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Abstract— The implementation of direct …eld ori-
ented control techniques usually employs nonlinear
estimate algorithms that should consider paramet-
ric variations as well as di¤erent operation condi-
tions [4]. In the present work, the local nonlinear
observability of discrete observer algorithms (com-
plete and reduced order), based on the current and
voltage models of the induction motor, are analyzed
in a detailed form. Di¤erent operation conditions,
dependent of the instantaneous speed, load torque,
parametric variations and addition of a small pertur-
bation signals in the rotor ‡ux reference, are consid-
ered. Simulations using two suitable deterministic
observers based on the extended Kalman Filter [9]
are also presented to ilustrate the usefulness of the
proposed observability analysis.

Keywords— Nonlinear Observability Analysis, Ex-
tended Kalman Observers; Nonlinear Systems; In-
duction Motor; Field Oriented Control.

I. Introduction

One of the most useful techniques, with the aim
of electric machines variables estimation, is the ex-
tended Kalman Filter (EKF). Once the states and
parameters simultaneous estimation can be natu-
rally considered as a nonlinear …ltering problem, and
given the inherent nonlinearties of the electric and
mechanic induction motor (IM) models, the EKF
becomes a suitable option in the electric drives …eld,
see [1], [2] and [3].
Regarding the robustness requirements that

power applications demand, it is extremely impor-
tant to accomplish a rigorous convergence analysis
of the control system and the estimation algorithms
used. In the extended Kalman …lter case, besides
considering the ‡ux variables estimation (necessary
for ‡ux magnitude and torque decouple in …eld ori-
ented control), several works add electric and me-
chanical variables to the state vector, thereby solv-
ing a parameter identi…cation problem, [2], [1] and
[4]. On the other hand, practically none of this
works consider the stability analysis, as a function
of the nonlinear servo-drive characteristics, of the
estimation algorithm.
The convergence proof of the nonlinear determin-

istic …lter is based on two fundamental conditions

[5]:
a) The estimation error covariance matrix is ob-

servable in the wide sense [6], i.e., limited error co-
variance matrices.
b) The …lter converges locally, i.e., the state es-

timation vector converge to the real one as long as
t!1.
The present work main contribution is the deter-

mination and evaluation of the observability matri-
ces of the IM state space models in well de…ned oper-
ation conditions of a motor drive system, condition
(a). This analysis are not, as far as the authors are
aware, available in the literature.
For both, complete and reduced order models, a

deterministic version of the Kalman …lter is used to
estimate the rotor ‡ux and identify the rotor resis-
tance simultaneously. The estimation algorithms,
one proposed by [7] and [8], the other by [9], whose
convergence analysis is a function of the linear ma-
trix inequalities (LMI) supplied by the condition of
a decreasing Lyapunov function, condition (b).
In section 2, the IM state space models are pre-

sented as well as the estimation algorithms and the
proper observability matrices. The observability
matrices evaluation in di¤erent operation conditions
(considering operation speed, load torque, paramet-
ric variations and addition of disturbance signals in
the ‡ux reference) is detailed in the section 3. Sim-
ulations where the theoretical conclusions are veri-
…ed and where di¤erent characteristics of a real im-
plementation are considered (voltage inverter with
PWM algorithms and antialiasing …lters) are pre-
sented in section 4. The main conclusions of the
work are described in the section 5.

II. IM State Space Models
In the present section the IM models used in the

state space observers, complete order (COO) and re-
duced order (ROO), are presented. Once rotor resis-
tance variation is assumed, deterministic observers
based on the extended Kalman …lter are used to
estimate the electromagnetic variables and for the
resistance identi…cation. The observability matrices
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are also presented for the analysed models. Stator
coordinates, ®¡¯, are used as reference coordinates
in the models.

A. Complete Order
The IM state equation, used for the COO design,

is given by the following discrete domain expression,·
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The observation process is represented by the sta-
tor current vector, more precisely
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represent the rotor ‡ux, stator currents and volt-
ages vectors, respectively. Ta represent the sampling
time, I represent the dimension 2 identity matrix,

Jc the matrix de…ned as Jc =
·
0 ¡1
1 0

¸
and 02£2

the null matrix. The parameter values used in the
simulations are presented in the Appendix.
Once the complete order state space model, equa-

tions (1)-(2), presents standard dynamic and out-
put equations (i.e. they only depend on the actual
states), the deterministic observer proposed in [8] is
used for the IM rotor ‡ux estimation. The algorithm
design matrices are de…ned as,

Rk+1 > 0 (3)

Qk = ³eTk ekIn + ±In (4)

where ³ > 0 should be chosen su¢ciently high, par-
ticularly for inadequate initializations, and ± > 0
su¢ciently small to avoid the matrix Qk assuming
singular values in steady state. As for matrix Rk+1,
once that no nonlinearty exists in the system ob-
servation process, equation (2), it is only necessary
that this matrix be positive de…ned to guarantee the
algorithm convergence, [5], [8].
Once the complete order model output equation

presents a standard format, equation (2), and de…n-
ing the estimate state vector (order 5) as

bx = hbiTS®¯ b©TR®¯ bRRiT (5)

the observability matrix is given by [8]
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For the IM particular case, equations (1)-(2), the
linearized dynamic matrix, Fk, and the output ma-
trix, Hk, are given by
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B. Reduced Order
For the ROO design we consider the second or-

der discrete version of the usually denominated IM
“current model”, more precisely

©R®¯(k+1) =

·µ
1¡ TaRR
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¸
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The observation process is based on the “voltage
model”, and it is represented by the following dis-
crete equation

y(k) = ©R®¯(k) ¡ ©R®¯(k¡1)
=
TaLR
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or in a general way

yk = Hk xk + Jk xk¡1 (17)
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As we can see in the observation process, equa-
tion (16), the system output depends on the actual
and previous state. The Delayed State Kalman Fil-
ter (DSKF) [10], deal with this particularity mod-
ifying the standard Kalman …lter algorithm in way
to consider the unitary delay in the minimization
procedure of the estimation error covariance matrix.
In [9], the convergence analysis proposed in [7] and
[8], is extended for this particular type of systems,
proposing the Delayed State Extended Kalman Ob-
server (DSEKO). The design matrices of this new
deterministic version of the DSKF are

Rk+1 = Jk+1

³
P¡1k + FTk Q

¡1
k Fk

´¡1
JTk+1 (18)

Qk = ³eTk ekIn + ±In (19)

where ³ and ± are chosen in the same way that in
complete order model case.
Once the reduced order observer presents an out-

put equation with an unit delay, equation (17), and
de…ning the following state vector estimate (order
3),

bx = hb©TR®¯ bRRiT (20)

the observability matrix is given by [9]
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For the particular case of the IM model, equations
(15)-(16), the linearized dynamic matrix, Fk, and
the output matrices, Hk and Jk, are given by

Fk =

·
F 11k F 12k
01£2 1

¸
(22)

and

Hk =
£
I 02£1

¤
(23)

Jk =
£ ¡I 02£1

¤
(24)

where

F 11k =

Ã
1¡

bRR(k)Ta
LR

!
I + wm(k)TaJc (25)

F 12k = ¡

³b©R®¯(k) ¡ LmiS®¯(k)´
LR

(26)

It should be stressed that the extended Kalman
…lter presents appropriate convergence characteris-
tics when the initial estimates are close of the real

state and when the nonlinearties are smooth. The
choice represented in equations (3)-(4) and (18)-(19)
attempts to enlarge the interval in which the lin-
earization is e¢cient. In this way it is possible to
make a rigorous convergence analysis of the algo-
rithms and verify an increase of the system robust-
ness to high nonlinearties and bad initial conditions,
[8] and [9].

III. IM Observability Analysis

Once deterministics observers are used for state
estimation and parametric identi…cation, the models
local uniform observability can be veri…ed determin-
ing the observability matrix rank value, equations
(6) and (21) [8]. In the IM speci…c case, the observ-
ability analysis should be accomplished for the dif-
ferent operation conditions in which the servo-drive
is operated.
In the present work, three important operation

conditions are considered in the observability char-
acteristics evaluation of the IM, when applied in
servo-drives,
i) Steady state in all magnitudes (electromagnetic
and mechanic) and …ne tuned …eld oriented control
(i. e. constant speed and constant ‡ux magnitude).

ii) Di¤erent operation speed and load torque val-
ues, including null ones.
iii) Disturbance signal addition in the rotor ‡ux
magnitude reference.
Observations:
a) With regard to condition i), once the present
work intends to evaluate in a rigorous way the esti-
mation algorithms, steady state is assumed to avoid
electromagnetic transients that could increase the
persistent excitation of the input signals.
b) Once the …eld oriented control is the main appli-
cation of the estimation algorithms being analysed,
it is important to assume speed and ‡ux magnitude
appropriately regulated.
c) Concerning condition iii), the disturbance signal
addition aims the observability properties recovery.
Now, the simpli…cations that each one of the oper-

ation conditions imposes into the observability ma-
trix, for each one of the models, are presented.
The e¤ect produced in the observability matrix rank
value is also exhibited in di¤erent result tables.

A. Steady State With Non Null Speed Values
Assuming steady state and balanced sine wave in-

put signals, the rotor ‡ux vector can be approximate
by[11]

ÁR®(k) = j©Rj cos (wsk) (27)

ÁR¯(k) = j©Rj sin (wsk) (28)

where ws represents the synchronous frequency and
the ‡ux vector magnitude is de…ned as j©Rj =
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q
Á2R®(k) + Á

2
R¯(k) . Assuming a constant rotor ‡ux

vector magnitude , i.e., …ne tuned …eld oriented con-
trol, and di¤erentiating the equations (27)-(28), we
obtain

¢
ÁR®(k) = ¡wsÁR¯(k) (29)
¢
ÁR¯(k) = wsÁR¯(k) (30)

Replacing the equations (29)-(30) into the IM cur-
rent model, it is possible to determine the steady
state stator current equations, more precisely

iS®¯(k) =
1

Lm

·
I +

LR
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¡
ws ¡ wm(k)

¢
Jc

¸
©R®¯(k) (31)

The observability characteristics, assuming steady
state and non null operation speeds, are evalu-
ated substituting the equations (31) into the observ-
ability matrices and determining the correspondent
rank value.
It is important to note that the synchronous fre-

quency, ws, assumes the same values that the rotor
speed at steady state and null load torque [12]. In
table I the simpli…cations accomplished in the ob-
servability matrix and the correspondent rank val-
ues are presented.

TABLE I

Observability matrix rank in steady state and non

null speeds.

Observability matrix, assuming: COO ROO
Equation (31) 5 3
Constant speed(wm(k) = wm) 5 3
Null load torque(Tl = 0; ws = wm) 5 3
Constant estimates( bRR(k) = bRR) 5 3

As it is possible to observe in table I, assuming
steady state and non null speeds, the complete and
reduced order observers maintains the observability
properties.

B. Steady State and Null Operation Speeds
In the null operation speeds case, the observability

characteristics are evaluated replacing the equation
(31) in the corresponding observability matrices and
equating the speed variable to zero. Once the syn-
chronous speed is governed by the following equation
[12]:

ws = wm +
d±

dt
(32)

where ± represents the torque angle, it is possible
to verify that for steady state, null operation speeds
and null load torque, the synchronous speed also

presents null values. Therefore, in this conditions,
the components of the rotor ‡ux, equations (27)-
(28), are give by

ÁR®(k) = j©R j (33)

ÁR¯(k) = 0 (34)

where j©Rj represents the rotor ‡ux magnitude.
In the following table we present the simpli…ca-

tions accomplished in the observability matrix as
well as the corresponding rank value.

TABLE II

Observability matrix rank in steady state and null

speed.

Observability matrix, assuming: COO ROO
Equation (31) 5 3
Null speed(wm(k) = 0) 5 3
Null load torque (Tl = 0; ws =

0; ÁR®(k) = j©Rj ; ÁR¯(k) = 0 )

5 3

Constant estimates ( bRR(k) =bRR; bÁR®¯(k) = bÁR®¯)
4 2

As table II shows, assuming steady state, null
speed and null load torque, both complete and re-
duced order observers loose observability properties.
It is important to note that the constant estimates
case depends on steady state operation and no per-
sistent excitation.

C. Disturbance Signal Addition in the Flux Refer-
ence
Assuming a time varying rotor ‡ux magnitude

and di¤erentiating the equations (27)-(28), we ob-
tain

¢
ÁR®(k) =

d j©R j
dt

cos (wst)¡ wsÁR¯(k) (35)

¢
ÁR¯(k) =

d j©R j
dt

sin (wst) + wsÁR®(k) (36)

Replacing the equations (35)-(36) into the IM cur-
rent model, equation (15), the stator current steady
state equations are obtained, more precisely,
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d j©Rj
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Fig. 1. Direct Field Oriented Control.

As in the previous sections, the observability is
analysed by replacing the stator current, equations
(37)-(38), in the observability matrices and deter-
mining the corresponding rank value. In table III
we present the results obtained as well as the simpli-
…cations accomplished in the observability matrices.

TABLE III

Observability matrix rank in steady state, null speed

and perturbation signal.

Observability matrix, assuming: COO ROO
Equations (37)-(38) 5 3
Null speed(wm(k) = 0) 5 3
Null load Torque (Tl = 0; ws =

0; ÁR®(k) = j©Rj ; ÁR¯(k) = 0 )

5 3

Constant estimates ( bRR(k) =bRR; bÁR®¯(k) = bÁR®¯)
5 3

As we can see in table III, the addition of a lim-
ited magnitude and limited frequency perturbation
signal, recovers the observability characteristics in
the case of null operation values of speed and load
torque, so much in the complete and reduced or-
der observers. As the equations (37)-(38) show,
the only characteristic that the disturbance signal
should present is a not null derivative.
Once the algorithms observability were theoret-

ically evaluated, considering all the possible oper-
ation conditions of a IM based servo-drive, in the
next section are presented some simulations where
the observers are applied in the …eld oriented control
technique.

IV. Simulation Results

The examples in this section consider the IM op-
erating under …eld oriented control, see Fig. 1. In
order to avoid the ‡ux estimate in‡uence in the con-
trol system, in all simulations the real ‡ux compo-

nents are feedback. In such case, the observabil-
ity conditions are determined independently of any
transient of the current and tension motor variables
(estimation algorithms input).
A voltage inverter with a PWM generation al-

gorithm, as well as antialiasing …lters, were imple-
mented in all simulations. Therefore, high frequency
signals e¤ect are also considered in the estimation
algorithms and observability characteristics.
Note that the estimation algorithms are initial-

ized when the real variables are in steady state. In
…gures 2 and 3, the observers are tested in di¤erent
operation conditions, the dashed line represents the
complete order observer estimate, the dotted line
the reduced order observer estimate, …nally the con-
tinuous line represents the real variables. The ini-
tial values are …xed in ©R = 1:13Wb, b©R = 50 andbRR = 3:53­. The observers initial conditions and
design matrices, are given as
COO: P(0) = I5, Rk+1 = 2Hk+1 Pk+1=kH

T
k+1 + 10

¡3I2
and Qk = 104eTk ekI5 + 10

¡3I5
ROO: P(0) = diag(2 ¢ 103; 2 ¢ 103; 1), Rk+1 =

8Hk+1 Pk+1=kH
T
k+1+10

¡2I2 and Qk = 104eTk ekI3+10
¡2I3
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Fig. 2. Simulation under observability conditions, i.e., wm =
100rad=s and TL = 50nm.

As …gure 2 shows, the observers performance is
suitable when the observability conditions are sat-
is…ed, i.e., when the motor speed and load torque
don’t present null values simultaneously. Both ob-
servers present a convergence time smaller than 0.2
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s. for the resistance and ‡ux estimates, even with
an non favorable initialization.
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Fig. 3. Simulation without observability conditions (i.e.,

wm = 0rad=s and TL = 0nm) and disturbance signal
addition in the ‡ux reference.

In …gure 3, the simulation is accomplished with-
out observability conditions (wm = 0 and TL = 0)
in the interval 0 < t < 0:5. As we can see, the esti-
mates (‡ux and resistance) converge in values (equi-
librium points) di¤erent from the real ones. When
a disturbance signal is added in the rotor ‡ux refer-
ence, t = 0:5s:, the observability conditions are re-
covered and the estimates converge in the real val-
ues, validating the theoretical results presented in
the table III. It is veri…ed that the high frequency
signals, generated by the PWM algorithm, are …l-
tered by the intrinsic inductive dynamics of the mo-
tor and by the antialiasing …lters.
As shown in …gures 2 and 3, the complete observer

convergence time is smaller than the reduced order
observer one. We should note that in the ROO case
(based in the Delayed State Kalman Filter) the de-
sign variable Rk+1, equation 18, needs to be chosen
in order to guarantee the algorithm convergence and
not only in function of the transient performance
[9]. However, the main advantage that the ROO
presents in relation to the COO, is a smaller com-
putational cost.

V. Conclusions

This work dealt with the determination and eval-
uation of the IM models observability matrices, for
both complete and reduced order observers, under
several operation conditions. For the numeric evalu-
ation of the observability characteristics, two deter-
ministic robust observers were implemented, both
based on the extended Kalman …lter and proposed
in [8] and [9], respectively. In all simulations volt-
age inverters with PWM generation algorithms and
antialiasing …lters were considered. It was veri…ed
that the high frequency signals that feed the IM are
not signi…cant in the estimators performance.
Three di¤erent operation conditions were de…ned,

considering electromagnetic and mechanics vari-
ables, for the observability characteristics analysis.
It is veri…ed that a loss of observability exists in the
simultaneous presence of null speeds and null load

torque (null slip frequencies). It is veri…ed, also,
that the observability can be recovered by the addi-
tion of disturbing signals, of limited magnitude and
frequency, in the ‡ux reference.
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Appendix
The induction motor used in the simulations has

the following nominal parameters: n = 2 (pole pairs
number)

LS = 0:0996 [H] LR = 0:0996 [H] Lm = 0:0969 [H ]
RS = 0:728 [­] RR = 0:706 [­] J = 0:062

£
kg m2

¤
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