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Abstract - This paper presents a technique for
analysis, modeling and control of three phase AC-DC
converters, applied to a bi-directional three-phase AC-
DC converter without neutral point. The basic
principle of operation of the converter will be presented
then the proposed theoretical analysis and finally the
results obtained by simulation.

I.  INTRODUCTION

The study of high power factor three-phase AC-DC
converters is not diffused, so the applied methods are, most
times, complexes or not efficient. This makes these
methods not trustable, mainly in not studied converters.

So, it would be interesting to obtain a quick and simple
methodology, but efficient and trustable for these
converters. Using the Park transform, it’s possible to
obtain a method of analysis that presents the desirable
characteristics.

It will be presented a methodology for analysis,
modeling and control of three-phase AC-DC converters,
applied to a particular case, to the three-phase, AC-DC
converter, bi-directional, without neutral point, presented
in Fig. 1, with three-phase sinusoidal and balanced input of
220V AC (line voltage) and output of 450V (DC),
operating at a power of 12kW and at a switching
frequency of 30KHz, so that the methodology can be
extended to other converters, that’s the objective.

Fig. 1: Analyzed bi-directional three-phase AC-DC converter.

It can be observed that the circuit to be analyzed is
traditionally used as an DC-AC converter, in fact, the

methodology that will be presented can also be used in
control of three-phase inverters or in active compensators
of reactive power.

The presented study will focus techniques of analysis,
modeling and control, so that components dimensioning
and principles of functioning will not be presented.

II. OBTAINING THE CONVERTER MODEL FROM INPUT
(AC)

The simplified circuit of Fig. 2 can represent the
converter’s circuit presented in Fig. 1, without loss of
generality:
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 Fig. 2: Simplified circuit of bi-directional three-phase circuit presented in
Fig. 1.

It is considered sinusoidal and balanced input, so that
the imput voltages are given by:








°+⋅⋅=
°−⋅⋅=

⋅⋅=

)120()(
)120()(

)()(

twsenVtV
twsenVtV
twsenVtV

Pc

Pb

Pa
     (1)

Then:










°+⋅⋅⋅=−=

°−⋅⋅⋅=−=

°+⋅⋅⋅=−=

)150(3)()()(

)90(3)()()(

)30(3)()()(

twsenVtVtVtV

twsenVtVtVtV

twsenVtVtVtV

Pacca

Pcbbc

Pbaab
           (2)

Then, from circuit presented in Fig. 2, it can be
observed that when Sa is in Xa position, VSa(t) = Vo, and
when Sa is in Ya position, VSa(t) = 0, from this observation,
and following the same ratiocination for Sb and Sc, it can
be written:
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Where Vo corresponds to output voltage, which by now
will be considered constant. So, the equivalent circuit
shown in Fig. 3  can represent the converter presented in
Fig 2.
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Fig. 3. Equivalent circuit of the converter presented in Fig. 2 (and
consequently equivalent to the presented in Fig. 1).

So, from circuit presented in Fig. 3:
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Defining:
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So, (4) reduces to:
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Or, in vectorial form:

abcabcabc DVoI
dt
dLV ⋅+⋅=                    (7)

Where:
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It is known that the Park transform, applied to any
vector abcX  is given by:

abcdq XBX ⋅=
−1

0
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And, obviously the inverse transform is given by:
0dqabc XBX ⋅=                  (13)

It must be recorded that the Park transform guarantees
that the power does not vary, that is, the transformation is
orthogonal, so:
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Then, finally it’s obtained:
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Applying the Park transform to the line voltages:
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 The substituting in (16), it is obtained:
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This way, from (18), the equivalent circuits of sequence
d and q are presented in Fig. 4:
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Fig. 4: Equivalent circuits of sequence d and q, respectively.

Applying low disturbations to variables in (18) and
using Laplace transform:
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III. OBTAINING THE CONVERTER MODEL FROM THE
OUTPUT (DC)

From the equivalent circuit presented in Fig. 2, it can be
observed that:
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Knowing that the sum of three currents in phase must be
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From the circuit of Fig. 5, it can be easily obtained:
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More, adding low disturbations to the variables in (16),
considering the perturbations are sufficiently low that the

product of the two disturbations can be neglected, and
using the Laplace transform:
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It can be seen that the circuit behaving depends on the

point of operation, this way, Id, Iq, Dd and Dq are
considered invariant and calculated for a determined point
of operation. Then, it is known that:
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As Vq is equal to zero:
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More, from the equivalent circuits presented in Fig.5,
knowing that the average voltages on the inductors are
zero:
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It can be observed that, if the reactive power is zero, the
second term in (22) is zero, obtaining a transfer function
very simple. Two current loops and one voltage loop can
be used, with conventional controllers, where the reference
for the current loop for q sequence is null and the reference
for the current loop of sequence d is given by the voltage
loop. The architecture of the proposed control system is
presented in Fig.6:
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The architecture for the control system presented in
Fig.6 can be represented by the block diagram shown in
Fig.7:
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Fig.7: Block diagram representation for the control system presented in
Fig.6.

It should be noted then, when applied the anti-
transformation to the duty cycles, it’s obtained “line duty
cycles”, so it’s needed to use a logical to determine the
“phase duty cycles” that effectively will be modulated to
command the switches, then the proposed logical is:

Table 1: Logical used to determine the real duty cycles.
Dab Dbc Dca Da Db Dc
> 0 > 0 > 0 No possible
> 0 > 0 < 0 -Dca Dbc 0
> 0 < 0 > 0 Dab 0 -Dbc
> 0 < 0 < 0 Dab 0 -Dbc
< 0 > 0 > 0 0 -Dab Dca
< 0 > 0 < 0 -Dca Dbc 0
< 0 < 0 > 0 0 -Dab Dca
< 0 < 0 < 0 No possible

IV. OBTAINED RESULTS BY SIMULATION.

Simulations were done using the software Pspice,
based on the theoretical analysis presented. The project
were done supposing the converter operating as a
rectifier, with PIN=12KW and QIN=0. The obtained
results are presented below:

A. Obtained results for the converter operating in
nominal condition, with PIN=12KW and QIN=0:
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Fig. 8: “Line” duty cycles.
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Fig. 9: “Phase” duty cycles.
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Fig. 9: Phase currents.
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Fig. 10: Zero crossing of phase current Ia(t).
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Fig. 11: Voltage and current in phase A.
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Fig. 12:. Output voltage.

B. Obtained results for the converter operating in other
interesting points, like inverter or reactive power
compensator,  where only references for PIN and QIN were
modified:

0s 5ms 10ms 15ms 20ms 25ms 30ms 33ms
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Fig. 13: Current and voltage in phase A, for PIN = 12KW and
QIN = -12KVAr.
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Fig. 14: Current and voltage in phase A, for PIN = 12KW and
QIN = 12KVAr.
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Fig. 15: Current and voltage in phase A, for PIN = -12KW  and QIN = 0.

V. CONCLUSIONS

Firstly, it must be emphasized that the use of Park
transform permits to view the converter in a different
way from that we used to see it, even that it is not used
such tool directly in its control.

In other hand, using the Park transform to control the
converter, it is seen that the currents will follow a
sinusoidal form naturally, so that the controllers
(conventional) will determine only the magnitude and
phase of these currents.

In the case of the analyzed converter, it is observed
the facility with which it can vary the active power,
being able, inclusive, to do it operate as an inverter, and
the reactive power, being able to have capacitive or
inductive behaving.

So, in general form, it can be concluded that the
obtained results are better than expected, so that the
extension of the proposed methodology, for other
converters is very flattering.
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