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Abstract – This work presents the generation of a new family 
of soft-switching active-voltage-clamping pulse-width-
modulation voltage source inverters. The new inverters 
topologies combines the advantages of a soft-commutated 
converter using the zero-voltage-switching technique in a 
wide range of load current and those of a conventional pulse-
width modulation. The maximum voltage applied in all 
switches is clamped and limited in a reduced value and it does 
not produce excessive current stress. The switching losses and 
dv/dt of the power device can be significantly reduced and the 
reverse recovery problem of main switches can be avoided as 
compared to the hard switching case. Experimental results 
taken from a laboratory prototype rated at 2.5 kVA are 
presented for a member of the new inverters family. 

I. INTRODUCTION 

In the output of a voltage source inverter, excellent 
voltage and current waveforms are expected, and a minimal 
harmonic content is considered. To achieve a minimal 
harmonic content and to reduce the audible noise in voltage 
source inverters it is desirable to operate at high switching 
frequencies. However, when the switching frequency 
increases, the efficiency and reliability of the PWM 
converter deteriorate significantly. 

Some efforts have been made to reach this aim and 
various topologies were proposed to achieve soft-switching 
in voltage source inverters [1, 2, 3, 4, 5, 6, 7]. The goal of 
a soft-switching is to achieve less switching losses and 
noises than that of the traditional hard-switching. 

In this work is presented the generation of a new 
family of soft-switching voltage source inverter. The soft-
switching is achieved using the active clamped voltage 
technique. 

The inverters are generated from the six basic dc-dc 
converters and was based in the Carsten proposition [8]. 
Carsten did not explore the soft-switching capabilities of 
his proposed structure to demagnetizing forward converter 
[8]. Jitaru [9] added a saturate inductor to obtain sot-
switching in the forward converter. 

Some other authors have been using the active 
voltage clamping technique, but without a connection with 
one to the others [10, 11, 12]. 

This work intends to show a common origin to the 
active voltage clamping circuits described above and 
proposes a new family of soft-switching voltage source 
inverter using the same technique. 

II. GENERATION OF THE ACTIVE VOLTAGE 
CLAMPING CELL 

The active-voltage-clamping pulse-width-
modulation soft-switching cells (AVC-PWM-SSC) are 
reversible and based in the operation principle of the six 
basic dc-dc converters (buck, boost, buck-boost, Cuk, sepic 
and zeta). 

The AVC-PWM-SSC are generated transforming 
the dc-dc converters main switches and diodes in active 
switches, allowing a reversible flux of current in the cell; 
the output capacitors in the clamped capacitors and the 
input and/or output inductors in the resonant inductors. The 
transformation of the six basic dc-dc converters to obtain 
the six active-voltage-clamping (AVC) pulse-width-
modulation (PWM) soft-switching cell (SSC) is shown in 
the Fig. 1. The letters “a”, “b” and “c” indicate the points 
where the connections will be made to generate the novel 
family of inverters. 

To generate the active-voltage-clamping converters 
we should apply two simple rules of elements connection 
given below: 

1 – between the points a and c of the commutation cell, 
we should connect elements with voltage source 
characteristics, like voltage source and capacitors; 

2 – between the points a and b and/or b and c of the 
commutation cell, we should connect elements with current 
source characteristics, like current source and inductors in 
series with a voltage source. 

Applying these two rules to the commutation cells, 
shown in the Fig. 1, it can be obtained some converters 
with active-voltage-clamping action. A generated family of 
DC-DC ZVS PWM AVC buck converters is shown in the 
Fig. 2. Like the buck family of converters it can be 
generated the boost family, the buck-boost family, the Cuk 
family, the sepic family and the zeta family of converters. 

The rules have universal use and can be applied to 
generate a family of soft-switching inverters. The new 
family of soft-switching active-voltage-clamping pulse-
width-modulation voltage-source-inverter (SS-AVC-PWM-
VSI) is shown in the Fig. 3. 

This new family of inverters is formed by six 
members, where each one have a different active-voltage-
clamping action and combines the goals of soft switching 
commutation in all active switches, high frequency 
capability,  conventional  PWM  strategy and no excessive 
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additional voltage or current stress [14, 15, 16]. The active-
voltage-clamping actions are based on the six conventional 

dc-dc converters: buck, boost, buck-boost, Cuk, sepic and 
zeta. 
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Figure 1 – Generation of the active-voltage-clamping pulse-width-modulation soft-switching cells (AVC-PWM-SSC): 
a) buck cell; b) boost cell; c) buck-boost cell; d) Cuk cell; e) sepic cell and f) zeta cell. 
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Figure 2 – Family of DC-DC ZVS-PWM-AVC buck converters. 
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Figure 3 – The new family of soft-switching active-voltage-clamping pulse-width-modulation voltage source inverters. 
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The use of active-voltage-clamping technique 
produces a favorable situation to obtain soft commutation 
in the active switches and regeneration of the commutation 
energy to the voltage source (DC bus). In the main 
switches zero-voltage-switching (ZVS) commutation is 
achieved at rated load, and a quasi ZVS commutation is 
guaranteed under all other load current conditions. This 
characteristic do not affect the efficiency of the new family 
of inverters, because the losses are smaller than the hard-
switching case at non rated load. The commutation of the 
auxiliary switches is ZVS under all load condition. 

III. PRINCIPLE OF OPERATION 

To analyze the principle of operation it was choose 
the new zero-voltage-switching pulse-width-modulation 
voltage-source inverter with buck-boost active voltage 
clamping action, shown in the Fig. 3.c. This inverter 
consists of two main switches (S2 and S3), two auxiliary 
switches (S1 and S4), six diodes (D1-D6), six resonant 
capacitors (Cr1-Cr6), two resonant inductors (Lr1 and Lr2) 
and two clamping capacitors (Cg1 and Cg2), besides the 
DC bus and the load. 

The topological stages for one period of 
commutation are shown in Fig. 4. The novel soft 
commutation inverter presents nine stages of operation, 
explained as follows. 

First Stage (t0, t1): in this stage the main switch S2 is 
conducting. The current through Lr1 is equal to the load 
current and the current through Lr2 is equal to zero. During 
this stage energy is transferred to the load. 

Second Stage (t1, t2): at the instant t1, switch S2 is 
turned-off and the resonant capacitors Cr2 and Cr5 are 
linearly charged. The voltage across Cr1 varies from zero 
to E+vg1 and the voltage across Cr5 varies from zero to E. 
The resonant capacitors Cr1 and Cr6 are discharged and 
the voltages across their terminals vary from E+vg1 and E 
to zero, respectively. The resonant current iLr1 remains 
constant and equal to the load current. 

Third Stage (t2, t3): when the voltage across Cr2 
equals E+vg1 the voltage across Cr1 becomes null, and 
diode D1 starts to conduct. Simultaneously the voltage 
across Cr5 becomes equal to E, the voltage across Cr6 
becomes null, and diode D6 starts to conduct the load 
current. The inductor Lr1 demagnetizes through the 
clamping capacitor Cg1 via D1. During this stage switch 
S1 must be gated on, so that in the next stage soft 
commutation is achieved. 

Fourth Stage (t3, t4): when iLr1 becomes zero, diode D1 
is blocked and switch S1 starts to conduct without 
commutation losses. Current iLr1 changes its direction and 
increases linearly in a negative sense. 

Fifth Stage (t4, t5): at the instant t4, the switch S1 is 
blocked. Capacitor Cr1 is charged and capacitor Cr2 is 
discharged linearly, while the current through Lr1 remains 
constant and equal to the load current. The voltage across 
Cr1 increases from zero to E+vg1, while the voltage across 
Cr2 decreases from E+vg1 to zero. 
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Figure 4 – Topological stages for one switching period. 

Sixth Stage (t5, t6): when vCr2 becomes equal to zero, 
diode D2 starts to conduct the current iLr1. In this stage Lr1 
is demagnetized through E and its energy is recovered. 

Seventh Stage (t6, t7): at the instant t6 the current 
through Lr1 becomes null and diode D2 is blocked. Switch 
S2 starts to conduct without commutation losses. The 
current through Lr1 increases sharply, fed by E via S2 and 
D6. 

Eighth Stage (t7, t8): when iLr1 becomes equal to the 
load current, the current in diode D6 becomes null, 
blocking it. A resonance involving Lr1, Cr1, Cr3, Cr5 and 
Cr6 begins. The current through Lr1 increases in a 
sinusoidal fashion. The voltages across Cr1 and Cr5 
decrease from E+vg1 to vg1 and from E to zero, 
respectively. The voltages across Cr3 and Cr6 increase 
from zero to E. 
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Ninth Stage (t8, t9): when the voltage across Cr6 

equals E, the voltage across Cr5 becomes null and diode 
D5 starts to conduct. The current through Lr1 decreases as 
a consequence of the resistive elements present in the loop 
formed by S2, Lr1 and D5. When the current through Lr1 
becomes equal to the load current, the first stage of 
operation restarts and one switching period is completed. 

IV. EXPERIMENTAL RESULTS 

In order to prove the principle of operation a 
laboratory prototype of a 2.5kVA soft-switching active-
voltage-clamping pulse-width-modulated voltage-source 
inverter (SS-AVC-PWM-VSI) was designed to drive an 
induction motor. 

The clamping voltages across Cg1 and Cg2 are 
shown in the Fig. 5 and the resonant current through Lr1 is 
shown in the Fig. 6. 

The voltages across and the currents through the 
auxiliary switch S1 and the main switch S2 are shown in 
the Figs. 7 and 8, respectively. It can be seen that despite of 
the IGBT tail current, the commutations are lossless. 

In a ZVS condition MOSFETS are more indicated, 
but in this case was used IGBT because it is the most used 
transistor in induction motor drivers. The use of IGBT 
transistors do not disturb the commutation cell operation 
and do not affect the inverter efficiency. 
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Figure 5 – Clamped voltages in Cg1 and Cg2. 
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Figure 6 – Current through Lr1 superposed with the load current. 
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Figure 7 – Voltage across and current through the auxiliary switch S1. 
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Figure 8 – Voltage across and current through the main switch S2. 

A detail of the turn-off process in the main switch 
S2 is shown in the Fig. 9. It can be seen the effect of the 
IGBT tail current. Fig. 10 shows the main switch S2 turn-
on process at no rated load current. This commutation is 
quasi ZVS and it occurs because exists an insufficient 
resonant current circulating through the Lr1 inductance.  
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Figure 9 – Detail of the main switch S2 turn-off process. 
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Figure 10 – Main switch S2 turn-on process under quasi ZVS condition. 
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The commutation under quasi ZVS condition do not 
interfere in the efficiency of the inverter, it is shown in the 
Fig. 11. At full load condition the measured efficiency was 
96.1%. 
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Figure 11 – Efficiency of the new inverter. 

V. CONCLUSION 

In this work was presented the generation of a new 
family of soft-switching active-voltage-clamping pulse-
width-modulated voltage-source inverters (SS-AVC-PWM-
VSI). To generate the inverters were used two universal 
rules of circuit element connection. The soft-switching 
active-voltage-clamping pulse-width-modulated (SS-AVC-
PWM) generated cell were derived from the six dc-dc basic 
converters: buck, boost, buck-boost, Cuk, sepic and zeta. 
Experimental results obtained from a member of the new 
family of soft-switching voltage-source inverters indicate 
that it is suitable for voltage source inverter applications. 
Some characteristics of the new family inverters are better 
than the characteristics of the other topologies applied to 
obtain soft switching. The new inverter topology combines 
the advantages of a soft-commutated converter using the 
zero-voltage-switching technique in a wide range of load 
current and those of a conventional pulse-width 
modulation. Out of the soft-switching region the 
commutation is quasi ZVS, and this characteristics do not 
affect the efficiency. The measured efficiency at full load 
condition was 96.1%. The current and voltage stress was 
limited to 30% of the load current and 11% of the DC bus, 
respectively. 
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