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Abstract - A time domain technique has been used to simulate 
single-phase and 3-phase converters. The technique allows the 
computation of converter impedances or admittances viewed 
from the AC or DC bus. At any operating point, a linear circuit 
represents the converter and harmonic magnification factors 
are calculated. Composite resonance has been investigated us-
ing a small signal comprising several harmonics. The cross-
frequency effects of composite admittances are therefore in-
cluded. Response of the linear circuit to the signal has been 
used to locate the frequencies for which there is significant 
distortion in the AC-bus voltage or the DC current. 
 

I. INTRODUCTION 
 

Waveform distortion in AC/DC converters has been 
very difficult to quantify and consequently, has not been 
well understood. It has been observed that AC/DC convert-
ers with low short-circuit ratio experience high levels of 
waveform distortion. This has been attributed to the high AC 
system impedance, whose inductance may resonate with the 
capacitors and filters installed at the converter’s AC side. It 
is believed that a resonance of this nature may lead to har-
monic instability. 

The AC/DC converter is the interconnection of the AC 
and DC systems via the static converter. The AC system 
impedance interacts through the converter characteristics to 
present entirely different impedance to the DC side. This 
gives rise to resonance frequencies, which depend on the AC 
system impedance, the DC system impedance and the 
switching of the converter. The resonance is ‘composite’, 
implying its dependence on all elements of the AC/DC con-
verter.  

Several contributions have appeared in the literature on 
harmonic instability but very few have directly addressed 
the phenomenon of composite resonance. In fact, the con-
cept of impedance seen from the converter terminals has not 
yet been clearly defined.  

In one study [1], the linear relationships between integer 
harmonics on both sides of the converter have been obtained 
numerically from the converter simulation. The converter 
control system has been included in the simulation and the 
overall harmonic impedances at both the AC and DC termi-
nals are derived. The harmonic impedance has been used to 
predict lightly or negatively damped integer harmo nics.  

In another contribution [2], a frequency domain analysis 
has been used to obtain a set of simultaneous equations, 
which, after considerable manipulation, reduce to a matrix 
equation relating the AC and DC harmonics. The converter 
impedance seen by the DC system is derived from this equa-

tion. At this stage, the expression for the composite imped-
ance becomes complicated. An equivalent RLC network is 
derived which matches the composite impedance at its reso-
nant frequency. The composite resonance damping is taken 
to be identical to the damping factor of the equivalent RLC 
circuit.  

Composite impedance is essentially a matrix quantity. 
This is true for the composite impedances seen on the AC 
and DC sides of the converter. Any single harmonic comp o-
nent of current flowing into a composite impedance pro-
duces a multitude of voltage harmonics. Some means for 
identifying the resonance frequencies becomes necessary. 
Amplification factors have been used [3] to isolate the reso-
nant frequencies and these factors are defined as the transfer 
functions from a fictitious voltage source placed in series 
with the converter to the voltage across the dc filter.  

In this paper, a time-domain approach for determining 
the steady-state responses of AC/DC converters is described. 
The simulation procedure is general and can include the 
frequency-dependence of parameters. Only uncontrolled 
converters have been simulated in this study. However, the 
inclusion of control systems is straightforward. At any oper-
ating point, the linear equivalent circuit of the converter is 
derived. A small voltage signal comprising several harmonic 
frequency comp onents has been used as the excitation for 
the linear circuit to determine the harmonic frequency for 
which there could be significant increases in the AC-bus 
voltage harmonics or DC current harmo nics.  
 

II. TIME-DOMAIN IMPEDANCES 
 

A −n vector of equidistant samples may represent a pe-
riodic band-limited waveform. If ][x  is the vector of equi-

distant samples representing a waveform, then 

])([)/1(][ xfftnX ⋅=     (1) 

is the phasor representation of the waveform. 

 
The first element of ][X  is the DC component of ][x . 

The next m  elements are the phasors representing the '' m  
harmonic components of ][x , where 12/ −= nm . The 

phasor component at the highest frequency is )2( +mX . 

The subsequent m elements from )3( +mX  to )(nX are the 

conjugates of )2(X  to )1( +mX  flipped upside down. In 

Matlab notation, the vector ][X  is written as:  
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Let ][Z  be the complex impedance matrix representing 

a linear circuit. It is a diagonal matrix and its diagonal of 
harmonic impedances has the same structure as that given by 
(2). Let ][,][ ie  be periodic voltage and current waveforms 

associated with the impedance. Then the phasor representa-
tions ][],[ IE  are related by: 

][][][ IZE ⋅= .     (3) 

From (3), we obtain 

],[][

][]][][[][

iz

ifftZiffte

⋅=
⋅=

    (4) 

where ][z  is the impedance matrix in the time domain. It is a 

real, full matrix. The computation of the impedance matrix 
requires only the inverse fast-Fourier transform of the di-
agonal of ][Z . 

In contrast to the impedance matrix of a linear circuit, 
the time domain conductance matrix of a thyristor switch is 
diagonal and the elements on the diagonal are the equidistant 
samples of the thyristor’s conductance over a fundamental 
period. When transformed to the harmonic domain, the 
complex conductance matrix is a full matrix, with the off-
diagonal elements representing the cross-frequency coupling 
admittances. The elements on the diagonal are the harmonic 
self-admittances.  
 

III. CONVERTER ANALYSIS 
 
A. Single-phase AC/DC converter 

Fig. 1 shows a single-phase AC/DC converter. The thy-
ristor pairs are switched simultaneously and they are as-
sumed to operate identically. An equidistant switching 
scheme is used for the thyristor pairs.  

Let ][],[ da ee  be the terminal voltage waveforms on ei-

ther sides of the thyristor bridge. Then the thyristor voltages 
are given by 

]}.[]{[5.0][][][

]},[]{[5.0][][][

332

141

adss

adss
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+⋅===
−⋅===

  (5) 

The thyristor voltages and the switching instants enable 
the calculation of the thyristor conductance variations from 
the nonlinear characteristics. Let the diagonal conductance 
matrices be 

].[][][
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==

    (6) 

Applying Kirchhoff’s laws to the converter circuit,  

,0][][][][]}[]{[][

0][][][][][][][

1133

1133

=⋅+⋅+−⋅
=⋅+⋅−⋅−
egegeeyd

egegeyac

DCd

asc  (7) 

where ][ scc  is the short-circuit current on the AC side of the 

thyristor bridge, ][ DCe  is  the emf of the DC system, ][ ya  

and ][ yd  are the AC and DC system admittances. The solu-

tions ][ ae , ][ de  of equations (7) are computed iteratively 

using the Newton-Raphson procedure. 
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Fig. 1. Single-phase converter 

 
 

B. AC side composite resonance 
Using circuit analysis techniques, it may be shown that 

the converter admittance on the AC side of the bridge is 
given by 

][]}[]{[][][][ 1
babaac gydgggycon ⋅+⋅−= − , (8) 

where ]}[]{[][ 132
1 ggg a +⋅=  and ]}.[]{[][ 132

1 ggg b −⋅=  

We now suppose that the AC source is modulated by a test 
signal ][ te  and that it is required to determine the effect of 

the modulation on the AC-bus voltage harmonics. Let ][ 0v  

be the open-circuit voltage at the input terminals of the con-
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verter when the test signal ][ te  is the excitation. Then the 

AC-bus voltage due to the test signal is  

].[][

][][]}[]{[][ 0
1

tac

acc

eaf

vyayconyae

⋅=
⋅⋅+= −

  (9) 

If any of the harmonic amplitudes of ][ ce  is signifi-

cantly higher than the corresponding harmonic amplitude of 
the test signal, then there is the possibility of composite 
resonance. The matrix ][ acaf  is the transfer function from 

the test signal to the AC-bus voltage. It is not a diagonal 
matrix and therefore, each harmonic component of ][ ce  is 

the summation of the contributions from all the harmonic 
components of ][ te . 

 
C. Test Signal 

In order to include the cross-frequency effects, a test 
signal has been constructed by adding together a range of 
harmonic components from the 2nd to 16th, each component 
having the same amplitude but with a quadratic phase shift 
[4]. The test signal is of the form:  

∑
=

∆+⋅=
16

2

2 )(sin][
k

t tktkAe ω ,   (10) 

where )/(1/ nfnTt ⋅==∆ . Only low order harmonic inter-

action is of interest and therefore, the highest harmonic or-
der included in the test signal is limited to 16. The quadratic 
phase shift ensures that there are no large spikes in the test 
signal. The amplitudes of the harmonic comp onents may be 
chosen so that the total harmonic distortion (THD) of the 
source voltage when modulated by the test signal is 1%. The 
low THD guarantees that the switch-off instants of the thy-
ristors are not affected by the modulation. Fig. 2 shows the 
test signal used in this study. 

Finally, composite resonance on the DC side may be 
studied by reducing the converter to an equivalent imped-

ance matrix ][ dcycon  when viewed from its output termi-

nals.  
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Fig. 2. Test signal waveform 
 

IV. PHASE AC/DC CONVERTER 
 

A 3-phase, 6-pulse AC/DC converter is shown in Fig. 3. 
The AC system consists of a source, its internal impedance, 
a shunt capacitance and the transformer’s leakage induc-
tance between the AC-bus and the converter input terminals. 
There are 4 unknown voltage waveforms to determine. 
These voltages are ][],[],[ ldbcab eee  at the input and output 

terminals of the bridge and the voltage ][ nv of one of the 

thyristor valves.  
The equations for the unknown variables are obtained 

by applying KCL at the nodes A, C and D. The fourth equa-
tion is obtained by stipulating that the sum of the currents in 
the upper row of thyristors is equal to the sum of the cur-
rents in the lower 
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Fig. 3. Three-phase AC/DC converter 
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row of thyristors. These equations are nonlinear because the 
thyristor conductance matrices are dependent on the un-
known voltages and the switching instants. The equations 
are solved iteratively using the Newton-Raphson procedure. 
The computations are listed below. 

Compute the admittance matrices ][,][ ydyf  of the AC 

and DC systems respectively and the short-circuit currents at 
the input terminals of the thyristor bridge. The short-circuit 
currents are ]1[],1[],1[ clcaclbcclab  for the phases AB, BC 

and CA. The matrix ][ yf  includes the leakage inductance of 

the transformer.  
 
1. Assume the waveforms ][,][],[ LDBCAB eee  and ][ Nv . 

2. Calculate the DC current: ][][][ LDLD eydc ⋅= . 

3. Using the DC current waveform obtained in step 2, obtain 
the switching instants from the current-controller. 
4. Compute the diagonal conductance matrices for the 
thyristors. 
5. Apply Kirchhoff’s current law as described previously. 
Since the waveforms in step 1 are solution estimates, KCL 
will not be satisfied but will give the residual currents: 
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Note that equations (11)-(14) are matrix equations. 

These equations are written in the form:  
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6. The corrections NLDBCAB veee δδδδ ,,,  that should be 

added to the assumed waveforms to minimize the residual 
currents are: 
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7. Return to step 1 if the maximum norm of the residuals is 
above a specified tolerance. 
 
A. AC-side composite resonance 

Removing the AC and DC system excitations and sub-
stituting the thyristors by their respective conductance ma-
trices gives the linear circuit representing the AC/DC con-
verter at a given operating point. The impact of a small 
negative-sequence, test-signal distortion in the AC system 
voltages may be estimated by using the linear converter cir-
cuit. It is assumed that the distortion in the AC system exc i-
tation will not affect the switching of the thyristors.  

Consider the linear circuit of the converter at an operat-
ing point and let the excitation be a 3-phase, negative-
sequence test-signal of amplitude NSvδ . The test-signal in 

each phase is the composition of harmonic voltages as given 
in equation (10). Let ][ ABVδ  be the phasor representation of 

the AC-bus voltage waveform between the terminals A and 
B. The AC-side harmonic magnification factors are defined 
as:  

])([)/1(][ ABNSac Vabsvm δδ ⋅=    (17) 

Of particular interest is the 4th element of ][ acm  which 

is the magnification factor for the 3rd harmonic. High values 
of this element indicate AC-side composite resonance at the 
3rd harmonic.  
 
B. DC-side composite resonance 

Consider again, the linear circuit of the converter ex-
cited by the 3-phase, negative-sequence test-signal. Let ][ 0j  

be the short-circuit current at the DC terminals of the linear 
circuit with the negative-sequence voltage as the AC-system 
excitation. Let ][ Cj  be the DC current when the DC system 

is connected to the converter. The amplification factor at the 
kth harmonic is defined as the ratio of the amplitudes of the 
kth harmonic of ][ Cj  to the corresponding amplitude of 

][ 0j .  

The magnification factor depends on the relative phase 
of the negative-sequence voltage, which is random. Only the 
maximum magnification factor as the phase varies, is con-
sidered. A high magnification factor implies the possibility 
of composite resonance on the DC-side.  
 

V. RESULTS AND DISCUSSION 
 

Jalali has previously studied the single-phase converter 
shown in Fig. 1 [4]. The switching sequence for the con-
verter was first adjusted so that the overlap angle in the 
steady state was 22.85o. Two solutions were obtained, the 
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first with an undistorted AC source and the second with the 
AC source modulated by the test signal.  

The difference between the AC current waveforms is 
shown in Fig. 4. This is almost identical to the AC current 
waveform obtained for the linear circuit with the test signal 
as the excitation. Therefore, the linear equivalent of the con-
verter circuit in the neighborhood of an operating point is 
valid.  

Fig. 5 shows the harmonic amplitudes of the AC-bus 
voltage when the test signal is the excitation and it may be 
observed that there is significantly high 5th harmonic ampli-
tude. It may also be noted that there is  a difference in the 
harmonic amplitudes when the 5th harmonic component of 
the test signal alone is used as the excitation. This is a dem-
onstration of the cross-frequency effect.  

The harmonic amplitudes of the AC-bus voltage ob-
tained from the solutions with and without the test signal 
modulation are shown in Fig. 6. Though the change in the 5th 
harmonic amplitude is nearly 20 times the amplitude of the 
test signal, it is swamped by the inherent 5th harmonic com-
ponent of the AC-bus voltage waveform.  

The parameter values for the 6-pulse converter are 
shown in Fig. 3. The thyristors are switched using an equi-
distant firing scheme. The firing instants are adjusted so that 
the DC current is approximately 60% of the current corre-
sponding to 0=α . The primary concern of this study is the 
impact of a 3-phase, negative-sequence test-signal distortion 
in the AC system voltages on the AC-bus voltage and DC 
current harmonics.  

Fig. 7 shows the harmonic magnification factors for the 
AC-bus voltages when there is a 0.5% THD, negative-
sequence test-signal distortion in the AC system voltages. A 
very high gain at the 3rd harmonic may be noted. Fig. 8 
shows one of the AC-bus voltage waveforms. The waveform 
is significantly changed by the small distortion, implying 
composite resonance at the 3rd harmonic. The figure also 
shows the AC-bus voltage waveform when the distortion 
consists of the fundamental frequency, negative-sequence 
alone. In this case, the deviation in the waveform is smaller 
and this is a demonstration of the 
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Fig.4. AC-side current for test-signal excitation 
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Fig.5. AC-bus voltage harmonic amplitudes for test-signal excita-
tion 
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Fig.6. 1-phase converter: AC-bus voltage harmonic amplitudes  

 
cross-frequency coupling. Fig. 9 shows the harmonic ampli-
tudes of the AC-bus voltage waveforms. 

Fig. 10 shows the DC-side harmonic magnification fac-
tors when there is a 1% THD, negative-sequence, test-signal 
distortion in the AC-system voltages. A reasonable 2nd har-
monic gain may be noted though this is not as high as the 
AC-side, 3rd harmonic gain. Fig. 11 shows the DC current 
waveforms and the deviations due the distortions in the AC 
system voltages may be observed. The DC current harmonic 
amplitudes are shown in Fig. 12.  
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Fig. 7. AC-side harmonic magnification factors 
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Fig. 8. 3-phase converter: AC-bus voltage waveforms  
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Fig. 9. AC-bus voltage harmonic amplitudes 
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Fig. 10. DC-side harmonic magnification factors 
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Fig. 11. 3-phase converter: DC current waveforms  

 

0 4 8 12 16
Harmonic order

0

2

4

6

D
C

 c
ur

re
nt

 h
ar

m
on

ic
   

 a
m

pl
it

ud
es

, %

test-signal
distortion

60Hz neg.-seq.
   distortion

no distortion

 
Fig. 12. DC current harmonic amplitudes 

 
VI. CONCLUSIONS 

 
The admittances presented by a converter at the AC and 

DC terminals depend on the operating conditions of the cir-
cuit such as the firing angle delay and filter circuit parame-
ters. These admittances are instrumental in amplifying the 
harmonics in the DC current and the AC-bus voltage.  

A single-phase converter and a 3-phase, 6-pulse con-
verter have been simulated using a time-domain technique. 
A suitable test signal, which is the composition of several 
harmonic frequencies, has been used to pinpoint the fre-
quencies for which there could be significant harmonic dis-
tortion in the AC-bus voltage or the DC current. Lineariza-
tion of the converter circuit in the neighborhood of an oper-
ating point has been validated and the cross-frequency effect 
of composite impedances has been demonstrated.  

The converters have been simulated without any closed-
loop control. However, the inclusion of control systems and 
the investigation of harmonic instability are straightforward.  
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