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Abstract - This paper presents a new technique to get unity
power factor in a single-phase rectifier based on a Buck pre-
regulator. The proposed feedforward control technique,
allows the use of a small low frequency inductor with a high
current ripple. Theoretical analysis, design procedure and
experimental results of a 750W, 30kHz prototype are
presented.

I. INTRODUCTION

The Buck pre-regulator presented in Fig. 1 has some
important characteristics such as the absence of inrush
current, low DC output voltage, protection against short
circuit, among others.

In discontinuous conduction mode [1], with a high
frequency output inductor Lo, the input current is zero
while the instantaneous value of the input voltage is
smaller than the output voltage. The input current
harmonic distortion is dependent on the ratio between the
output voltage average value and the input voltage peak
value. Fig. 2 shows the simulation results for an inductance
Lo of 95�H. Depending on the design, the third and the
fifth harmonic components may not be in compliance with
the IEC 61000-3-2 standard [2]. Another disadvantage of
the discontinuous conduction mode is that the peak and
rms currents are very high, leading to high conduction
losses in the switches.

On the other hand, in continuous conduction mode, with
a low frequency output inductor designed in such a way
that it behaves as a constant current source, the problem
stated above no longer exists. However the inductor size
and weight in this case is much bigger. The employed
control technique is presented in Fig. 3. The output voltage
is sensor and compared to a reference voltage. The
resulting error is the input of an appropriate voltage
controller. A sensor of the rectified input voltage multiplies
the voltage controller output signal. The resulting
modulation signal is compared with the saw-tooth signal,
generating the drive signal to the switch Sb. In Fig. 4 it is
presented the simulation results employing this control
strategy, for an inductance Lo of 1H. As it can be noticed
the input current is practically sinusoidal and a high power
factor is achieved.

In order to optimize the size and weight, the inductance
Lo may be decreased, so it no longer behaves as a constant
current source. Although, increasing the output inductor
current ripple distorts the input current, with a significant
third harmonic component, as shown in the simulation
results of Fig. 5, for an inductance Lo of 15mH.

Reference [3] proposes a control technique to eliminate
the input current distortion due to the output inductor
current ripple. The difference between this technique and
the one presented in Fig. 3 is that the modulation signal is

compared to a saw-tooth whose peak value is proportional
to the current iLo. The current iLo is detected and fed into an
integrator circuit, which is reset at a constant interval and
its output is the saw-tooth whose peak value is proportional
to the inductor current. The feedforward control technique
presented in this work also eliminates the input current
distortion due to the output inductor current ripple,
however, on a different way. The difference between the
proposed technique and the one presented by [3] is that the
information about the output inductor current is on the
modulation signal instead of being in the saw-tooth signal.
The authors believe that this is an easier way to implement
this technique.

With a technique to eliminate the input current distortion
due to the output inductor current ripple, the current ripple
could be increased to optimize the inductor size and
weight. However, there is a limit. This limit and another
important issues are presented in the theoretical analysis of
Section III.

II. CONTROL STRATEGY

The buck pre-regulator with the feedforward control
technique is presented in Fig. 6. The output voltage is
sensor and compared to a reference voltage. The resulting
error is the input of an appropriate voltage controller. The
voltage controller output signal is multiplied by a sensor of
the rectified input voltage and divided by a sensor of the
output inductor current. The resulting modulation signal is
compared with the saw-tooth signal, generating the drive
signal to the switch Sb.
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Fig. 1. The Buck pre-regulator.
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Fig. 2. Discontinuous conduction mode simulation results for an

inductance Lo of 95�H.
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Fig. 3. The Buck pre-regulator control diagram for the continuous
conduction mode.
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Fig. 4. Continuous conduction mode simulation results for an inductance

Lo of 1H.
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Fig. 5. Continuous conduction mode simulation results for an inductance

Lo of 15mH.
In Fig. 7(a) it is presented the output inductor current

and the resulting modulation signal. Thanks to the
feedforward control technique the modulation signal
presents a distortion that eliminates the input current
distortion due to the output inductor current ripple. In Fig.
7(b) it is presented the saw-tooth signal being compared to
the modulation signal and the resulting drive signal to the
switch Sb.

In Fig. 8 it is presented the simulation results employing
the proposed control strategy, for the same specifications
of Fig. 5. The third harmonic was almost eliminated
resulting in a high power factor.

Without the feedforward control technique there is no
information about the output inductor current, so the
modulation signal, obtained by the multiplication of “A”
and “B”, results in a sinusoidal signal.

III. THEORETICAL ANALYSIS

A. Output Inductor Current Ripple Limit
In a Buck converter the output current is bigger than the

input current. The limit for the output inductor current
ripple is the one that guarantees that the output inductor
current equals the input current in one point only, as shown
in Fig. 9. Otherwise the input current will be distorted, as
shown in Fig. 10. Equation (1) and (2) define the input
current and output inductor current, respectively.
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Fig. 6. The Buck pre-regulator control diagram with the proposed
feedforward control technique.
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Fig. 7. Simulation results of the proposed feedforward control technique

for a low switching frequency.
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Fig. 8. Simulation results of the proposed feedforward control technique

for an inductance Lo of 15mH.
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In order to find out the maximum output inductor
current ripple, (1) and (2) are made equal, resulting in (3).
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Where: Mi � modulation index: opeaksi IiM � ,

oI�  � parameterized current ripple.

In order to obtain the angle �t where the currents touch
each other in one point, (3) is derived and made equal to
zero, as shown in (4). Solving (4) algebraically the angle �t

is obtained as a function of the modulation index, as shown
in Fig. 11. The currents will touch in one point always
between 45o and 90o. Substituting the angle �t in (3) the
maximum parameterized current ripple is obtained as a
function of the modulation index, as shown in Fig 12.
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Fig. 9. Output inductor current ripple limit.
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Fig. 10. Beyond the output inductor current ripple limit.
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Fig. 11. Angle �t as a function of the modulation index.
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Fig. 12. Maximum parameterized current ripple as a function of the
modulation index.

B. Output Characteristics

The average output voltage without the feedforward
control technique is represented by (5), and with the
feedforward control technique is represented by (6). The
output characteristics are presented in Fig. 13 and 14. As
can be noticed, with the feedforward control technique the
average output voltage is dependent on the output current,
and without the feedforward control technique the average
output voltage is independent of the output current.
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Where: V V Vm m mmax� , I R Vo sh mmax�  I o .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

_
Io

iM = 0.9

V
__

avgo

Fig. 13. Output characteristics without the feedforward control technique.
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Fig. 14. Output characteristics with the feedforward control technique.

Equation (7) presents the transfer function of the output
voltage versus the output inductor current. The voltage
controller, presented in Fig. 15, is a proportional integral
one, in order to ensure a null static error. Its transfer
function is defined by (8).
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Fig. 15. Voltage controller.

IV. DESIGN METHODOLOGY AND EXAMPLE

A simplified design procedure and example is described
in this section, according to the analysis presented in
Section III. The specifications are as follows:

Vspeak = 311V  fline = 60Hz  Ponom=1.5kW   fs = 30kHz   Ionom=25A

Pomin=0.5 Ponom=750W   Iomin=12.5A   Vo=60V   �Vo=10%Vo=6V

The input current for nominal and minimum power and
the modulation index are calculated as follows:
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The maximum parameterized current ripple is calculated
as shown bellow.
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The maximum parameterized current ripple shall occur
in the minimum power, so the current ripple is calculated.
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Once the output inductor current ripple and the output
voltage ripple are defined, the inductance Lo and
capacitance Co are calculated.
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The capacitor Co rms current is calculated as follows:
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The high frequency input filter (Lf and Cf) is calculated
according to the following procedure.
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Adjusting the filter by simulation:
�
�
�

�

��

mH4.1L

F2C

f

f

The Gv(s) transfer function is calculated as shown
bellow.
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The pole occurs approximately in 126rad/sec. The voltage
compensator zero shall occur near the pole so that they
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The Bode diagram of Gv(s), Hv(s) and the open loop
transfer function are presented in Fig. 16. The crossover
frequency is about 1.5Hz.
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Fig. 16. Bode diagram of Gv(s), Hv(s) and Gv(s) Hv(s).

V. EXPERIMENTAL RESULTS

In order to verify the principle of operation and the
control strategy the designed prototype was built. The
inductance Lo was designed to have a current ripple a little
smaller than the output inductor current ripple limit. In
order to implement the feedforward, multiplying A and B
and dividing by C, two dedicated integrated circuit
UC3854 [4] were used, as shown in Fig. 17.

In Fig. 18 it is presented the complete diagram of the
implemented prototype. A passive non-dissipative snubber
[5] is used, as shown in the shadow areas of Fig. 18. The
inductor Ls is responsible for the “lagging effect” in the
reverse recovery of diode Db, reducing the turn on losses of
switch Sb. The parameter and power component
specifications are as follows:

Vs = 220Vrms fline = 60Hz Vo = 60V Po=750W

Co = 2 x (4.3mF/75V) Cf = 2uF/280V (polypropylen)
Lf = 1.4mH – 42 turns (2x14AWG) on 2.8cm FeSi core

(gap = 0.28mm)

Ls = 3.4�/H – 5 turns (15 x 19AWG) on EE30/7 core

Cs = 100nF Sb: IRG4PC50W Db: APT30D100BN
Lo = 8.9mH – 63 turns (5 x 12AWG) on 6cm FeSi core

(gap = 0.24cm)

In Fig. 19 it is presented the input voltage and current
and the input current harmonic spectrum, with the
feedforward control technique. The total harmonic
distortion, considering up to the 60th component, is 5.39%
and the current phase displacement is 1.72o resulting in a
power factor of 0.998. The input voltage presented a total
harmonic distortion of 2.87%. In Fig. 20 it is shown the
output inductor current and the input current. As expected,
the output inductor current ripple is a little smaller than the
output inductor current ripple limit.

The input voltage and current and the input current
harmonic spectrum, without the feedforward control
technique, are shown in Fig. 21. The power factor
decreased to 0.948 and the third harmonic is significant. In
Fig. 20 (c) and 21 (b) it is presented the modulation signal
with and without the feedforward control strategy. It can
be noticed that without the feedforward control technique
the modulation signal is sinusoidal, and with the



feedforward control technique there is a distortion due to
the output inductor current ripple, which eliminates the
input current distortion.

In Fig. 22 it is presented the input voltage and current
and the input current harmonic spectrum, with the
feedforward control technique a little beyond the output
inductor current ripple limit. The power factor decreased to
0.994. The design shall be made to reach the output
inductor current ripple limit on a “critical power”.
Therefore, for a power smaller than the critical, the input
current will be distorted as shown in Fig. 21, and for a
power bigger than the critical, the power factor will be
close to unity.
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Fig. 18. Complete diagram of the implemented prototype.
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Fig. 19. Experimental results with the feedforward control technique: (a) Input voltage (100V/div.) and input current (5A/div.), (b) input current

harmonic spectrum.
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Fig. 20. Experimental results with the feedforward control technique: (a) Output inductor current (10A/div.) and input current (10A/div.), (b) output

voltage (10V/div.) and output inductor current (10A/div.), (c) modulation signal (1V/div.).
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Fig. 21. Experimental results without the feedforwad control technique: (a) Input voltage (100V/div.) and input current (5A/div.), (b) modulation signal
(1V/div.), (c) input current harmonic spectrum.
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Fig. 22. Experimental results with the feedforwad control technique beyond the output inductor current ripple limit: (a) Input voltage (100V/div.) and
input current (5A/div.), (b) output inductor current (5A/div.) and input current (5A/div.), (c) input current harmonic spectrum.

VI. CONCLUSION

In this paper it is presented and analyzed a control
strategy to reduce the size, weigh and cost of a Buck based
unity power factor single-phase rectifier, operating in
continuous conduction mode.

From these studies, the following conclusions are
drawn:
� The power factor is independent on the ratio between the

output voltage average value and the input voltage peak
value.

� Despite the utilization of a “small” filter inductor and a
high 120Hz current ripple, the power factor is close to
unity.

� The practical implementation is easy, with the utilization
of a well-known dedicated integrated circuit (UC3854).
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