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Abstract

This paper studies the problems associated with para-
meter estimation of the induction machines using the
transfer function is=vs. These problems are analyzed
through sensitivity and frequency response functions.
Based on this study, signal and models to estimate the
parameters of the machine are proposed. The discrete
time parameter estimation models are written in the �
operator speci�cally because it provides good numerical
properties at high sampling rates, where the discrete
time model approaches its continuous time equivalent.
This feature permits the direct estimation of the continu-
ous time parameters. The experimental results obtained
with the proposed estimation procedure are presented
and demonstrate that it is possible to map the paramet-
ers in terms of the operating conditions of the induction
machine.

I. INTRODUCTION

Parameter and speed estimation in induction machines
is a research topic of wide interest for many reasons, in-
cluding diagnostic and tuning of �eld oriented drives. But
in these applications it is necessary the knowledge of the
physical parameters. Unfortunately, mainly due to rapid
development in digital electronics and computer techno-
logy, most of the parameter estimation problems are dis-
cretized for compatibility with digital computers . Then,
the physical parameters are calculated from the coe�-
cients estimated in the discrete time domain. Import-
ant accuracy problems can arise due to the interaction
of �nite resolution of analog-to-digital converters and the
sampling rate. This is a very important issue, specially
when there is not a priori knowledge about the system.
Slow and relatively fast sampling rates as compared to
the dynamic of the system must be avoided [1]. To avoid
resolution problems due to the sampling rate, the � oper-
ator is used in this paper for the characterization of the
discrete time parameter estimation models. This oper-
ator provides good numerical properties at high sampling
rates, where the discrete time model approaches its con-
tinuous time equivalent. This feature permits the direct
estimation of the continuous time parameters.
The use of parameter estimation techniques in the char-

acterization of an induction machine using the transfer
function is=vs has been reported by many research teams
[2],[3],[4],[5],[6]. These reports do not show clearly the
numerical problems associated with the parameter es-

timation using this approach. This paper analyzes the
problems associated with the parameter estimation of in-
duction motors, and propose a signal and a procedure
that can be used to estimate the parameters with better
numerical properties. The method permits the estima-
tion of ls, �r, and the speed with a priori knowledge of
rs, and �ls. The main feature of the proposed technique
is the possibility to estimate the parameters by an almost
sinusoidal signal, and without the knowledge of the ma-
chine speed. This last feature is an advantage in relation
to a former paper of the authors [7].
In the �rst part of the paper, the induction machine

model is described and the problems associated with
the estimation of its electrical parameters are analyzed.
Then, it is proposed a procedure to estimate the paramet-
ers and speed that incorporate some a priori knowledge
of the machine. Finally, experimental results show the
feasibility of the proposed procedure.

II. AC DRIVE SYSTEM

The characterization of the machine as discussed in this
paper assumes that the induction machine is part of a mi-
crocomputer AC drive system. The drive system is com-
posed of a static power converter, a three phase induction
machine coupled to a mechanical load (simulated here by
a separately excited direct current generator supplying a
resistive load) and a microcomputer whose software con-
trols the overall functioning of the drive. The generation
of the command signals for the converter, the data ac-
quisition, and the control laws are implemented around
a microcomputer-based platform that is equipped with
the appropriate plug-in boards and sensors. The system
is shown in Fig. 1.

III. MACHINE DYNAMIC MODEL

In this paper the standard mathematical description
of the induction machine is as follow: j =

p
�1, is =

isd + jisq, and vs = vsd + jvsq . Where is, and vs are
the stator current, and the input stator voltage vectors,
respectively. Based on the dynamicmodel of the machine,
the transfer function is=vs can be written as the following
[8]:

is
vs

=
1

�ls
s + 1

�ls
( 1�r � j!r)

s2 + ( rs+ls=�r�ls
� j!r)s +

rs
�ls

( 1�r � j!r)
(1)

with s representing the Laplace transform. The quantity
represented by !r is the machine speed. The electrical
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Fig. 1 AC drive system con�guration

parameters ls, lr and lm stand for the self inductance of
the stator winding, the self inductance of the rotor, and
the mutual inductance between stator and rotor. The
resistances of the stator and rotor are denoted by rs and
rr, while � = 1� lm=(lslr) and �r = lr=rr are the leakage
factor and rotor time constant.
Re-writing (1) in the time domain gives (2). This ex-

pression is useful for estimation of the machine paramet-
ers using a linear regression model.

d2is
d2t

= �
�
rs + ls=�r

�ls
� j!r

�
dis
dt
� rs

�ls
(
1

�r
� j!r)is

+
1

�ls

dvs
dt

+
1

�ls
(
1

�r
� j!r)vs (2)

The use of system identi�cation techniques as proposed
in this paper is based on a discrete-time representation
of the induction machine behavior (2). The discrete-time
model of an induction machine may be derived from (2)
by using z-transform or -transform techniques. In this
work the -transform is selected speci�cally because it
provides good numerical properties at high sampling rates
[9], where the discrete model approaches the continuous
equivalent. The discrete-time model obtained from (2)
by using the -transform is represented by:

�2is = F1�is + F0is +H1�vs +H0vs, (3)

where F1 = F1a+jF1b, F0 = F0a+jF0b,H1 = H1a+jH1b,
and H0 = H0a+ jH0b are the discrete time parameters, �
is the delta operator, de�ned as �x(t) = [x(t+h)�x(t)]=h,
and h is the sampling period. It is assumed that the stator
voltage vector vs is supplied to the machine through a
zero order hold device and the speed !r is assumed to
remain constant during the sampling period.
If the sampling rate is su�ciently high, the discrete-

time system (3) can be approximated by its continuous-
time equivalent (2). In terms of real and imaginary com-
ponents of is and vs, this continuous-time model may be
rewritten as�
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�
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(4)

This also represents that �x(t) ' dx(t)=dt.
To estimate the parameters using the Least Squares

(LS) algorithm it is necessary to rewrite the model (4) in
the form of a linear regression such as

y(t) = �(t)� (5)

where y(t), �(t), and � are the prediction vector, the re-
gression matrix, and the parameter vector, respectively.
For example, observe that (4) may be rewritten as linear
regression model simply by de�ning

y(t) =

�
�2isd
�2isq

�
;

�(t) =

�
��isd ��isq �isd �isq �vsd vsd vsq
��isq �isd �isq isd �vsq vsq �vsd

�
;

� =
h
rslr+rr ls
�ls lr

!r
rs

�ls�r
rs!r
�ls

1

�ls
1

�ls�r
!r
�ls

i
(6)

The Least Square algorithm to calculate � can be found
in [9].

IV. ESTIMATION MODELS

The simultaneous estimation of rs, �ls, ls, �r , and !r in
(6) requires the use of special excitation signals. Never-
theless, the rs is estimated with such error and variance
that prohibits its use in the subsequent estimation and
control procedures [2], [3], [4]. It is possible to explain
this result through sensitivity functions that are derived
from (3), and are given by (7). With these sensitivity
functions it is possible to determine in which region the
parameters are better estimated.

@y(t)

@�i

�i
y(t)

(7)

The frequency response function (FRF) of the sensitivity
(7) with respect to rs is shown in Fig. 2a. The FRF is
plotted for two di�erent speeds: !r = 0 rad/s and !r =
2�60 rad/s. The bigger the sensitivity of y(t) with re-
spect to a speci�c parameter is, the bigger its inuence
will be on the prediction vector y(t), and consequently its
estimation will be easier. This means that a given para-
meter will be better estimated at the frequencies where
its FRF (see Fig. 2a) is high.
The conclusion that can be drawn by analyzing Fig. 2a

is that it is possible to estimate rs only with low frequency
excitation waveforms when !r = 0 rad/s. This is a known
result since the resistance determines the stead state gain
[6]. However, if !r = 2�60 rad/s a good estimation can
be obtained for excitation frequencies below 2�10 rad/s.
Again, a low frequency excitation waveformmust be used
to determine this parameter.
In normal operating conditions the slip is in the range

1% to 10% and consequently the fundamental frequency
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Fig. 2 FRF of the sensitivity (7) with respect to: a) rs;
b) �ls; c) �r or !sl; d) lm

of the excitation waveform is around !r . As it can be
observed from Fig. 2a, the FRF is close to zero around
! � !r = 2�60 rad/s and then it is almost impossible
to estimate rs, unless a low frequency component or a
dc bias be superimposed to the excitation signal. The
same conclusion is valid for the case where !r = 0 rad/s.
Thus, it is interesting to propose a model to estimate
solely rs and remove it from the parametric vector (6).
This should improve the accuracy of the estimation of the
other parameters.
Fig. 2b shows the FRF of the sensitivity (7) with re-

spect to �ls. In the normal operating region (slip in the
range of 1% to 10%), it is not possible to estimate this
parameter. However, for high frequencies this parameter
has a strong e�ect on the sensitivity and its estimation is
completely possible. This is due to the skin e�ect proven
at high frequencies. In this region almost all the ma-
chine ux is leakage ux. In [5] the estimation of �ls
with model (6) and a six-step waveform was shown to
be very good. The high frequency harmonics of the six-
step waveform provide persistent excitation to estimate
�ls. By considering that the fundamental excitation does
not provide almost any information about �ls, it is inter-
esting to propose a speci�c procedure for estimating �ls
and remove it from � (6). As it has been mentioned for
the case of rs, this should improve the accuracy of the
estimation of the other parameters.
The FRF of the sensitivity (7) with respect to �r and

!sl are shown in Fig. 2c. These FRF's are exactly equals.
This lead to a known result: it is impossible to distinguish
�r and !sl at steady state. The second conclusion is that,
at synchronous speed, �r, and !sl can not be estimated.
This is due to the fact that the rotor and mechanical

states are not observed at the synchronous speed. Third,
all the information of these parameters are present in the
fundamental excitation.
The FRF of the sensitivity (7) with respect to lm is

shown in Fig. 2d. It can be observed that it is possible
to estimate lm only around the synchronous frequency.
It is exactly at this frequency that lm is better identi�ed.
At the synchronous frequency the slip is zero and the
induction machine is basically an RL load.
Furthermore, Figs. 2a - d show that as the speed de-

creases the parameters are worse estimated, except for
rs. Another conclusion is that the fundamental excita-
tion has information only about the rotor time constant
�r , the speed !r, and the magnetize inductance lm (and
ls).
In this paper, �r , ls, and !r are estimated based on a

priori knowledge of rs and �ls. The parameter estima-
tion problem is solved by using the standard least squares
technique (LS) [9]. The models used in this paper are de-
scribed in the following sections.

A. Model A: estimation of !r - rs and �ls known

If rs and �ls are known, it is possible to derive a
model that should provide a better estimate of �r, ls,
and !r when compared to the estimates obtained with
model (6) if appropriated excitation waveforms are selec-
ted. The improvement in the accuracy of the estimates
is due mainly to the better numerical conditioning of the
covariance matrix of the LS algorithm. However, if sinus-
oidal waveforms are used for the stator voltages only the
speed can be estimated with this model, although the es-
timation has a large variance. The model is the following:
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;
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1
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h
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iT
(8)

where usd = vsd � rsisd, and usq = vsq � rsisq .

B. Model B: Estimation at standstill - rs and �ls known

This model should be employed when the machine is
at standstill. In this case, the terms involving !r equals
zero and the model (9) is obtained from (4).

y(t) =
�
�2isd �2isq

�T
;

�(t) =

�
��isd usd �usd
��isq usq �usq

�
;

� =
h

ls
�ls�r

1

�ls�r
1

�ls

iT
(9)

V. EXPERIMENT DESIGN

The design of the experiment is a crucial problem in
parameter estimation. In the present paper the experi-
ment design is considered with respect to each proposed
estimation model.



In this paper it is considered that rs and �ls are previ-
ously estimated. The stator resistance can be estimated
by superimposing a dc level to the fundamental excita-
tion as proposed in [10] or by superimposing an homo-
polar signal to the fundamental excitation as discussed in
[11]. The stator transient inductance �ls can be estim-
ated using the complete model of the machine (6) or by
using high frequency signal as proposed in [7].
For the estimation of �r , ls, and !r with Model A a

signal composed of the fundamental excitation plus a si-
nusoid with a magnitude of 5 % of the fundamental excit-
ation and a frequency 15 % lower than the fundamental
frequency was used. The choice of this frequency was
based on he FRF of the sensitivity function (7) with re-
spect to �r . As can be seen in Fig. 2c the FRF has
its maximum value at a frequency approximately 15 %
lower than the fundamental frequency. This result is true
at almost all fundamental frequencies except at zero.
In the case of the zero speed tests (Model B), no mech-

anical means have been employed to keep the machine
at standstill. This is achieved by using a signal which
produces an almost zero average electro-magnetic torque,
and the machine stays at standstill .
The signals (vsd; vsq) and (isd; isq) are obtained by

measuring two of the three phase quantities. The signals
are �ltered (anti-aliasing) and converted through four 10
bit A/D converters. The derivative terms �vsd, �vsq, �isd,
�isq, �2vsd �2vsq, �2isd and �2isq are obtained by digital
�ltering. Four identical third order digital �lters were
employed for each directly measured stator quantity.

VI. PARAMETER SENSITIVITY

The model used in this work to estimate �r , ls, and
!r depends on a priori knowledge of rs and �ls. So it is
important to analyze the parameter sensitivity of Model
A with respect to variations in rs and �ls. Fig. 3 shows
the parameter sensitivity of Model A with respect to vari-
ations in rs. The parameter sensitivity is shown for two
di�erent fundamental frequencies: 5 Hz and 60 Hz. For
each frequency the slip is varied in the range from 1% to
10%, and the value of rs used in Model A is 30% lower
than the actual value of the machine used in the simula-
tion results. The �gures show the error of each estimated
parameter of Model A with respect to the true parameter
of the machine. It can be noted form Fig. 3a, and Fig.
3d that even if a wrong value of rs is used the estima-
tion errors in ls and !r remain within acceptable margins
(less than 3%) independent of the fundamental frequency
(speed) and the slip. The �r is estimated with unaccept-
able error at low frequency (Fig. 3b), especially at low
slip. This is expected since it is hard to estimate !r at
low slip (see Fig. 2c). It must be noted that this very
high error occur because the error in rs used in Model A
is 30%. It is clear that if rs is estimated with precision
(error lower than 10%) it is still possible to estimate �r.
Fig. 4 shows the parameter sensitivity of Model A with

respect to variations in �ls. The parameter sensitivity is
negligible in the frequency and slip ranges shown in the
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Fig. 4. Furthermore, the parameter sensitivity of �r (Fig.
4b) is bigger than the parameter sensitivity of the other
two parameters. The main problem of uncertainty in �ls
is in the �eld weakening range. This is the region where
�ls has a strong e�ect on the Model A.
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VII. SIMULATION AND EXPERIMENTAL RESULTS

The proposed models were studied previously by di-
gital simulation where it was assumed that the measure-
ments were corrupted by an additive noise term. Two
machines were used in the results. The parameters ob-
tained through the classic procedures, e.g. locked rotor
and no-load test (rbv) [12], are presented in Table 1. Ma-
chine 1 (3 hp, 220 V, 1700 rpm) was used in the experi-
mental tests, and machine 2 (3 hp, 220 V, 1710 rpm) was
used in the simulation studies [13].

Nameplate data and parameters
I (A) rs (
) rr (
) lm (H) lls (H) llr (H)

M1 5.8 1.8 2.99 0.1168 0.0111 0.0111

M2 5.8 0.435 0.82 0.0693 0.0002 0.0002

Tabel 1 Nameplate dada, and parameters of the machines
used in the experimental results

Fig. 5 shows the simulation results of the estimation of
�r, ls, and !r using the fundamental excitation + sinusoid
at a frequency 15% lower. The machine was running at
rated load (slip = 5 %). As can be shown the errors are
lower than 5 %. The errors at no-load are lower than the
errors at rated load. These results can be seen in Fig. 6.
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The estimation algorithm employed to process the ex-
perimental data was the recursive least squares with for-
getting factor. The sampling time was set to h = 50�s
and the forgetting factor to � = 0:999. Fig. 7 shows
the experimental results obtained with Model B at zero
speed. The variances and the transient estimation in this
case are better than the ones obtained when rs is also
estimated [5].
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VIII. CONCLUSION

This paper has discussed the problems associated with
the parameter estimation of the induction machine by
using the transfer function is=vs. The conclusions of this
study are:

1. The fundamental excitation has information only
about �r, !r, and lm (and ls);

2. As the speed decreases the parameters are worse es-
timated, except for rs;



3. All the information about rs is presented at low and
zero frequencies;

4. Incorporating a priori knowledge of rs and �ls on
the estimation model improves the estimation of the
other parameters (�r , ls , and !r);

5. The e�ect that the uncertainty in rs and �ls has on
the parameter estimation is negligible, except for the
estimation of �r at low speed;

6. By using an almost sinusoidal signal it is possible to
estimate �r, ls, and !r at all operating conditions.
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