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Abstract proposed. The first uses a crude position sensor. The

rotor speed is estimated even at low speed, with adaptation

Rotor speed and position estimations in permanent magnef the stator resistance. The g-axis inductance is modeled
synchronous motor (PMSM) suffer from accuracy due tooff-line according to g-axis current. A constant
variation of the machine parameters such as torque CO”SIaWpagnetizing current is injected into the phase windings,

stator resistance and inductance, especially at low speeds. Al%Pnd low-pass filters and limiters are used to facilitate

nonlineariti nventional linear imators are n . . . .
due to nonlinearities, conventional linear estimators are Nql, o entations of the estimation. The effect of mismatch
adaptive to the operation points.

This paper presents two neural network-based modé?]c tgrque constant on the spegd estimation has F"?e”
reference adaptive systems (MRAS) for speed and positioptudied. The second network estimates the rotor position
estimation in PMSM drives. The first network estimates theand speed in a sensorless algorithm.
rotor speed and adapts on-line to any change in stator resistance The neural network estimators are able to track the
with a rough rotor position sensor. The second network/arying parameters, speed and position at different speeds
estimates the rotor position and speed without rotor positiogith consistent performance. Compared to other methods,
sensor. A g-axis model for stator inductance according to thfhey are adaptive to operation conditions and easy in

current is used. In both cases, the model reference adaptifgjon  The simulation and experimental results justifying
system adjusts the neural weights to give the optim he claim are presented

performance over a wide speed range.
The neural network estimators are simulated and
implemented using a DSP TMSC320C30 (40 MHz) controlle?-0  PMSM Model
which utilizes a voltage vector control to produce PWM gate
signals for an IGBT VSl inverter. Simulation and experimental A PMSM can be conventially modeled in the

results have shown that the neural estimation adjusts very wedtationary ¢) and synchronous (dq) reference frames as

to changes in the motor operating points. shown in the Fig. 1. The abc aof reference frames are
fixed in stator. Abc windings have 12@patial angle
1.0 Introduction differences. The-axis is in line with the a-phase afid

axis leadsx-axis by 90 of spatial angle. The dq reference
In a PMSM, the torque constant (or rotor fluxframe is locked with the rotor. The d-axis is aligned to the
linkage), stator resistance and stator inductance are timigagnet flux direction and g-axis lags the d-axis by &0
varying parameters.  Accurate acquisition of thesgpatial angle. The rotor position is used to regulate the
parameters is necessary for deadbeat controller, speed afighor currents so that the current frequency is always in

position estimation in sensorless algorithms. ~ Since gynchronism with the rotor. The most commonly used dg-
high-resolution position sensor is one of research targetgference model is:

on PMSM drive, high qality of position and speed di, R. L, v,
estimation became a trend. It has been shown in [1] and—j~= = s +L—0-5p°" ot @

[4], for low-resolution encoder or sensorless operation, ‘ ¢ ¢

that the speed and/or position estimations are sensitive toe — _ﬁi _L_do.5 pw i, —0.5pak +Ya
parameter variation. In [2], [3], [4] and [5], the rotor dt L, * L ‘ ° L,
positions were extracted from the back-emf estimation via g, K, . (Ly-Ly).. T, B F o
current observers. The observer gain design in those g =1°" 7 la ¥1.5" —F 14l ‘T‘jw‘jm
papers was tedious and the adaptive observer pole design

[4] over a wide speed range is obtained using trial and — = 0.5pw

error method. dt

This paper presents neural network estimators ovherel,,ljare the dq axes stator currenis,v, are

rotor speeq and/or position with on—Ii_ne parametefhe dq axes stator voltagesR is the stator phase
adaptation irPMSM. Two neural network Bmators are resistancel , Lq are the dq axes phase inductances, J is



the rotor and load inertia, F s the coulomb friction, By, q,e constark, replacing the real values. The current
is the viscous load], is the load torque, p is the number

of polesg is the rotor speedd is the rotor position and

error dynamics are

&, (+) =i, (k+) =T, k+D =R -Ri, M~ (@

k. is the torque constant. d
The rotor speed state equation shows that if the d-ax,(k+1 =i (k+1) =i, (k+1) =

current is controlled to be a constant, the generated torque

is proportional to g-axis current. Therefore, for the Motokp o arror currents vanish when the speed and all the

OPTIR D (0 -k,6t) + (R-R (0

torque, the g-axis current is the only control variable o ameters are correctly estimated.  In the real
This is similar to the torque control technique used in DGy piementation, if the d-axis current is controlled to be
machines. L zero, the d-axis current error will not be sufficient to give
_ Theaf model is given below. the correct estimation. To solve this problem, a constant
% =__Ri +§05pco sin9+ﬁ ) magnetizing current is injected into the stator windings to
dt L L L facilitate the estimation. The undesirable effect is
dis Rk A additional copper loss and lower efficiency. In this
Fz__lg ——=05pw cod+-—-~ method, the mismatch of torque constant will cause some
t L L L steady error in speed estimation.
d_wz_]_S*ﬁi sin9+].5*§i coﬁ—l __Bw_EQ To avoid the effect of current noise, low pass filters for
dt “ P J J J |c4 the current errors are used. The filtered current errors and
& the changes of these filtered current errors are the inputs to
— =05pw the neural network. The outputs of the network are the
dt ) changes of the estimated parameters.
where V, andv are the ap stator voltages, I, and The low pass current filters used are as follows:

m-1

i ; 1T 1 -
Igare the ap stator currents and L is the phaseeé :_ZZ "e, ’efq :_zz “elq (5)
M= mi=

inductanceL = 0.5* (L, +L,). .
d ) ~where m is the number of sub-cycles for the low pass
The current dynamics involves the position fijter and z is the delay operator.

information and can be used for position estimaton. The other two inputs to the neural network are the
3.0 R Soeed and S Resi Estimati changes of the current errors described below:
.0 Rotor Speed and Stator Resistance Estimation S _q_ 51 S 1_ 5 \aZ
with A Crude Position Sensor cq =(1-27) % C&q = (1-z )eiq (6)

- q _ < sh Eao A el The error index is defined as:
e speed estimator is shown in Fig.2. parallel - _ b3 b3 b3 b3

model reference adaptive system (MRAS) is used. Thg =05%e, "gq +05* €q * €q ()

procedure is in 3 steps. First, a model of g-axis stator The neural network weight adaptation is based on the
inductance presented in [7] is used and the d axis currele@st square method given by:

is kept constant, and the variation of d-axis inductance |\s/ (k+1) =v. (K) - yﬁ_E &)

negligible. Secondly, the model of PMSM is used as an’ i v,
adjustable model in parallel with the actual motor used as . . ) .
reference model. Thirdly, the errors between referenc\é{here E is the index of the filtered current errovg,is

and adjustable model currents are inputs to a feed-forwaahe of the neural weights aridis the learning rate. For
neural network for the adaptation algorithm to adjust fo"example,vﬂ is the weight from the first input neuron to

changes in the rotor speeds and stator resistance. ) : . oo
The PMSM synchronous d-q reference frame model itshe first hidden neuron (Fig.3) and the derivative of the

Ts error index to the weight is:
Iy (k+D =i R+ (v, (9 +L,05palK)i, K -RjK) 3

Ly JE _ 0E de,” = OE de,’
an B (de' 8 an deidz an

iq

) (9)
k) =i, {:* (,(K)~L, 05patkl, () -k 05Kl R (K)

: 08," 9dd rer de,” ddR

i . L. = (& ~ id )
where Ts is the sampling periodi, (k +1)i (k +1)are ' 0dd ovy odR vy,
de,> 9dd Jdy. . 9z, dz, de,* ddR dy,, 9z, Iz
. . = (e z q in1 1 inl + e z Id,\ in2 1 inl
the dq axis stator currentyy (K) , v, (k) are the dg axis = (o 555 5—5," 5, ov. "% G4R oy, oz o7.. v
stator voltages,R is stator resistance per phade, , Lq = (8 T (Vi) Way F1(Z0) % + 807 T (Vi) W, F1(2000) %)

are the dgq axis phase inductand¢, is the torque s s
constant andw is the rotor speed. where deiqA , demA are the Jacobean functions of the
The adjustable model has a similar formula with the 0dw = 9dR

) N _ ) N system. They can be calculated Bgd ddR
estimated rotor speedv, estimated resistancdr and de  'ge *
iq id




in the neural net. For simplicity,ﬁe.qz _, and estimations work well both at 3.5rad/s (Fig.8) and 15 rad/s

ade (Fig.14). When the torque constant is 150% guessed, a
de,” _ , are used. f'(y,,,) is the derivative of the steady error appears in speed estimation as shown in
ddR Fig.9a and Fig.15a and the resistance estimations are

threshold nonlinear functionz,, is the summing output nearly the same as the previous one. (Fig.9b at 3.5 rad/s,

of the first hidden neurongz, is the output of the first Fig.15b at 15 rad/s respectively.)

hidden neuronyy, ., , ¥;,, are the summing outputs of the 3.2 Experimental Results: Rotor Speed and Stator
first and second output neurons, is the input to the first Resistance Estimation

input neuron. The NN estimators are implemented using a DSP

The adapta“ﬁoE” law can finally be written as: TMSC320C30 (40 MHz) controller. The DSP controller
Vu(k+ D =vy, (k) -y == 1K) =y (& (Y)W, (70 %, + utilizes a voltage vector control to produce PWM gate
. . signals for IGBT VSl inverter. (Fig.16) 2 line currents and

€ 1 (e Weo F(Z00)%) (0 dc link voltage is fed intdSP through 3, 12-bit A/D

_ ) converters. An 18,000 ppr encoder monitors the rotor
3.1  Simulation Results of Rotor Speed and Stator position, speed and shaft torque. It is also used as a 300
Resistance Estimation line crude encoder in the algorithm.

A 920 W, 3-phase 6-pole PMSM was used in the At first, the neural speed estimator is used without any
simulation to test the neural estimators. The Otheparameter adaptation at 3.5 and 15 rad/s. To show the

parameters are: effect of detuning ofRand k, on the speed estimation.

R =0.035Q, L,=34uH, L, =34uH, k, =0.0094 N-m/A, Fig.17 and Fig.23 are the accurate speed neural estimation
a © with the accuratk, and R. (Fig.17 at 3.5 rad/s, Fig.23 at
rated torqud, =2.9 N-m, rated speéd,, =314 rad/s.

1 I 0,
A standard feed-forward neural network is designe& 5 radfs, respectively).  When g is 150% detuned

with 3 layers and a 4-4-2 neural structure (4 inpufFig.18 at 3.5 rad/s, Fig.24 at 15 rad/s respectively.Ror
neurons, 4 hidden neurons and 2 OUtpUtS). Bacﬁ 150% detuned, (Fig.lg at 3.5 rad/s, Fig.25 at 15 rad/s)
propagation algorithms is used to train the neural networiteady errors appear in the speed estimation. The
with a learning rate at 0.1, a nonlinear threshold functioestimation is the worst if both of tHe, and R are 150%

of f(x)=(1-e™)/(1+e”), detuned (Fig.20 at 3.5 rad/s, Fig.26 at 15 rad/s).
and initial neuron weights between -0.01 ~0.01. The The neural estimator is then used for both of the rotor
output neuron gains for rotor speed, resistance and speed and stator resistance with the d-axis current
aB back-emf changes, arg, =command speedl5, command set to 5 A. Wheke is accurate, the speed

_ . estimations given in Fig.21and Fig.27 work well both at
K =off —lineR measuremenls, and 3.5 rad/s (Fig.21) and 15 rad/s (Fig.27). When the torque
K¢ =dclink voltage/15. constant is 150% guessed, a steady error appears in speed

The limiter of estimated speed is [-5~5] times of theestimat_ion (Fig.22_a at 3.5 rad/s Fig.28a at 15 rad_/s) and
reference speed. The limiter of estimated back-emf is e resistance estimations are nearly_the same. (Fig.22b at
1~1] times of the dc link voltage. The switching 3- rads, Fig.28b at 15 rad/s respectively).
frequency, the electrical control and estimation
frequencies are 4.0 kHz and mechanical control frequendyO Rotor Position, Speed and Torque Constant
is 1.0 k Hz. Estimation in Sensorless Control

At first, the neural speed estimator is used without

any parameter adaptation at 3.5 and 15 rad/s. To show the _S_mcg the ;ynchronous frame does n_ot have the
effect of detuning oRand k_on the speed estimation position information, thea3 reference frame is used. As
o .

. . . ..the model is highly nonlinear, direct estimation of the
Fig.4 and Fig.10 are the accurate speed neural est|mat|or} " .
rotor position by neural net requires lots of neurons or

with the accuratk, and R. (Fig.4 at 3.5 rad/s, Fig.10 at p;q4en |ayers, which makes it impractical for the real time
15 rad/s respectively.) When tkg is 150% detuned control. The alternative way is to get the rotor position
(Fig.5 at 3.5 rad/s, Fig.11 at 15 rad/s respectively.)Ror from the estimation of the3 back-emfs. The position
is 150% detuned, (Fig.6 at 3.5 rad/s, Fig.12 at 15 radkstimator with the torque constant and speed is shown in
respectively.), the steady errors in the speed estimatigrg.29, Theaf3 discrete currents are
appear. The estimation is the worst if both of kyeand
R are 150% detuned in Fig.7 and Fig.13. (Fig.7 at 3.5,(k+1)=iD,(k)+TTS*(VD,(k)—ED,(k)—RiD,(k)) 6K\
rad/s, Fig.13 at 15 rad/s respectively.) . . Ts _

The neural estimator is then used for both of the rotofs (K +3) =i, (k) +-=* (v, (k) =4 (k) = Ris (K))
speed and stator resistance with the d-axis currefnere E, (K) = -k 0.5pw(k)sin@(K)), E, (k) =k 0.5pw(k)cos@(K)).
command set to 5 A.  Whek, is accurate, the speed



The adjustable model is similar to the previous one
except that the back-emfs and resistance are thel'g]
estimated values. The current errors are
aa(k+1):ia(k+1)—i,<k+1):(éa<k)—Ea(k))TfS+(f< —R)Tfia(k)

[3]
qﬂ(k+1):iﬂ(k+1)-i‘E(k+1):(éﬂ(k)—EB(k))TT%(r‘z—R)TTSiB(k) 12)

If the resistance and the inductance are correctly
guessed, the current errors will go to zero when the

0f3 back-emfs are accurately estimated. The estimatqg)

position, speed and torque constant are obtained from the
estimated back-emfs. [6]

. LBk, :q/éaz(k+1)+é;(k +1)
O(k +1)=—tan (T(k*l))' Ak +1) o5ek, 13 [7]
4.1 Simulation Results: Rotor Position Estimation

For the estimations of rotor speed and rotor position,
the motor runs at the operation point of 3.5 rad/s and 20%
of rated torque. At this low speed, signal to noise ratio is
low and the estimations become difficult. In Fig.30, the
initial position guess is 0 rad. Fig.31 shows the
af back-emf estimations. Fig.32 shows the estimated

and real speeds. Initial speed guess before 5 sec is 0 rad/s.
At low speed of 15 rad/s, in Fig.33, the initial

position guess is O rad. Fig.34 shows #if back-emf
estimations. Fig.35 shows the estimated and real speeds(f

Initial speed guess before 5 sec is 0 rad/s.

4.2  Experimental results: Rotor Position Estimation

For the estimations of rotor speed and rotor position,
the motor runs at the operation point of 3.5 rad/s and 20%
of rated torque. At this low speed, signal to noise ratio is
lower and the estimations become difficult. In Fig.36, the
initial position guess is 0 rad. The training of random
neural weights needed about 500 msec, which is 80% of

an electrical cycle. Fig.37 shows th@f back-emf

estimations. Fig.38 shows the estimated and real speeds.
Initial speed guess before 5 sec is 0 rad/s.

At low speed of 15 rad/s, in Fig.39, the initial
position guess is 0 rad. The training of random neural
weights needed about 80 msec, which is 60% of an

electrical cycle. Fig.40 show theaf3 back-emf

estimations. Fig.41 show the estimated and real speeds.
Initial speed guess before 5 sec is 0 rad/s.

5.0 Conclusions

Neural network estimators are shown to track the
varying parameters, speed and position at different speeds
of PMSM drives with consistent performance. Compared
to other methods, the NN are adaptive to operation
conditions and are easy in design. Simulation and
experimental results are used to justify the claim.
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Fig.32 Estimated and actual rotor speeds at 3.5 rad/s. Dotted line is
estimated speed.



)

I
=1
=1

(degree

w
=1
=]

P AR Y

Estimated position
~
(=1 o
S S

=)
w
@
[
[

In
=1
=1

w
=1
=]

=)
=]

Real position (degree)
)
(=1
S

Fig.38 Speed estimation at 3.5 rad/s, real speed (upper one) 2.5 rad/s/div,

]

a5 5 55 estimated speed (lower one) 2.5 rad/s/div, time 500ms/div. Estimation starts
Time(second) (b) at midpoint.
Fig.33 Rotor position estimation at 15 rad/s. (a) estimated position. (b)
_ actual position.
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L% s s o Fig.39 Position estimation at 15 rad/s, estimated position (upper one) 3.14

Time (second] {b) rad/div, real position (lower one) 3.14 rad/div, time 100ms/div. Estimation
Fig.34 O ﬁ back-emf estimation at 15 rad/s. starts at midpoint.
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Fig.35 Estimated and actual rotor speeds at 15 rad/s. Dotted line is  Fig.40 Position estimation at 3.5 rad@ backemf (upper) 0.4 v/div,
estimated speed. B backemf (lower) 0.4 v/div, 100ms/div. Estimation starts afpaint.
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Fig.36 Position estimation at 3.5 rad/s, estimated position (upper ) 3.14 _ o ‘
rad/div, real position (lower) 3.14 rad/div, time 500ms/div. Estimation ~ Fig. 41 Speed estimation at 15 rad/s, actual speed (upper) 10 rad/s/div,
starts at midpoint. estimated (lower) 10 rad/s/div, 100ms/div. Estimation startsdyiainit.

N

Fig.37 Position estimation at 3.5 radf¥, backemf (upper ) 0.2 v/div,
B backemf (lower) 0.2 v/div, 500ms/div. Estimation starts dpuoint.





