A Study of Composite Resonance in AC/DC Converters
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Abstract - A time domain technique has been used to simulate
single-phase and 3-phase converters. Thetechnique allows the
computation of converter impedances or admittances viewed
from the AC or DC bus. At any operating point, alinear circuit
represents the converter and harmonic magnification factors
are calculated. Composite resonance has been investigated us-
ing a small signal comprising several harmonics. The cross-
frequency effects of composite admittances are therefore in-
cluded. Response of the linear circuit to the signal has been
used to locate the frequencies for which there is significant
distortion in the AC-busvoltage or the DC current.

I. INTRODUCTION

Waveform distortion in AC/DC converters has been
very difficult to quantify and consequently, has not been
well understood. It has been observed that AC/DC convert-
ers with low short-circuit ratio experience high levels of
waveform distortion. This has been attributed to the high AC
system impedance, whose inductance may resonate with the
capacitors and filters installed at the converter’s AC side. It
is believed that a resonance of this nature may lead to har-
monic instability.

The AC/DC converter is the interconnection of the AC
and DC gy/stems via the static converter. The AC system
impedance interacts through the converter characteristics to
present entirely different impedance to the DC side. This
givesrise to resonance frequencies, which depend onthe AC
system impedance, the DC system impedance and the
switching of the converter. The resonance is ‘composite’,
implying its dependence on all elements of the AC/DC con-
verter.

Several contributions have appeared in the literature on
harmonic instability but very few have directly addressed
the phenomenon of composite resonance. In fact, the con-
cept of impedance seen from the converter terminals has not
yet been clearly defined.

In one study [1], the linear relationships between integer
harmonics on both sides of the converter have been obtained
numerically from the converter simulation. The converter
control system has been included in the simulation and the
overall harmonic impedances at both the AC and DC termi-
nals are derived. The harmonic impedance has been used to
predict lightly or negatively damped integer harmonics.

In another contribution [2], a frequency domain analysis
has been used to obtain a set of simultaneous equations,
which, after considerable nanipulation, reduce to a matrix
equation relating the AC and DC harmonics. The converter
impedance seen by the DC system is derived from this equa-

tion. At this stage, the expression for the composite imped-
ance becomes complicated. An equivalent RLC network is
derived which matches the composite impedance at its reso-
nant frequency. The composite resonance damping is taken
to be identical to the damping factor of the equivalent RLC
circuit.

Composite impedance is essentially a matrix quantity.
This is true for the composite impedances seen on the AC
and DC sides of the converter. Any single harmonic compo-
nent of current flowing into a composite impedance pro-
duces a multitude of voltage harmonics. Some means for
identifying the resonance frequencies becomes necessary.
Amplification factors have been used [3] to isolate the reso-
nant frequencies and these factors are defined as the transfer
functions from a fictitious voltage source placed in series
with the converter to the voltage across the dc filter.

In this paper, a time-domain approach for determining
the steady-state responses of A C/DC convertersis described.
The simulation procedure is general and can nclude the
frequency-dependence of parameters. Only uncontrolled
converters have been simulated in this study. However, the
inclusion of control systemsis straightforward. At any oper-
ating point, the linear equivalent circuit of the converter is
derived. A small voltage signal comprising several harmonic
frequency components has been used as the excitation for
the linear circuit to determine the harmonic frequency for
which there could be significant increases in the AC-bus
voltage harmonics or DC current harmonics.

I1. TIMEEDOMAIN IMPEDANCES

A n- vector of equidistant samples may represent ape-
riodic band-limited waveform. If [X] is the vector of equi-

distant samples representing a waveform, then
[X]= @7 n) xfft ([x]) @)

is the phasor representation of the waveform.

The first element of [X] isthe DC component of [X] .
The next m elements are the phasors representing the 'm'
harmonic components of [X], where m=n/2-1. The
phasor component at the highest frequency is X(m+ 2) .
The subsequent melementsfrom X(m+3) to X (n) arethe
conjugates of X(2) to X(m+1) flipped upside down. In
Matlab notation, the vector [ X] iswritten as:
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e X(m+2) u

&flipud (conj(X (2: m+1))d
Let [Z] be the complex impedance matrix representing

a linear circuit. It is a diagonal matrix and its diagonal of
harmonic impedances has the same structure as that given by
(2). Let [€], [i] be periodic voltage and current waveforms
associated with the impedance. Then the phasor representa-
tions [E],[I] arerelated by:

[El=[Z]41]. @
From (3), we obtain
[e] = [ifft J[Z][ fft] ¥i] @)

=[Z4i],
where [ Z] is the impedance matrix in the time domain. Itisa
real, full matrix. The computation of the impedance naitrix
requires only the inverse fast-Fourier transform of the d-
agona of [Z].

In contrast to the impedance matrix of a linear circuit,
the time domain conductance matrix of a thyristor switch is
diagonal and the elements on the diagonal are the equidistant
samples of the thyristor’s conductance over a fundamental
period. When transformed to the harmonic domain, the
complex conductance matrix is a full matrix, with the off-
diagonal elements representing the cross-frequency coupling
admittances. The elements on the diagonal are the harmonic
self-admittances.
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I11. CONVERTER ANALYSIS

A. Single-phase AC/DC converter

Fig. 1 shows a single-phase AC/DC converter. The thy-
ristor pairs are switched simultaneously and they are &-
sumed to operate identically. An equidistant switching
scheme is used for the thyristor pairs.

Let [e,].[e4] be the terminal voltage waveforms on &-

ther sides of the thyristor bridge. Then the thyristor voltages
are given by
[Val =[va] =[&]=0.5X[e4]- [€,]}, ©
[Ve2] =[Vss] =[e3] = 0.5¢[eg] +[ea]}.

The thyristor voltages and the switching instants enable
the calculation of the thyristor conductance variations from

the nonlinear characteristics. Let the diagonal conductance
matrices be

[94] :[954] __[gl]! ©)
[9s2] =[9s3] =[93]-

Applying Kirchhoff’s laws to the converter circuit,
[csc]- [val{e,]- [9s]fes] +[91]4e ] =0 @
[yd]{[es]- [epc]} +[9s]4es] +[g: e ] = O,
where [c] is the short-circuit current on the AC side of the
thyristor bridge, [ey.] is the emf of the DC system, [yal
and [yd] arethe AC and DC system admittances. The solu-
tions [e,], [e4] of equations (7) are computed iteratively
using the Newton-Raphson procedure.
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Fig. 1. Single-phase converter

B. AC side composite resonance

Using circuit analysis techniques, it may be shown that
the converter admittance on the AC side of the bridge is
given by

[ycon,.1 =[9,1- [9,1{[9, 1+ ydl} *{g,]. G
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where [g,1= % 9{[951+[9,1} and [g,]1=}1{[9;]- [9,]}.
We now suppose that the AC source is modulated by a test
signal [e ] and that it is required to determine the effect of

the modulation on the AC-bus voltage harmonics. Let [v]
be the open-circuit voltage at the input terminals of the con-



verter when the test signal [g] is the excitation. Then the
AC-busvoltage dueto thetest signal is
[ec]={[ ya] +[ycong ]} * f ya] Vo]

= [afac] e ].

If any of the harmonic amplitudes of [e_] is signifi-
cantly higher than the corresponding harmonic amplitude of
the test signal, then there is the possibility of composite
resonance. The matrix [af,.] is the transfer function from
the test signal to the AC-bus voltage. It is not a diagonal
matrix and therefore, each harmonic component of [e.] is
the summation of the contributions from all the harmonic
componentsof [g].

©

C. Test Signal
In order to include the cross-frequency effects, a test
signal has been constructed by adding together a range of
harmonic components from the 2" to 16™, each component
having the same amplitude but with a quadratic phase shift
[4]. The test signal isof the form:
16
[e]=8 Axsinkw(t+k2Dt), (10)
k=2
where Dt =T /n=1/(f xn). Only low order harmonic inter-

action is of interest and therefore, the highest harmonic or-
der included in the test signal is limited to 16. The quadratic
phase shift ensures that there are no large spikes in the test
signal. The amplitudes of the harmonic comp onents may be
chosen so that the total harmonic distortion (THD) of the
source voltage when modul ated by the test signal is 1%. The
low THD guarantees that the switch-off instants of the thy-
ristors are not affected by the modulation. Fig. 2 shows the
test signal used in this study.
Finally, composite resonance on the DC side may be

studied by reducing the converter to an equivalent imped-
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ancematrix [ ycon,. ] when viewed from its output termi-
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Fig. 2. Test signal waveform
IV. PHASE AC/DC CONVERTER

A 3-phase, 6-pulse AC/DC converter is shown in Fig. 3.
The AC system consists of a source, its internal impedance,
a shunt capacitance and the transformer’s leakage induc-
tance between the AC-bus and the converter input terminals.
There are 4 unknown voltage waveforms to determine.
Thesevoltagesare [e,,],[ &,.1.[€4] at theinput and output
terminals of the bridge and the voltage [v ] of one of the
thyristor valves.

The equations for the unknown variables are obtained
by applying KCL at the nodes A, C and D. The fourth equa-
tion is obtained by stipulating that the sum of the currentsin
the upper row of thyristorsisequal to the sum of the cur-
rentsin the lower
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Fig. 3. Three-phase AC/DC converter
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row of thyristors. These equations are nonlinear because the
thyristor conductance matrices are dependent on the wn-
known voltages and the switching instants. The equations
are solved iteratively using the Newton-Raphson procedure.
The computations are listed below.

Compute the admittance matrices [ yf], [yd] of the AC

and DC systems respectively and the short-circuit currents at
the input terminals of the thyristor bridge. The short-circuit
currents are [clall], [clbcl], [clcal] for the phases AB, BC
and CA. The matrix [ yf] includes the |eakage inductance of
the transformer.

1. Assume the waveforms[e,g 1, [€5c], [€p ] and [vy].

2. Célculate the DC current: [c 5] =[yd] g .

3. Using the DC current waveform obtained in step 2, obtain
the switching instants from the current-controller.

4, Compute the diagonal conductance matrices for the
thyristors.

5. Apply Kirchhoff’s current law as described previously.
Since the waveforms in step 1 are solution estimates, KCL
will not be satisfied but will give theresidual currents:

(clabl- clcal) - yf xepp - Yf X(epg +€pc)

, (1)
- gaz2xep, +galxe, = dAB
(clbcl- clcal) - yf xepe - yf X(eAB +eBC)’ ©
tge2xec, - gelxegy =dpgc - dy
galxepg + gb1><eBl + gclxem, (13)
tydxe p- Epc)=dp
galxepy + gb1><eBl +gelxeq, - ga2 ><eA2’ )

- gb2><eB2 - gc2xes :qN

where

€a2 = Cne +eBC Vs €x =€ - €azs
€52 = €xc + Vs €1 =€p - €5y
€2 = Vns €1~ € - .-

Note that equations (11)-(14) are matrix equations.
These equations are written in the form:

éclabl- clcaly el &gl
e u (S u e u
€- ydxEpc U Cepl U

e u e u

u
0 a e o &dy @

m: D

6. The corrections ck,g , kg, e, dvy that should be

added to the assumed waveforms to minimize the residual
currents are:

g U &d gl
ko 9.
€ BCL,'I:[DG]_:L)@ BCL;]. (16)
I
ey g édy

7. Return to step 1 if the maximum norm of the residuals is
above a specified tolerance.

A. AC-side composite resonance

Removing the AC and DC system excitations and sub-
stituting the thyristors by their respective conductance ma-
trices gives the linear circuit representing the AC/DC con-
verter at a given operating point. The mpact of a small
negative-sequence, test-signal distortion in the AC system
voltages may be estimated by using the linear converter cir-
cuit. It is assumed that the distortion in the AC system exci-
tation will not affect the switching of the thyristors.

Consider the linear circuit of the converter at an operat-
ing point and let the excitation be a 3phase, negative-
sequence test-signal of amplitude d/g. The test-signal in

each phase is the composition of harmonic voltages as given
in equation (10). Let [dV 5] be the phasor representation of
the AC-bus voltage waveform between the terminals A and
B. The AC-side harmonic magnification factors are defined
as.
[Myc] =1/ dvyg ) xabs([aV 55 1) 1)

Of particular interest is the 4" dement of [m,.] which
is the magnification factor for the 3¢ harmonic. High values
of this element indicate AC-side composite resonance at the
3% harmonic.

B. DC-side composite resonance

Consider again, the linear circuit of the converter ec-
cited by the 3-phase, negative-sequence test-signal. Let [ j,]
be the short-circuit current at the DC terminals of the linear
circuit with the negative-sequence voltage as the AC-system
excitation. Let [ j.] bethe DC current when the DC system
is connected to the converter. The amplification factor at the
K" harmonic is defined as the ratio of the amplitudes of the
K" harmonic of [ic] to the corresponding amplitude of

[ol-

The magnification factor depends on the relative phase
of the negative-sequence voltage, which israndom. Only the
maximum magnification factor as the phase varies, is con-
sidered. A high magnification factor implies the possibility
of composite resonance on the DC-side.

V. RESULTSAND DISCUSSION

Jalali has previously studied the single-phase converter
shown in Fig.1 [4]. The switching sequence for the con-
verter was first aljusted so that the overlap angle in the
steady state was 22.85°. Two solutions were obtained, the
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first with an undistorted AC source and the second with the
AC source modulated by the test signal.

The difference between the AC current waveforms is
shown in Fig.4. This is aimost identical to the AC current
waveform obtained for the linear circuit with the test signal
as the excitation. Therefore, the linear equivalent of the con-
verter circuit in the neighborhood of an operating point is
valid.

Fig.5 shows the harmonic amplitudes of the AC-bus
voltage when the test signal is the excitation and it may be
observed that there is significantly high 5" harmonic ampli-
tude. It may also be noted that there is a difference in the
harmonic amplitudes when the 8" harmonic component of
the test signal alone is used as the excitation. Thisis a dem
onstration of the cross-frequency effect.

The harmonic amplitudes of the AC-bus voltage db-
tained from the solutions with and without the test signal
modulation are shown in Fig. 6. Though the changein the 5t
harmonic amplitude is nearly 20 times the amplitude of the
test signal, it is swamped by the inherent 5" harmonic com-
ponent of the AC-bus voltage waveform.

The parameter values for the 6-pulse converter are
shown in Fig. 3. The thyristors are switched using an equi-
distant firing scheme. The firing instants are adjusted so that
the DC current is approximately 60% of the current corre-
sponding to a = 0. The primary concern of this study isthe
impact of a 3-phase, negative-sequence test-signal distortion
in the AC system voltages on the AC-bus voltage and DC
current harmonics.

Fig. 7 shows the harmonic magnification factors for the
AC-bus voltages when there is a 0.5% THD, negative-
sequence test-signal distortion in the AC system voltages. A
very high gain at the & harmonic may be noted. Fig.8
shows one of the AC-bus voltage waveforms. The waveform
is significantly changed by the small distortion, implying
composite resonance at the 3¢ harmonic. The figure also
shows the AC-bus voltage waveform when the distortion
consists of the fundamental frequency, negative-sequence
alone. In this case, the deviation in the waveform is smaller
and thisis ademonstration of the
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Fig.4. ACside current for test-signal excitation

8

test-signa
+

\ 5th harmonic excitation

10 4

Hamonic anplitudes pu

(0] 4 8 12 16

Harmoni c arder
Fig.5. AC-bus voltage harmonic amplitudes for test-signa excita-
tion

3 150
_g 4——— distorted source
-g- \ undi storted source
1.00
L
£ .
% 0.50 |
9
g T .
g 0.00 ——|—Q—1-—1-—|—+—|—f—.|‘—1-—.|'—1-—1—1-—1‘—f

o) 4 8 12 16
Harmanic order

Fig.6. 1-phase converter: AC-bus voltage harmonic amplitudes

cross-frequency coupling. Fig.9 shows the harmonic ampli-
tudes of the AC-bus voltage waveforms.

Fig. 10 shows the DC-side harmonic magnification fac-
tors when there is a 1% THD, negative-sequence, test-signal
distortion in the AC-system voltages. A reasonable 2" har-
monic gain may be noted though thisis not as high as the
AC-side, 3% harmonic gain. Fig. 11 shows the DC current
waveforms and the deviations due the distortions in the AC
system voltages may be observed. The DC current harmonic
amplitudes are shown in Fig. 12.
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Fig. 7. AC-side harmonic magnification factors
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Fig. 12. DC current harmonic amplitudes
VI. CONCLUSIONS

The admittances presented by a converter at the AC and
DC terminals depend on the operating conditions of the cir-
cuit such as the firing angle delay and filter circuit parame-
ters. These admittances are instrumental in amplifying the
harmonicsin the DC current and the AC-bus voltage.

A single-phase converter and a 3phase, 6-pulse con-
verter have been simulated using a time-domain technique.
A suitable test signal, which is the composition of several
harmonic frequencies, has been used to pinpoint the fre-
quencies for which there could be significant harmonic dis-
tortion in the AC-bus voltage or the DC current. Lineariza-
tion of the converter circuit in the neighborhood of an oper-
ating point has been validated and the cross-frequency effect
of composite impedances has been demonstrated.

The converters have been simulated without any closed-
loop control. However, the inclusion of control systems and
the investigation of harmonic instability are straightforward.
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