Fully Digital Voltage and Current Controller for Three-Phase Voltage Source PWM

Inverters

Fernando Botteron, Humberto Pinheiro, Hilton A. Griindling, José R. Pinheiro, Hélio L. Hey
UFSM/CT/DELC/NUPEDEE

ZIP CODE: 97105-900 —

Santa Maria, RS — Brazil

E-mail: botteron@nupedee.ufsm.br, humberto@ctlab.ufsm.br

Abstract — This paper proposes discrete time voltage and current
controllers for three-phase PWM inverters used in UPS
applications. An accurate state space discrete model of the
PWM inverter-filter-load, which takes into account non-
linearities and propagation delays associated with a real time
digital implementation, is derived for the controller design. The
output voltages and inductors currents are dynamically limited
by means of MIMO controllers designed using optimal servo
linear quadratic regulators, which ensure stability for the
system at all operating conditions. In order to ensure smooth
transitions among the different modes of operation, a nonlinear
MIMO anti-windup method is proposed to update the servo
variables. A 15kVA PWM inverter fully controlled by the DSP
controller TMS320F241 has been used to validate the proposed
approach. Simulations and experimental results show a good
transient and steady state performances from no-load to short
circuit operation.

1. INTRODUCTION

The main goal of an UPS is to provide high quality output
voltage for critical loads even under disturbances coming
from both AC line or from the load. Many controllers have
been proposed to obtain an output voltage with low total
harmonic distortion for three phase PWM inverters [1-6].
Among them, deadbeat and OSAP controllers [1-3] presents a
fast transient response, however, they are sensitive to
parametric variations and model uncertainties, which often
results in undesirable transient performance, or even
instability. On the other hand, nonlinear state feedback
controller in the synchronous frame [4-5] have been
described, however, the design is usually carried out in the
continuous time domain, and the relevant delays associated
with a digital implementation are not taking into account,
which can degrade its final performance [6]. In addition, in
none of the case reported the output voltage controller and the
current limiter controller, which is required to clear faulty
loads and to protect the inverter against overloads, are
simultaneously designed with systematic procedure.

This paper proposes a rotating frame fully digital voltage
and current controllers for PWM inverters where good
performance from no load to short circuit is assured by the
proper selection of the cost functions of the voltage and
current linear quadratic regulator. A systematic procedure for
the controller design in the state space is derived.

The remainder part of this paper is organized as follows:
Section II presents a discrete model in the rotating frame for
the space vector modulated inverter and LC filter and load,
which is normalized to couple with limited dynamic range of
a fixed-point DSP implementation. Section III presents the
voltage and current controller design. Section IV proposes an
anti-windup strategy; Section V presents a brief description

of the DSP algorithm, while Section VI presents experimental
results from a 15kVA inverter prototype. Finally, Section VII
summarizes the main points of this paper.

II. DISCRETE NORMALIZED PWM INVERTER MODEL
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Fig. 1. Three-phase Inverter and LC filter.

A typical three-phase voltage source inverter with LC filter
and load found in UPS applications is shown in Fig. 1. The
DC link voltage usually has low impedance and can be
considered as an ideal voltage source. On the other hand, the
output LC filter and load can be modeled by the following
state space model where the load are considered as
disturbances, that is:

x(1)=Ax(@)+Bu(t)+Fw() (1)
The matrices A, B, F in (1) can be found by applying
Kirchhoff’s law in the circuit and the vectors x, u and w have
been selected as:

9 i

S T - }f
X = [la 1 . Vg Vp Vc] u ulprm u23pwm

w= [iou iob i()c ]T

A. Normalization
Aiming to limit the dynamic range of variables for a fix point
implementation of the controller, a linear transformation that
normalizes the circuit variable is applied to (1). By choosing
the base values, the normalized voltage and current variables
N % ; i

" Vbase ! I base
Now, defining a normalizing linear transformation T, where
T, is a diag (1 lpase Vpase Vlpase 1/Viase 1/Vpase 1/Vipase) matrix
the normalized state, input and disturbance vectors become:

X, (¢) = T,x(¢) u(t) =V ,0u, (1) W(t)=1p,00Wn (?)
As a result the state equation (1) can be written in a compact
form as (2)

Xn (t) = TnATn-1 Xn (t) + TnBVbaseun (t) + TnFIbasewn (t) . (2)

can be written as:
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B. State space model in rotating d-q frame
By representing (2) into the off frame and then in the

rotating dg frame, the following state-space normalized

continuous model of the LC filter and load is obtained:

1

v, v, -
Vd o 0 0 le vd (1) 0 u, N 1
q|_ q _ dpwm _ 2l fed
Pl 1 - L 0 0 clI (3)
g —_— 0 0 o lq o quwm oq
q 1 L9 0 0
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where “o” in (3) is the desired output frequency. Equation (3)
can be expressed into the following compact form:

Xgq (1) = AgqXaq () + BgqUaq (1) + FaqWaq (1)

“

. . lT T T
ld lqj| udq:|:udpwm ”qumi| wdq:[lod Iaqi| .

Note that (4) is a normalized continuous model where .,
and u,,, are the voltages produced by the inverter
represented in the rotating dg frame, as shown in Fig. 2 (a)
and (b) respectively.
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Fig. 2. (a) PWM output voltage tg,» and inductor current id in the rotating
dq frame. (b) PWM output voltage i, and inductor current i, in the
rotating dg frame.

The block diagram of Fig. 3 describes the operation of the
digitally implemented space vector modulation where the
discrete control action is generated in the dg frame. By
making some assumptions the diagram of Fig. 3 can be
simplified, that is: (i) By assuming that the variables are
sampled at their mean values and that the (2) has a low pass
characteristic then the blocks associated with the
SVM/inverter and the abc-af3 transformation can be
simplified to a gain proportional to de DC bus voltage Vdc.
(i1) If the switching frequency is mush higher then the output

frequency then discrete dg-aff transformation and the
continuous af-dg transformation can also be simplified. As
a result the block diagram of Fig. 3 (a) is rendered to the one
shown in Fig. 3 (b). If these assumptions are violated, a non-
linear model should be considered to describe the relationship
between the input and output variables of three-phase PWM
inverter in the rotating frame.
im
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Fig. 3. (a) Block diagram representation of three-phase PWM inverter in the
dg frame. (b) Simplified representation.
ZOH: zero-order hold, SVM: Space Vector Modulator. “T” is the sampling
period.
C. Discrete state-space model in rotating d-q Frame

As mentioned before digital controllers require a finite
time for its computation, which can represent a significant
portion of the sampling period. In this section, a discrete
state-space model, which takes into account this
computational delay, defined as Ty is derived.

Referring to Fig. 4 during the k-th sampling interval both
actual action control, ugq(kT) and last uqq((k-1)T), are applied
to the inverter. As result, an additional state variable uqq_q
(last control action) can be used to model this delay.

In order to obtain the discrete state space equation, which
takes an account mentioned delay the state space equation (4)
is solved along one sampling period (in this case also the
switching), that is:

Xgq(k+DT)=¢""x, (kT)+j()Td TR B g (k—DT)+
’ )
+ j Z 1 AT, et B ugy (KT)

The solution of (5) result in the matrix state space equation
(6):
qu(k+l) _ G Ho Xdq(k) H]

= + k),
tag ak+D |70 0 |ugg o0)|T| 1 |00

(6)

where:
G =M’ H, - oA (T-T,) Adq-l (eAdq T, I)qu

By defining, \y(k):[xdq(k) udcui(lc)Tr the discrete state

H, - Adq.l[eAdq (T-Ty)

space equation (6) becomes:
W(k+1)=Gpy(k)+Hp ugq () (7)
where the matrices G, and H,, are defined in agreement with

(6).
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Fig. 4. Control signal (u4q) and sampling instants with reference to a
symmetric space vector modulation pattern (s11, $21, $31)-

III. VOLTAGE AND CURRENT CONTROLLER DESIGN

For the task of controlling the output voltage and limiting
the inductors current it is proposed a servo current and
voltage controller. It consists of an inner current loop
controller and an outer voltage loop controller, in an
arrangement as shows in Fig. 5. For the design of the servo
current and voltage controllers the steady-state discrete linear
quadratic regulator approach is used. The next two sub-
sections derive discrete state-space error current and voltage
models that are adequate for the controllers design. The last
sub-section investigates the impact of the weighting matrices
on the closed-loop performance.

Ui
e

Current
Limiter

Vdref
Vre
gref +

Voltage

iq Iy
Limiter

lo Iy, (kT)

io(KT)
i, (KT) ip(KT)
abe|
var(KT)
Viu(KT) VaoulKT) T, va(kT)
vo,(KT) [\ Line Vien(KT) Ve(kT)
Phase \]

DSP-CONTROLLER

Fig. 5. Block diagram of the proposed linear quadratic current-voltage
controller.
A. Inner current loop model.

Fig. 6 shows the block diagram of the proposed inner loop
current controller. The linear quadratic current servo
controller state equation can be defined as:

vi(k +1) = vi(k) +ugq; (k) - y; (k) 8)
where the v; is a 2x1 vector. As shown in Fig. 6, the discrete
input control equation, which is applied to the plant, is:

ugq () =Ky (k) + Ky;v; (k) 9)

In order to transform the current servo design problem
into state feedback design problem the following error state
variables are defined:

W (k) = y(k) —y(x) u, (k) =ugq (k) —ugq ()
With these variables the error state-space representation
becomes:

v (k+1)| [Gp Hp

Jwe®)] 10 w(b)
wk+)| [0 0 : ’

u (k) | 1L (10)

. e k
Where, W(k) = |:(K2i _KZiGP _KliCi) : (Il _KZiHP)j| ‘: ((k)) )

T
which can also be written as, w(k)=K; [\ye(k) ue(k)} .

The feedback gain matrix K; can be determined to ensure the
desired system performance. Then Kj; and Kj; can be easily
obtained from K;.
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Fig. 6. The inner current loop block diagram

B. Outer voltage loop model.

Let us now focus in the model for design the output
voltage controller. In this case the inverter-filter-load and the
servo current controller can be considered as a new plant for
the purpose of the outer loop voltage servo design. The
implemented servo dynamic equation is:

Vy(k) =vy(k=1) +ry(k)-yy (k). (11)

As result, the discrete current reference, which is applied
to the inner loop as shown in Fig. 7, is given by:

ugqi (k) = -Kaywi (k) + Kqy vy (K) (12)

In a similar manner as a servo current controller, the state

feedback representation becomes as shown in equation (13).

+ud€|i(k) Plant plus
Current Servo |=4
Norm, Controller
Limiter
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Fig. 7. The plant plus inner current loop and outer voltage loops block
diagram

viek+D) | |G H | wie) | |0
‘ = b T ey (), (13)
Uggie(k+D | | 0 0 [Juggie(h)| |1y
. Ww(k)
Whereuv(k) =[(K2V _KZVGi 'KvavGi):(Iv _KZVHi 'KvavHi)]
“dqie(k)

T
which can also be written as, u, (k) =K, |:‘|Iie (k) udqie(k)}

The K;, and K, feedback matrices are obtained from to
gain matrix K,, which is selected to ensure the desired
closed-loop performance.

Next section discusses the selection of K; and K, gain
matrices using the discrete linear quadratic regulator
approach.

C. Steady-state discrete linear quadratic design

For the design of feedback gains, the steady-state discrete
linear quadratic optimal control approach has been adopted.
In this approach the controller feedback gains are selected to
minimize the discrete cost function (14). By selecting
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weighting matrices Q as positive definite or positive
semidefinite Hermitian matrix and R as positive definite
Hermitian matrix, the resulting system is asymptotically
stable. However, the system performance depends on the
specific entries of Q; and R; for the inner current-controller as
likewise on the entries Q, and R, for the outer voltage-
controller.

J:%Z‘ViT(k) Q; wi(h)+u;" (k) R; w; (k) (14)
k=0

where,

Qi=diaglqg,y Gvqy Gid 9ig Yuad Guag Dvid 9vig]
R; =#r1,,, where 7; isascalar.

Q, =diag g,y 9y 9ia i
R, =r,1,,, where 7, isascalar.

Duad quaq Qvid qviq Dvvd qvvq]

In order to define the weighting matrix Q and R, it is
possible to use the transient response and the root locus as
performances criteria.

If more the one set of {Q,R} results in a similar
performance then, the set with a smaller cost function J or the
one that result in the smaller feedback gains, should be
selected. Once the weight matrices are defined, the feedback
gain matrix that minimizes the cost function (14) is uniquely
determined.

In the next sub-section analyses supported by
experimental results for the PWM inverter operating in both
current and voltage control are presented where the feedback
gain matrices are obtained with the steady-state LQR design.

D. Design Examples

Fig. 8 and Fig. 9 presents the root locus diagrams of
closed-loop poles for the current and voltage operating
modes. The entries of the weighting matrices have been
adjusted from their nominal values to ensure that: (i) the
closed-loop poles are in a well damped region for the entire
load variation, that is, from no-load to the rated load when in
the voltage control mode and from the rated load to short-
circuit when in the current control mode. (ii) the poles
sensitivity to the load changes are limited, (iii) the transient
response is fast.

By taking into account that the model used in the designs
have does not match exactly the real system, is worth to
verify the closed loop performance experimentally.

Fig. 10, show the closed-loop transient responses due to step
change in the reference for both current and voltage control
mode. It is seen that the transient response is well damped as
predicted in the design. This is also seen in Fig. 11 and,
which show the transient response during the voltage control
mode. In all figures the current reference changes from 0.5 pu
to 0.75 pu at £ = 341 and from 0.75 pu to 0.5 pu at k = 683.
Note to that 1 p.u. = 1/4/2 in dg frame and the sampling

period is T=100 ps. The parameters LC filter are L, = 500puH
and C = 70pF.
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Fig. 8. Root Locus for the current
control mode, when the load
resistance changes from full load (o)
to short circuit (X).
Qi=Tand R;=1. (322100 Q).

0.5
Fig. 9. Root Locus for voltage
control mode, when the load
resistance changes from no load (o)

to full load (x).
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Fig. 10. Experimental Results. i, and i, current transient due to step
changes on the reference.
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Fig. 11. Experimental Results. v, and v, voltage transient due to step
changes on the reference.

IV. ANTI-WINDUP COMPENSATION

Windup may occur when the control actions saturate since
the servo controllers have eigenvalues on the unity circle. In
order to avoid oscillation due to the overload of the voltage
servo integral states during the current mode control a
tracking mode controller anti-windup compensation
algorithm is proposed. The block diagram of this
compensator is depicted in Fig. 12. This tracking mode
controller ensures that the voltage controller state vector vy(k)
will correspond to the controller input-to-output vector pairs
even when the control action is limited. The current limiter
block in Fig. 12 limits current reference vector to be smaller
than a maximum desired value, for this case is equal to

v/3/2 in dg coordinates, which correspond to 1 p.u. in the
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abc coordinates. The implemented current limiter can be
expressed as:

g, (k
Maa®) udqi(k)u >372
2
Uggitim (k) = udqi(k)uz (15)
g6 if udqi(k)H2< 372

where, "udqi (k)"2 is the Euclidean norm of the vector ugqi(k),

that is: Hudqi(k)u = Jua () + g (k) .
2

The design of the tracking mode controller may be
formulated as an observer problem [8]-[10]. The state space
representation of the voltage servo controller with the anti-
windup compensation of Fig. 12 can be written as:

vv(k) = [IV - stKlv]vv(k - 1) + ev(k) + studqilim(k - 1) (1 6)
+ KSVKZV‘Vi (k - 1)

If (16) is observable the matrix K, can be chosen so that
[I, -KK,,] has prescribed eigenvalues inside of the unit
disc. Similar situation may occur with the current servo-
controller state. For example, during the startup or shutdown,

when the DC bus voltage is smaller than its nominal value,
windup may occur.

7'K,, |«
R =B

Current
Limiter

Z'[L - KoK

7' [K Ky |« <

Fig. 12. Block diagram voltage controller with anti-windup compensation.
Fig. 13 shows the current controller with an anti-windup
compensation.

vi(k)

+

ugqi(K) + udqliq(k)
) +
y‘(k)l Limityr
KscKZi I: < k4 (k)

Fig. 13. Block diagram current controller with anti-windup compensation.
The current controller state-space representation can be
found as:
Vi(k+1) = (I; — K Ky;)vi (k) +[ugq () —y; (k)] !
+K () + K Kyw (k) a7
Again, if (17) is observable the matrix K. can be chosen
so that [I;, - K K;;] has prescribed eigenvalues inside of the

scldglim

unit disc.

In order to demonstrate the operation of the proposed anti-
windup compensator algorithm some experimental results are
presented. Fig. 14 shows the current reference u, before
current limiter when inverter operating in short-circuits. Fig.
15, show the current reference u,; after current limiter in
similar operating conditions, meanwhile Fig. 16 present the
compensated voltage servo controller state. The transient

occur due to a change in the reference value. It is seen that

the variables are well limited.
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Fig. 14. Experimental results. Current reference u,; before current limiter.
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Fig. 15. Experimental results. Current reference u,; after current limiter.
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Fig. 16. Experimental results. Compensated voltage servo controller state vy,.

V. ALGORITHM IMPLEMENTATION

The algorithm implemented in the DSP controller is
composed of four routines: An [Initialization Routine, a
Calibration Routine, the Interrupt Routine and a Waiting loop
Routine. A brief description of each routine is given below.

A. Initialization Routine

After a reset event, the initialization routine executes the
following tasks: CPU configuration, variables initialization,
and look-up table transfer from program memory to data
memory, which will be addressed on the interrupt routine.

B. Calibration Routine

The goal of this routine is to obtain the offset value of
each measured variable; in this case, both v, and v, line-to-
line voltage and both i, and i, line current. This procedure
automatically adjusts the offset variables introduced by the
measurement circuits, eliminating the requirements of
potentiometers.

C. Interrupt Routine

This is the main algorithm. At each sampling period this
routine samples the variables, normalizes, and performs
coordinate transformations, as well as calculates the outer and
inner loop controllers, and finally actualizes the PWM duty
cycles.
D. Waiting Loop Routine

Once the interrupt routine was executed, the remaining
time until the next interrupt, the current servo controller is
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computed and the variables are updated. During this time,
sin(0(kT)) and cos(B(kT)) are computed, which are necessary
for the coordinate transformations.

In order to illustrate the operation of the implemented
software Fig. 17 gives the flux and time diagram.
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'

Routine

Waiting = Intermpt
Loop «— Ecutine
A . .
v Timer Timer Sampling Period
Counter Internipt ! T =100us !
Vlrtgal 1
Carrier
! 1 —»
Towwl2 | Ts ! Dy
iInitialization, | Waiting Loop | Interrupt | Waiting Loop |
i Calibration ' Routine ! !

Fig. 17. General flux diagram of DSP algorithm and time diagram

VI. EXPERIMENTAL RESULTS

This section presents experimental results from a 15kVA
PWM inverter with the proposed controller. The experimental
setup operates with 220V line-to-line rms voltage at 60 Hz.

The inverter switching frequency has been selected to 10
kHz, to limit the switching losses.

The TMS320F241 has been selected for this
implementation. This DSP controller is a digital signal
processors core with the peripherals of a micro-controller,
which integrates an Event-Manager that facilitates the
implementation of space vector algorithms. This DSP-
controller is capable of executing up to 20 MIPS, which
allows the execution of manifold tasks and of complex
control in real time reducing the circuitry of the UPS. The
analog-to-digital conversions and the implemented space
vector algorithm take 45 ps of the CPU time. Therefore,
switching frequencies up to 20 kHz can be easily achieved.
Fig. 18 shows the three-phase line-to-line voltages v,;, v and
Vea» TOr operation at no load. Even in this condition is possible
to see that the waveform well damped. Fig. 19, shows the
three-phase line current i,, i, and i., during short circuit
operation. The current ripple is small since the output voltage
is zero. Finally, Fig. 20 shows the transient from no load to
short-circuit. The transient seen in this figure is mainly due to
rebound on the mechanic switch used to make short-circuit.

VII. CONCLUSIONS

In this paper, a new digital current and voltage controller
for three-phase PWM inverters are described and verified
experimentally. The developed model takes in to account the
execution time required for digital implementation. A
systematic design procedure based on an optimal discrete

linear quadratic regulator applied to the plant has been
developed. With this procedure the controller, parameters that
ensure stability from no load to short-circuit can be easily
obtained. These results show a good performance with faster
responses, reduced settling times and without steady-state
error. An anti-windup compensator is proposed to allow a
smooth transition between the different modes of operation.
Experimental results from a 15kVA PWM inverter using a
DSP controller TMS320F241 are presented to demonstrate

the performance and validate the analysis carried out.
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Fig. 18. Experimental results. Three-phase line-to-line voltage under no
load operation. Vertical scale: 100V/div, Horizontal scale: 2 ms/div
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Fig. 19. Experimental results. Three-phase line current in short circuit

operation. Vertical scale: 20 A/div, Horizontal scale: 2 ms/div.
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Fig. 20. Experimental results. Output voltage v,;, and vy, and the currents i,
and i, during a transient from no load to short-circuit.
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