4 – Training Program Flowchart.

The stopping criterion is, in this case, the
maximum number of iteration (N). When the iteration
counter i reaches N, the training program stops.

The choice of stopping criteria is very important
for the stability of the method, since the converter may
not be able to produce the required compensated
currents at any speed or load. In this case, persisting
on training may lead to output windup at the
compensator.

V - SIMULATION RESULTS
For comparison purposes, the drive system has

been simulated without compensation, at full-load
torque (approximately 4 Nm mean value), 500 rpm.
The rated speed is 1800 rpm. The output torque signal
is plotted in Fig. 5, and its harmonic components are
shown in Fig. 6. The torque signal shown in Fig. 5 is
produced by a constant current reference. As a result,
the phase current pulses are flat-topped.

As the motor has a 6/4 structure, the converter
produces 12 current pulses per rotor turn. So, the
torque pulsations occur at a frequency 12 times higher
than the frequency of rotation. For this reason, the
harmonic spectrum shown in Fig. 6 exhibits non-zero
components only for orders multiple of 12. The
magnitudes of the harmonics are expressed as
percentage of the mean value. It should be noticed that
the first non-zero harmonic (12th) exhibits a quite high
magnitude (approximately 13%).

Figure 5 – Output torque for non-compensated
(constant current reference) operation at 500 rpm.

After one training iteration, the harmonic content
of the output torque is already significantly lower, as
shown in Figures. 7 and 8. The 12th harmonic has a
relative magnitude of only 3% approximately. In this
situation, the compensated current reference produces
phase current pulses that are no longer flat-topped, as
will be shown afterwards.
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Figure 6 – Harmonic content of non-compensated
torque signal of Fig. 5.

Figure 7 – Compensated torque after first iteration.
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Figure 8 – Harmonic content in torque signal of Fig. 7.

Figures 9 and 10 show the output torque
waveform and its harmonic content for a compensated
current reference after 10 training iterations. It can be
seen that the total harmonic content is very low, and

the 12th harmonic is lower than 0.5% of the mean
torque.

Figure 9 – Compensated torque after 10 iterations.

After 10 training iterations, the compensated current
reference produces phase current pulses like those shown
in Fig. 11. As expected, the current values are higher at the
beginning and at the end of the current pulse. This pulse
shape is consistent with the torque characteristics of the
SR motor, which produces less torque at the beginning of
pole overlapping and just before the aligned position.
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Figure 10 – Harmonic content in torque signal of Fig. 9.
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Figure 11 – Current pulses after 10 iterations.

VI – EXPERIMENTAL RESULTS

Actually, the experimental system is running with
a PI-like fuzzy control. The response of the PI-like
fuzzy to a step change in the speed is shown in Figure
12. As seen from the figure, the measured speed tracks
the reference accurately.

Figure 13 shows the load torque rejetion
disturbance capability. For the torque-disturbance
rejection test, a constant speed (1000 rpm) is applied
to the machine. When the machine reaches steady
state, a torque disturbance is applied. The PI-like
fuzzy controlled drive responds quickly.

Figure 12 - Experimental result of change speed
reference between 1800rpm and -1800 rpm

To illustrate the importance of training, Figure 14
shows the experimental current result for the current
in phase A. This current corresponds to a motor
operation at speed (1800 rpm) and voltage (30V). The
same situation is shown in Figure 15, when the system
is simulated.

 Whether a neural network training is applied the
current oscillations would sensibly decrease.

Figure 13 - Experimental result of step change of load
torque at 1000 rpm

Figure 14 - Experimental result of current pulses without
training.
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Figure 15 - Simulated result of current pulses without
training.



VII - CONCLUSIONS
The Neuro-fuzzy modeling and the learning
mechanism to ripple reduction in SR motor were
investigated. The simulations of the switched
reluctance drive show that is possible to incorporate a
compensating signal in the current waveform to
minimize the torque ripple. Next steps are using this
concept in an experimental drive and incorporate
another signal to be trained.
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