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Abstract – This paper proposes discrete time voltage and current 
controllers for three-phase PWM inverters used in UPS 
applications. An accurate state space discrete model of the 
PWM inverter-filter-load, which takes into account non-
linearities and propagation delays associated with a real time 
digital implementation, is derived for the controller design. The 
output voltages and inductors currents are dynamically limited 
by means of MIMO controllers designed using optimal servo 
linear quadratic regulators, which ensure stability for the 
system at all operating conditions. In order to ensure smooth 
transitions among the different modes of operation, a nonlinear 
MIMO anti-windup method is proposed to update the servo 
variables. A 15kVA PWM inverter fully controlled by the DSP 
controller TMS320F241 has been used to validate the proposed 
approach. Simulations and experimental results show a good 
transient and steady state performances from no-load to short 
circuit operation. 

I. INTRODUCTION 
The main goal of an UPS is to provide high quality output 

voltage for critical loads even under disturbances coming 
from both AC line or from the load. Many controllers have 
been proposed to obtain an output voltage with low total 
harmonic distortion for three phase PWM inverters [1–6]. 
Among them, deadbeat and OSAP controllers [1-3] presents a 
fast transient response, however, they are sensitive to 
parametric variations and model uncertainties, which often 
results in undesirable transient performance, or even 
instability. On the other hand, nonlinear state feedback 
controller in the synchronous frame [4-5] have been 
described, however, the design is usually carried out in the 
continuous time domain, and the relevant delays associated 
with a digital implementation are not taking into account, 
which can degrade its final performance [6]. In addition, in 
none of the case reported the output voltage controller and the 
current limiter controller, which is required to clear faulty 
loads and to protect the inverter against overloads, are 
simultaneously designed with systematic procedure. 

This paper proposes a rotating frame fully digital voltage 
and current controllers for PWM inverters where good 
performance from no load to short circuit is assured by the 
proper selection of the cost functions of the voltage and 
current linear quadratic regulator. A systematic procedure for 
the controller design in the state space is derived.  

The remainder part of this paper is organized as follows: 
Section II presents a discrete model in the rotating frame for 
the space vector modulated inverter and LC filter and load, 
which is normalized to couple with limited dynamic range of 
a fixed-point DSP implementation. Section III presents the 
voltage and current controller design. Section IV proposes an 
anti-windup strategy; Section V presents a brief description 

of the DSP algorithm, while Section VI presents experimental 
results from a 15kVA inverter prototype. Finally, Section VII 
summarizes the main points of this paper. 

II. DISCRETE NORMALIZED PWM INVERTER MODEL 
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Fig. 1. Three-phase Inverter and LC filter. 

   A typical three-phase voltage source inverter with LC filter 
and load found in UPS applications is shown in Fig. 1. The 
DC link voltage usually has low impedance and can be 
considered as an ideal voltage source.   On the other hand, the 
output LC filter and load can be modeled by the following 
state space model where the load are considered as 
disturbances, that is: 

)()( )()( tttt w Fu Bx Ax ++=&  (1) 
The matrices A, B, F in (1) can be found by applying 
Kirchhoff´s law in the circuit and the vectors x, u and w have 
been selected as: 

[ ]Tx cbacba vvviii=

oboa iii=w

[ ]T2312 pwmpwm uu=u

[ ]Toc  
A. Normalization 
Aiming to limit the dynamic range of variables for a fix point 
implementation of the controller, a linear transformation that 
normalizes the circuit variable is applied to (1). By choosing 
the base values, the normalized voltage and current variables 

can be written as:     
base

n
base

n I
ii

V
v

==v . 

Now, defining a normalizing linear transformation Tn where 
Tn is a diag (1/Ibase 1/Ibase 1/Ibase 1/Vbase 1/Vbase 1/Vbase) matrix 
the normalized state, input and disturbance vectors become: 

)(x)( tt nn Tx =                 )()( tVt base nuu = )()( tIt base nww =
As a result the state equation (1) can be written in a compact 
form as (2) 

)()(  )()( -1 tItVtt basebase nnnnnnnn wFTuBTxATTx ++=& . (2) 
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B.  State space model in rotating d-q frame 
   By representing (2) into the αβ frame and then in the 
rotating dq frame, the following state-space normalized 
continuous model of the LC filter and load is obtained: 
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(3) 

where “ω” in (3) is the desired output frequency. Equation (3) 
can be expressed into the following compact form: 

)()()()( tttt dqdqdqdqdqdqdq wFuBxAx ++=&
 (4) 

where x . TTT




=



=



= oqodqpwmdpwmqdqd IIuuiivv dqdqdq wu

Note that (4) is a normalized continuous model where udpwm 
and uqpwm are the voltages produced by the inverter 
represented in the rotating dq frame, as shown in Fig. 2 (a) 
and (b) respectively. 
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Fig. 2. (a) PWM output voltage udpwm and inductor current id in the rotating 

dq frame. (b) PWM output voltage uqpwm and inductor current iq in the 
rotating dq frame. 

The block diagram of Fig. 3 describes the operation of the 
digitally implemented space vector modulation where the 
discrete control action is generated in the dq frame. By 
making some assumptions the diagram of Fig. 3 can be 
simplified, that is: (i) By assuming that the variables are 
sampled at their mean values and that the (2) has a low pass 
characteristic then the blocks associated with the 
SVM/inverter and the abc-αβ transformation can be 
simplified to a gain proportional to de DC bus voltage Vdc. 
(ii) If the switching frequency is mush higher then the output 

frequency then discrete dq-αβ transformation and the 
continuous αβ-dq  transformation can also be simplified. As 
a result the block diagram of Fig. 3 (a) is rendered to the one 
shown in Fig. 3 (b). If these assumptions are violated, a non-
linear model should be considered to describe the relationship 
between the input and output variables of three-phase PWM 
inverter in the rotating frame. 

 

ud(kT) 

uq(kT) 

uα(t) 

uβ(t) 

s11 

s31 
s21 

udpwm(t) 

uqpwm(t) 

  ddqq  
                 

                ααββ  

 

ZZOOHH  
       

VVddcc  

θ(kT) 

IInnvveerrtteerr  
wwiitthh  
SSVVMM  

  aabbcc  
  

                      ααββ   

  ααββ  
  
                        ddqq  

θ(t) 

T 

T 

 

ee--ssTTdd  
       

 
(a) 

 ud(kT) 

uq(kT) 

udpwm(t) 

uqpwm(t) 

 

ZZOOHH  
       

VVddcc  
T 

T 

 

ee--ssTTdd  
  
(b) 

Fig. 3. (a) Block diagram representation of three-phase PWM inverter in the 
dq frame. (b) Simplified representation.  

ZOH: zero-order hold, SVM: Space Vector Modulator. “T” is the sampling 
period. 

C. Discrete state-space model in rotating d-q Frame 
As mentioned before digital controllers require a finite 

time for its computation, which can represent a significant 
portion of the sampling period. In this section, a discrete 
state-space model, which takes into account this 
computational delay, defined as Td is derived. 

Referring to Fig. 4 during the k-th sampling interval both 
actual action control, udq(kT) and last udq((k-1)T), are applied 
to the inverter. As result, an additional state variable udq_d 
(last control action) can be used to model this delay. 

In order to obtain the discrete state space equation, which 
takes an account mentioned delay the state space equation (4) 
is solved along one sampling period (in this case also the 
switching), that is: 

∫
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The solution of (5) result in the matrix state space equation 
(6): 
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where: 
TdqAG e=             

.       

dq
A

dq
A

0 BIAH dqdq )( dd T -1)T(T −= − ee

dq
A

dq BIA dq





 −= − )T(T 1- de1H

By defining, ψ the discrete state 
space equation (6) becomes: 

[ T
_ )()()( kkk ddqdq ux= ]

)()()1( kkk dqPP uHψGψ +=+
 (7) 

where the matrices Gp and Hp are defined in agreement with 
(6).  
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Fig. 4. Control signal (udq) and sampling instants with reference to a 
symmetric space vector modulation pattern (s11, s21, s31). 

III. VOLTAGE AND CURRENT CONTROLLER DESIGN 
For the task of controlling the output voltage and limiting 

the inductors current it is proposed a servo current and 
voltage controller. It consists of an inner current loop 
controller and an outer voltage loop controller, in an 
arrangement as shows in Fig. 5. For the design of the servo 
current and voltage controllers the steady-state discrete linear 
quadratic regulator approach is used. The next two sub-
sections derive discrete state-space error current and voltage 
models that are adequate for the controllers design. The last 
sub-section investigates the impact of the weighting matrices 
on the closed-loop performance. 
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Fig. 5. Block diagram of the proposed linear quadratic current-voltage 

controller. 

A. Inner current loop model. 
Fig. 6 shows the block diagram of the proposed inner loop 

current controller. The linear quadratic current servo 
controller state equation can be defined as: 

)(-)()(1)( kkkk idqiii yuvv +=+  (8) 
where the vi is a 2x1 vector. As shown in Fig. 6, the discrete 
input control equation, which is applied to the plant, is: 

)()()( kkk i1i2idq vKψKu +−=  (9) 
In order to transform the current servo design problem 

into state feedback design problem the following error state 
variables are defined: 

               )()()(     )()()( ∞−=∞−= dqdq uuuψψψ kkkk ee

With these variables the error state-space representation 
becomes: 
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which can also be written as,  . 
T
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The feedback gain matrix Ki can be determined to ensure the 
desired system performance. Then K1i and K2i can be easily 
obtained from Ki. 
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Fig. 6. The inner current loop block diagram 

B. Outer voltage loop model. 
Let us now focus in the model for design the output 

voltage controller. In this case the inverter-filter-load and the 
servo current controller can be considered as a new plant for 
the purpose of the outer loop voltage servo design. The 
implemented servo dynamic equation is: 

)(-)(1)()( kkkk vvvv yrvv +−= . (11) 
As result, the discrete current reference, which is applied 

to the inner loop as shown in Fig. 7, is given by: 
)()(-)( kkk v1vi2vdqi vKψKu +=  (12) 

In a similar manner as a servo current controller, the state 
feedback representation becomes as shown in equation (13). 
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Fig. 7. The plant plus inner current loop and outer voltage loops block 

diagram 
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The K1v and K2v feedback matrices are obtained from to 
gain matrix Kv, which is selected to ensure the desired 
closed-loop performance. 

Next section discusses the selection of Ki and Kv gain 
matrices using the discrete linear quadratic regulator 
approach. 
C. Steady-state discrete linear quadratic design 

For the design of feedback gains, the steady-state discrete 
linear quadratic optimal control approach has been adopted. 
In this approach the controller feedback gains are selected to 
minimize the discrete cost function (14). By selecting 
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weighting matrices Q as positive definite or positive 
semidefinite Hermitian matrix and R as positive definite 
Hermitian matrix, the resulting system is asymptotically 
stable. However, the system performance depends on the 
specific entries of Qi and Ri for the inner current-controller as 
likewise on the entries Qv and Rv for the outer voltage-
controller. 

∑
∞

=

+=
0

)()()()(
2
1

k

kkkkJ ii
T

iii
T

i uRuψQψ  (14) 

where, 
][ viqviduaquadiqidvqvd qqqqqqqqdiagQi =  

scalar. a is   where22 ii rr ×= IRi  
][ vvqvvdviqviduaquadiqidvqvd qqqqqqqqqqdiagQv =  

scalar. a is   where22 vv rr ×= IRv  
In order to define the weighting matrix Q and R, it is 

possible to use the transient response and the root locus as 
performances criteria. 

If more the one set of {Q,R} results in a similar 
performance then, the set with a smaller cost function J or the 
one that result in the smaller feedback gains, should be 
selected.  Once the weight matrices are defined, the feedback 
gain matrix that minimizes the cost function (14) is uniquely 
determined. 

In the next sub-section analyses supported by 
experimental results for the PWM inverter operating in both 
current and voltage control are presented where the feedback 
gain matrices are obtained with the steady-state LQR design.  
D.  Design Examples 

Fig. 8 and Fig. 9 presents the root locus diagrams of 
closed-loop poles for the current and voltage operating 
modes. The entries of the weighting matrices have been 
adjusted from their nominal values to ensure that: (i) the 
closed-loop poles are in a well damped region for the entire 
load variation, that is, from no-load to the rated load when in 
the voltage control mode and from the rated load to short-
circuit when in the current control mode. (ii) the poles 
sensitivity to the load changes are limited, (iii) the transient 
response is fast. 

By taking into account that the model used in the designs 
have does not match exactly the real system, is worth to 
verify the closed loop performance experimentally. 
Fig. 10, show the closed-loop transient responses due to step 
change in the reference for both current and voltage control 
mode. It is seen that the transient response is well damped as 
predicted in the design. This is also seen in Fig. 11 and, 
which show the transient response during the voltage control 
mode. In all figures the current reference changes from 0.5 pu 
to 0.75 pu at k = 341 and from 0.75 pu to 0.5 pu at k = 683. 
Note to that 1 p.u. ⇒ 2/1  in dq frame and the sampling 
period is T=100 µs. The parameters LC filter are Lo = 500µH 
and C = 70µF. 

  
Fig. 8. Root Locus for the current 

control mode, when the load 
resistance changes from full load (o) 

to short circuit (x). 
Qi = I and Ri = I. (3.22 to 0 Ω). 

Fig. 9. Root Locus for voltage 
control mode, when the load 

resistance changes from no load (o) 
to full load (x). 

Qv= diag[1 1 5.103 5.103 15.103 15.103 1 1 1 1] 
Rv = I. (∞ to 3.22 Ω) 

 
Fig. 10. Experimental Results. id and iq current transient due to step 

changes on the reference. 

 
Fig. 11. Experimental Results. vd and vq voltage transient due to step 

changes on the reference. 

IV. ANTI-WINDUP COMPENSATION 
Windup may occur when the control actions saturate since 

the servo controllers have eigenvalues on the unity circle. In 
order to avoid oscillation due to the overload of the voltage 
servo integral states during the current mode control a 
tracking mode controller anti-windup compensation 
algorithm is proposed. The block diagram of this 
compensator is depicted in Fig. 12. This tracking mode 
controller ensures that the voltage controller state vector vv(k) 
will correspond to the controller input-to-output vector pairs 
even when the control action is limited. The current limiter 
block in Fig. 12 limits current reference vector to be smaller 
than a maximum desired value, for this case is equal to 

2/3 in dq coordinates, which correspond to 1 p.u. in the 
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abc coordinates. The implemented current limiter can be 
expressed as: 
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where, 
2

)(kdqiu  is the Euclidean norm of the vector udqi(k), 

that is: 22

2
)()()( kukuk qidi +=dqiu . 

The design of the tracking mode controller may be 
formulated as an observer problem [8]-[10]. The state space 
representation of the voltage servo controller with the anti-
windup compensation of Fig. 12 can be written as:  
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If (16) is observable the matrix Ksv can be chosen so that 
 has prescribed eigenvalues inside of the unit 

disc. Similar situation may occur with the current servo-
controller state. For example, during the startup or shutdown, 
when the DC bus voltage is smaller than its nominal value, 
windup may occur. 

][ 1vsvv KKI −

 

CCuurrrreenntt  
LLiimmiitteerr  

KK11ii   

KK22vv  

rv(k) vv(k) udqi(k) ++  
--  

yv(k) 

vv(k-1) 

 
udqilim(k) 

zz--11[[KKssvvKK22vv]]  
ψ i(k) 

zz--11KKssvv  

zz--11[[IIvv  --  KKssvvKK11vv]]  

++  ++  

++  ++  
++  
--  

Fig. 12. Block diagram voltage controller with anti-windup compensation.  
Fig. 13 shows the current controller with an anti-windup 

compensation. 
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Fig. 13. Block diagram current controller with anti-windup compensation. 

The current controller state-space representation can be 
found as: 
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++
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 (17) 

Again, if (17) is observable the matrix Ksc can be chosen 
so that [  has prescribed eigenvalues inside of the 
unit disc. 

]1isci KKI −

In order to demonstrate the operation of the proposed anti-
windup compensator algorithm some experimental results are 
presented. Fig. 14 shows the current reference udi before 
current limiter when inverter operating in short-circuits. Fig. 
15, show the current reference udil after current limiter in 
similar operating conditions, meanwhile Fig. 16 present the 
compensated voltage servo controller state. The transient 

occur due to a change in the reference value. It is seen that 
the variables are well limited.  

 
Fig. 14. Experimental results. Current reference udi before current limiter. 

 
Fig. 15. Experimental results. Current reference udil after current limiter. 

 
Fig. 16. Experimental results. Compensated voltage servo controller state v1v. 

V. ALGORITHM IMPLEMENTATION 
The algorithm implemented in the DSP controller is 

composed of four routines: An Initialization Routine, a 
Calibration Routine, the Interrupt Routine and a Waiting loop 
Routine. A brief description of each routine is given below. 
A. Initialization Routine 

After a reset event, the initialization routine executes the 
following tasks: CPU configuration, variables initialization, 
and look-up table transfer from program memory to data 
memory, which will be addressed on the interrupt routine. 
B. Calibration Routine 

The goal of this routine is to obtain the offset value of 
each measured variable; in this case, both v  ab and vbc line-to-
line voltage and both ia and ib line current. This procedure 
automatically adjusts the offset variables introduced by the 
measurement circuits, eliminating the requirements of 
potentiometers. 
C. Interrupt Routine 

This is the main algorithm. At each sampling period this 
routine samples the variables, normalizes, and performs 
coordinate transformations, as well as calculates the outer and 
inner loop controllers, and finally actualizes the PWM duty 
cycles. 
D. Waiting Loop Routine 

Once the interrupt routine was executed, the remaining 
time until the next interrupt, the current servo controller is 
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computed and the variables are updated. During this time, 
sin(θ(kT)) and cos(θ(kT)) are computed, which are necessary 
for the coordinate transformations. 

In order to illustrate the operation of the implemented 
software Fig. 17 gives the flux and time diagram. 

 
Fig. 17. General flux diagram of DSP algorithm and time diagram 

VI. EXPERIMENTAL RESULTS 
This section presents experimental results from a 15kVA 

PWM inverter with the proposed controller. The experimental 
setup operates with 220V line-to-line rms voltage at 60 Hz. 

The inverter switching frequency has been selected to 10 
kHz, to limit the switching losses. 

The TMS320F241 has been selected for this 
implementation. This DSP controller is a digital signal 
processors core with the peripherals of a micro-controller, 
which integrates an Event-Manager that facilitates the 
implementation of space vector algorithms. This DSP-
controller is capable of executing up to 20 MIPS, which 
allows the execution of manifold tasks and of complex 
control in real time reducing the circuitry of the UPS. The 
analog-to-digital conversions and the implemented space 
vector algorithm take 45 µs of the CPU time. Therefore, 
switching frequencies up to 20 kHz can be easily achieved.  
Fig. 18 shows the three-phase line-to-line voltages vab, vbc and 
vca, for operation at no load. Even in this condition is possible 
to see that the waveform well damped. Fig. 19, shows the 
three-phase line current ia, ib and ic, during short circuit 
operation. The current ripple is small since the output voltage 
is zero. Finally, Fig. 20 shows the transient from no load to 
short-circuit. The transient seen in this figure is mainly due to 
rebound on the mechanic switch used to make short-circuit. 

VII. CONCLUSIONS 
In this paper, a new digital current and voltage controller 

for three-phase PWM inverters are described and verified 
experimentally. The developed model takes in to account the 
execution time required for digital implementation. A 
systematic design procedure based on an optimal discrete 

linear quadratic regulator applied to the plant has been 
developed. With this procedure the controller, parameters that 
ensure stability from no load to short-circuit can be easily 
obtained. These results show a good performance with faster 
responses, reduced settling times and without steady-state 
error. An anti-windup compensator is proposed to allow a 
smooth transition between the different modes of operation. 
Experimental results from a 15kVA PWM inverter using a 
DSP controller TMS320F241 are presented to demonstrate 
the performance and validate the analysis carried out. 

 
Fig. 18. Experimental results. Three-phase line-to-line voltage under no 

load operation. Vertical scale: 100V/div, Horizontal scale: 2 ms/div 

 
Fig. 19. Experimental results. Three-phase line current in short circuit 

operation. Vertical scale: 20 A/div, Horizontal scale: 2 ms/div. 

 
Fig. 20. Experimental results. Output voltage vab and vbc and the currents ia 

and ib during a transient from no load to short-circuit. 
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