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Abstract— In this paper the design of a control system for
rotor flux oriented controlled induction motor drives using H∞

optimal control theory is carried out. Two H∞ problems are
considered: (i) a 1-block problem with the view to maximizing
the system performance;(ii) a 2-block problem with the weights
initially chosen for maximizing both the system performance
(transient response) and the system tolerance to uncertainty
in the plant model (robust performance), and in the sequel
the weights are modified to account for transient performance
and noise attenuation. All the designed controllers have been
implemented in a real system, and the results are shown in the
paper.
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I. INTRODUCTION

Rotor flux oriented controlled induction motor drives have
recently received great attention in the literature [1], [2], and
the references therein. This has led to the so-called vectorcon-
trol method which is based on the transformation of the nonlin-
ear model of the induction motor in a linear time-invariant first
order model. In order to obtain an exact first order model, it
is necessary to pre-multiply the system by a matrix whose ele-
ments are functions of the rotor flux angle. However, this angle
is not known exactly, being estimated from the rotor time con-
stant (the ratio between the rotor inductance and resistance),
and the shaft velocity. Since, up to now, there is no reliable
method for the exact determination of the rotor time constant,
the transformation does not lead to an exact first order model.

The difference between the exact first order model (which
in this paper will be referred to as the nominal model) and
the real model can be seen as a model uncertainty. This sug-
gests that robust design techniques can be employed to obtain
a controller for this system. One of the design techniques that
can be used is the so-calledH∞ optimal control theory [3],
[4]. This approach has been deployed in previous works, [5],
[6], in which 2-blockH∞ problems have been formulated and
solved using the so-called DGKF approach [7]. The main dif-
ference between these works is the choice of weights: in [5],
scalar weights have been used while in [6], although stable
rational functions have been used as weights, they have been
chosen according toH∞ dogmas,i.e. the weight for robust-
ness is a high pass function, as prescribed in theH∞ theory,
without checking if this is what actually happens when the es-
timated rotor time constant is supposed to be different from
the real one.

† Partially supported by CNPq
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In this paper twoH∞ problems are considered:(i) a 1-
block problem, with the view to maximizing the system per-
formance (assuming the shaft velocity as the variable to be
controlled);(ii) a 2-block problem with the weights initially
chosen for maximizing both the system performance (transient
response) and the system tolerance to uncertainty in the plant
model (robust performance), and, in the sequel, the weightsare
modified to account for transient performance and noise atten-
uation. Differently from [5], [6], the solution here is obtained
following the standard 1984 approach [4], [8]. The main ad-
vantage of using such an approach over DGKF solution is that
the designer has a clear view on how to change the weights
in order to improve the control objectives. Furthermore, the
use of 1984 approach has led to an interesting result: theH∞

controller, solution to the 1-block problem is a PI controller,
whose parameters are tuned according to the so-called internal
model control [9]. This unexpected result justifies, from the
H∞ theory point of view, why PI controllers have been suc-
cessfully used in field oriented control of induction motors.
Another point which differs this paper from [6], is that here
the weight for robustness is obtained from frequency response
experiments carried out in the real system by perturbing the
estimated rotor time constant.

It is well known that the objectives of robustness and noise
attenuation are expressed in terms of the same 2-blockH∞

optimization problem; the only difference is that the weight
must now be a high pass rational function. This problem has
also been tackled in this paper, and the results obtained from
practical implementation are shown.

II. A LINEAR MODEL FOR ROTOR FLUX
ORIENTED CONTROL OF CURRENT-FED

INDUCTION MOTORS

A. Theoretical background

Assuming as inputs, the stator current vector components in
field coordinates,iSd(t) (the stator current component in the
direction of the magnetising current vector, usually referred to
as the direct component) andiSq(t) (the quadrature compo-
nent of the stator current, which is perpendicular toiSd(t)),
then current-fed induction motors can be modeled as [1]:
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whereTR = LR/RR denotes the rotor time constant,LR
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Fig. 1. Block diagram of an ideal inverter in cascade with a current fed induction motor, and with a rotor flux angle estimator.

andRR are, respectively, the rotor inductance and resistance,
imR(t) is the magnetising current,ρ(t) is the rotor flux an-
gle with respect to the stator axis,J is the motor inertia,f is
the viscous friction,ω(t) is the instantaneous angular veloc-
ity of the rotor,k is the coupling factor, which is a function
of the total leakage factor of the motor and of the stator in-
ductance, andε(t) the angle of rotation of the rotor, measured
in the stator frame of coordinates. Notice that, if in Eqs. (1),
the direct component of the stator current is made constant,
i.e., iSd(t) = ISd, then, after a brief transient, which is dic-
tated by the rotor time constantTR, imR(t) becomes equal
to ISd. When this happens, the electrical torque becomes a
function of iSq(t), only, and, thus, the model of a current-fed
induction motor becomes analogous to that of a constant field
dc-motor controlled by the armature current. However,iSq(t)
and iSd(t), are not accessible; they are actually functions of
the line currentsiS1(t), iS2(t) andiS3(t), as follows:
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Therefore, in order to have as inputs the direct and quadra-
ture components of the stator current, one has to carry out an
inverse transformation of Eq. (2), given as:





iS1(t)
iS2(t)
iS3(t)



=















2

3
cos ρ(t) −2

3
sin ρ(t)

√
3

3
sin ρ(t)

√
3

3
cos ρ(t)

−
√

3

3
sin ρ(t) −

√
3

3
cos ρ(t)















[

iSd(t)
iSq(t)

]

. (3)

The device which causes the motor currents to follow the ref-
erences given in (3) is called a current-controller PWM in-
verter (in this work it will be simply referred to as inverter).
It is clear from Eq. (3) that the inverter inputs are the desired
values for the direct and quadrature components of the stator
current, here denoted asiSdref(t) andiSqref (t) and as outputs
the line currentsiS1(t), iS2(t) andiS3(t) necessary to make
iSd(t) andiSq(t) (the actual values) equal their reference val-
ues.

AssumingiSdref(t) = ISdref (constant), then the transfer
function for the system formed with an ideal inverter and a

current-fed induction motor which relatesiSqref (t) andω(t)
is given by:

G(s) =
Ω(s)

ISqref (s)
=

kISdref

Js + f
=

kabsISdref

τs + 1
(4)

whereτ = J/f andkabs = k/f .
Although appealing from the theoretical point of view, this

approach has the following drawback: since the rotor flux an-
gleρ(t) cannot be measured, it should be estimated. However,
as shown in Fig. 1, its estimate depends on the knowledge of
the rotor time constantTR, whose value cannot be determined
precisely. If by chance the value of the estimated rotor time
constantT̂R is exactly equal toTR then the behavior of the
system estimator+inverter+induction motor can be described
by Eq. (4). However, in general̂TR 6= TR, and thus Eq. (4)
is no longer a reliable model for the system. One way of tak-
ing into account model uncertainty is to use, instead of the
transfer function given in Eq. (4), a so-called perturbed trans-
fer functionGP (s). In this work, multiplicative unstructured
perturbation [10] will be used, which is given by:

GP (s) = [1 + W1(s)]G(s), (5)
whereW1(s) is a stable transfer function and will be deter-
mined from frequency response experiments carried out at the
real system by perturbinĝTR. This provides the necessary in-
formation for dealing with controller design within theH∞

control theory.

B. Parameter identification and model validation

The motor used to validate the theory presented in this
paper is a class A three-phase two-pole∆-connected induc-
tion motor with squirrel-cage rotor. Its nominal values are:
(i) Power: 60W ; (ii) Line voltage: 30V , (iii) Frequency:
60Hz; (iv) Line current: 2.8A and (v) Rotor inertia: J =
0.00057Kg.m2.

According to the model given in Fig. 1, the only param-
eters to be determined areTR, kabs andτ . Let us consider,
initially, the identification ofTR. An immediate choice for
the estimated value ofTR (T̂R) is that obtained by performing
standard tests for determining the steady-state circuit model
parameters [11]. For the induction motor used in this work,
it has been obtained̂TR = 0.0519s. A better estimation for
the rotor time constant can be obtained if we notice that the
system inverter+estimator+induction motor only behaves as
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Fig. 2. Step responses for the real system (solid lines) and for the
Simulink model (dotted lines).

and ideal first order one when̂TR is exactly equalTR (the
actual value of the rotor time constant). A better estimation
of TR can then be obtained by trial-and-error,i.e., by chang-
ing the value ofT̂R in the real estimator until the system re-
sponse to an step input matches that of a first order one. This
has actually been done in this work, leading to a value ofT̂R

approximately 5% smaller than that obtained previously,i.e.
T̂R = 0.0493s. Consider, now, the estimation ofkabs and
τ . Since the value of̂TR is such that the system now be-
haves as a first order one, usual tests for estimation of the pa-
rameters of first order systems can be deployed to findkabs

andτ . Among the available techniques, the so-called Method
of Area [12] seems more appropriate due to the noise intro-
duced in the system response by the sensor. At this point,
it is worth remarking that, before applying a step signal in
iSqref (t), it is necessary to apply a constant input toiSdref (t),
i.e., iSdref (t) = ISdref . For the experiments carried out in
this work, it has been adoptedISdref = 2.8A. Finally, aver-
age values forkabs andτ have been obtained after performing
these experiments for several step signals with different am-
plitudes, leading tokabs = 14.7287 andτ = 0.2030.

Fig. 2 shows the comparisons between the simulation re-
sults (dotted lines) and those obtained experimentally (solid
lines) by applying to a Simulink model, equivalent to the block
diagram of Fig. 1 (with the above estimated values ofT̂R, kabs

andTR = T̂R), and to the real system step signals of ampli-
tudes3.2246A (Fig. 2.a) and7.2999A (Fig. 2.b). It is worth
remarking that in both cases, steps of amplitude1.5802A were
initially applied toiSqref (t) and thatISdref = 2.8A.

III. CHARACTERIZATION OF CONTROL
OBJECTIVES IN TERMS OF THE

MINIMIZATION OF H∞ NORMS OF TRANSFER
FUNCTIONS

Consider the block diagram of Fig. 3 wherer(s), e(s),
d(s), y(s) and η(s) denote, respectively, the Laplace trans-
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Fig. 3. Block diagram of a standard negative unit feedback system.

forms of the reference, error, external disturbance, output and
sensor noise signals, andG(s) andK(s) are the transfer func-
tions of the plant and the controller, respectively. Stability ro-
bustness (or system tolerance to plant uncertainty), tracking
of square integrable reference signals, transient performance,
external disturbance rejection and noise attenuation are usual
control objectives and can be expressed in terms of the mini-
mization of theH∞ norms of transfer functions1 as follows:

1. Robust stability:
min

StabilizingK(s)
‖W1T ‖∞, (6)

whereW1(s) is a stable rational weighting function de-
fined according to Eq. (5) andT (s) = G(s)K(s)[1 +
G(s)K(s)]−1 is the transfer function betweenr(s) and
y(s).

2. Tracking of square integrable reference signal and tran-
sient performance:

min
StabilizingK(s)

‖W2S‖∞, (7)

whereW2(s) is a stable rational weighting function used
to place more penalty on the relevant frequencies and
S(s) = [1+G(s)K(s)]−1 = 1−T (s) is the well known
sensitivity function.

3. Rejection of square integrable external disturbance sig-
nal:

min
StabilizingK(s)

‖W3SG‖∞. (8)

4. Noise attenuation:
min

StabilizingK(s)
‖W4T ‖∞. (9)

whereW4(s) is a stable rational weighting function used
to place more penalty on the noise dominant frequencies.

H∞ optimization problems can also be formulated to take
into account two or more control objectives; for example, ro-
bust stability and tracking or noise attenuation and tracking
can be addressed simultaneously, as follows:

min
StabilizingK(s)

∥

∥

∥

∥

WiT
W2S

∥

∥

∥

∥

∞

, (10)

wherei = 1 for robust stability andi = 4 for noise attenua-
tion. It is important to remark that sinceT (s)+S(s) = 1, then
control objectives addressed in Eq. (10) are conflicting, inthe
sense that it is not possible to have at the same time stability
robustness and transient performance. The only exception is
when the weighting functionsW1(s), W2(s) andW4(s) place
more penalty on different frequencies, as follows:(i) in lin-
ear systems, frequency response identification usually leads to
more imprecise description at high frequencies, and thus, in
this case,W1(s) must be a high pass transfer function;(ii) sig-
nals to be tracked have usually a pre-defined frequency, and
thus,W2(s) must be a low pass transfer function;(iii) finally,

1TheH∞-norm of a stable transfer functionH(s) is defined as‖H‖∞ =
maxω∈R+

|H(jw)|, where|.| denotes absolute value.



sensor noises have usually high frequency components, which
implies thatW4(s) must also be a high pass transfer function.

In order to obtain the solutions ofH∞ optimization prob-
lems posed above, the first step is to guarantee that the result-
ing controller stabilizes the nominal transfer function. This is
done through the so-called Youla-Kucera parametrization,in
which the controller is parametrized in terms of a stable and
proper rational transfer function2 Q(s) as follows:

K(s) = −
Y (s) − M(s)Q(s)

X(s)− N(s)Q(s)
(11)

whereN(s), M(s), X(s) andY (s) are stable rational func-
tions such that

G(s) =
N(s)

M(s)
(12)

and satisfy the Bezout equation
X(s)M(s) + Y (s)N(s) = 1. (13)

It can be shown [4] that all the optimization problems de-
scribed by Eqs. (6) to (10) can be transformed into the fol-
lowing problem

min
Q(s)∈RH∞

‖T1 − T2Q‖∞, (14)

whereT1(s) andT2(s) are rational functions and depend on
the optimization problem which is being considered. This op-
timization problem is usually referred to, in the literature, as a
model matching problem [4].

IV. A 1-BLOCK H∞ CONTROLLER FOR SPEED
CONTROL

A. Problem formulation and main results

The control problem to be considered initially has a unique
control objective,i.e. tracking and transient performance of a
reference signal, which in this case is the rotor angular veloc-
ity. Within theH∞ framework, this control object leads to the
optimization problem given by Eq. (7). Therefore, using the
Youla-Kucera parametrization (11) in Eq. (7), and after some
straightforward calculation, one may write:

min
StabilizingK(s)

‖W2S‖∞ = min
Q(s)∈RH∞

‖W2(X − NQ)M‖∞

= min
Q(s)∈RH∞

‖T1 − T2Q‖∞, (15)

where, in this case,T1(s) = W2(s)X(s)M(s) andT2(s) =
W2(s)N(s)M(s). Notice that, since the plant transfer func-
tion (4) is already stable, then an immediate choice forN(s)
andM(s) which satisfy Eq. (12) is given as:

N(s) = G(s) andM(s) = 1. (16)
It is therefore easy to see thatX(s) andY (s) solutions to Eq.
(13) will be given by:

X(s) = 1 andY (s) = 0. (17)
Thus, it is not hard to see that the solution to the optimization
problem (15) is trivial and independent ofW2(s), being given
by:

Q(s) =
1

G(s)
=

τs + 1

kabsISdref

. (18)

However this solution is improper and, therefore, does not sat-
isfy the requirement thatQ(s) ∈ RH∞. In order to circum-
vent this problem, what is usually done [13] is to approximate

2Such a function is usually referred to as anRH∞ function or to belong to
RH∞.
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Fig. 4. Closed loop response for a step reference signal of1400rpm
(a) and control signaliSqref (t) (b) obtained from the real system
(solid lines) and by simulation (dotted lines).

this function by a rational one. This is carried out by introduc-
ing a polynomial factor̄τs+1 on the denominator polynomial
of Q(s), i.e.

QP (s) =
1

τ̄ s + 1
Q(s) =

τs + 1

kabsISdref (τ̄ s + 1)
(19)

whereτ̄ is chosen with the view to approximatingQP (s) and
Q(s) at the frequency range of interest. Direct substitution
of N(s), M(s), X(s), Y (s) andQP (s) given by Eqs. (16),
(17) and (19) in the controller expression (11) and after some
straightforward calculation, results in:

K(s) =
τ

kabsIsdref τ̄

τs + 1

s
= Kp

(

1 +
1

Tis

)

(20)

where
Kp =

τ

kabsIsdref τ̄
andTi = τ. (21)

Eq. (20) above shows that theH∞ controller which optimizes
tracking and transient performance is a PI controller whose
parameters are tuned according to the so-called internal model
principle applied to PID controllers [9]. This is an amazing
result and explains, from theH∞ point of view, why PI con-
trollers have been used successfully in vector control. Another
important contribution of this result is that it presents the cor-
rect way of tuning the PI controller, as shown in Eq. (21). Fur-
thermore, notice from Eq. (21), that the proportional gainKp

increases when̄τ decreases. The importance of this fact is that
it does not contradict the control system theory for which the
increase in the gain is used to speed up the system response
and theH∞ control theory, for which the best controller for
performance is obtained when̄τ approaches zero.

B. Experimental results

With the view to showing the validity of the theoretical
results presented in this section, two realH∞ PI controllers
have been used to control the rotor velocity of the real



induction motor whose parameters are given in Subsection
II-B. In all experiments,ISdref = 2.8A, and thus, according
to Eq. (21), the controller parameters must be tuned as:

Kp =
0.0049223

τ̄
andTi = 0.2030. (22)

Experimental results are shown in Fig. 4 forτ̄ = 5τ and
τ̄ = τ/5. Fig. 4(a) shows the rotor speed for a step refer-
ence signal of1400rpm and Fig. 4(b) shows the behavior of
the quadrature component of the stator current; the solid lines
have been acquired from the real system while the dotted lines
have been obtained from simulation. Notice that the response
rise time and settling time have decreased, respectively, from
approximately1.39s and3.15s for τ̄ = 5τ to 50ms and40ms
for τ̄ = τ/5, producing the expected results.

V. 2-BLOCK H∞ CONTROLLERS

According to Eq. (10) when other control objectives, such
as robust stability or noise attenuation, are to be considered in
addition to system performance, it is necessary to formulate a
2-blockH∞ problem. Furthermore, substituting Eq. (11) in
(10), the following problem, equivalent to that given in (10) is
obtained:

min
Q(s)∈RH∞

∥

∥

∥

∥

[

−WiY Ñ

W2XM̃

]

−

[

−WiN
W2N

]

M̃Q

∥

∥

∥

∥

∞

(23)

wherei = 1 for robust stability andi = 4 for noise attenua-
tion. Defining

T1(s) =

[

−WiY Ñ

W2XM̃

]

andT2(s) =

[

−WiN
W2N

]

M̃ (24)

then Eq. (23) is equivalent to:
min

Q(s)∈RH∞

‖T1 − T2Q‖∞. (25)

As pointed out in Section III, the weighting functionsW2(s)
andW4(s) should be, respectively, low and high pass trans-
fer functions, and are chosen by the designer in order to place
more penalty at the desired frequencies. On the other hand,
weightW1(s) takes into account uncertainties on the mathe-
matical model and, for this reason, should be obtained exper-
imentally; this will be the subject of the next subsection. In
both cases, first order weights will be deployed, having, there-
fore, the following transfer functions

Wi(s) =
ai(s + bi)

(s + ci)
andW2(s) =

a2(s + b2)

(s + c2)
(26)

whereai, bi, ci > 0, i = 1, 4, b2 > c2 and b4 < c4. The
relationship betweenb1 andc1 will be defined from frequency
response experiments. Expressions forT1(s) andT2(s) can
be obtained by substitution of Eqs. (16), (17) and (26) in (24),
being given as:

T1(s) =





0
a2(s + b2)

(s + c2)



 , T2(s) =







−ai(s + bi)

(s + ci)
a2(s + b2)

(s + c2)







kabsISdref

τs + 1
.

(27)

Differently from the 1-block problem, it is not possible to ob-
tain here a closed solution. It is well known that the solution
for the 2-blockH∞ problem is obtained by iterative methods.
The readers are referred to [4] for more details on the solution
of problem (23) forT1(s) andT2(s) given by Eq. (27).
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A. Influence of the inexact knowledge of the rotor time con-
stant on the induction motor linear model

As point out in Subsection II-A the inexact knowledge of
the rotor time constant will be considered as a model uncer-
tainty. In this work it has been used the so-called model with
multiplicative perturbation given in Eq. (5). It is clear from
Eq. (5) that, for each frequencyωk

GP (jωk)

G(jωk)
− 1 = W1(jωk) (28)

and, thus, it is straightforward to see that
∣

∣

∣

∣

GP (jωk)

G(jωk)
− 1

∣

∣

∣

∣

≤ |W1(jωk)| ≤

∣

∣

∣

∣

GP (jωk)

G(jωk)
+ 1

∣

∣

∣

∣

. (29)

It is worth noting thatG(jωk) will be obtained forT̂R nominal
while GP (jωk) will be obtained from the system frequency
response by perturbinĝTR. Fig. 5 shows the results obtained
experimentally by perturbinĝTR in +50% (cross-dotted line)
and−50% (star-dotted line). From these data, a first order
weight, defined according to Eq. (26), is given by:

W1(s) =
0.2(s + 131)

s + 23
. (30)

Notice that, this weight satisfies Eq. (29) for eachωk, as can
be shown in Fig. 5 (solid lines). Furthermore, it is clear that
the rational function given by Eq. (30) places more penalty
at low than at high frequencies. This contradicts the usual as-
sumption ofH∞ control theory thatW1(s) should be a high
pass transfer function. Therefore, the weight used in [6] to
address robustness bears no relationship with practice, since
it has been chosen as a high pass transfer function. The main
implication of the weight given in (30) is the fact that both
weightsW1(s) andW2(s) place penalty at the same frequency
range (low frequencies) and thus the 2-blockH∞ problem
cannot be used to improve robustness without severe degra-
dation on system performance.

B. 2-blockH∞ controller for transient performance and
noise attenuation

Consider again the minimization problem given in Eq. (24)
for i = 4, i.e., with the objective of noise attenuation at the
plant output being incorporated to the controller design. It
is important to remark that since the tachometer is the main
source of noise, then the measure of the noise attenuation atthe
plant output will be made in an indirect way, namely, through
the measure of the plant input signal, which in the present
work is iSqref (t).
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Fig. 6. Closed loop response for a step reference signal of1400rpm
(a) and control signaliSqref (t) (b) obtained from the real system
(solid lines) and by simulation (dotted lines) for the 2-block H∞

controller

An important step in the design ofH∞ controller is the
choice of weights. Although the designer knows what their
frequency responses should look like, better weights are
chosen in a trial-and-error bases. Indeed, using as weights

W4(s) =
s + 30

s + 100
andW2(s) =

0.1(s + 1)

s + 0.01
, (31)

then the followingH∞ controller has been obtained:

K(s) =
0.0345(s + 10)(s + 5.7477)(s + 0.3229)

(s + 49.2995)(s + 0.6664)(s + 0.0072)
. (32)

The system closed-loop response for a step reference signal
is shown in Fig. 6(b) and the corresponding control signal
(iSqref (t)) is shown in Fig. 6(a). Notice that the rise time is
now90ms and the settling time530ms, approximately, which
is slightly worse than the corresponding performance indexes
for the 1-blockH∞ controller for τ̄ = τ/5, whose response
is shown in Fig. 4.b. In addition, since the controller has no
pole at the origin, the response exhibits a steady-state error of
approximately0.91%; it is important to remark that a smaller
steady-state error could be obtained by increasing the dc-gain
of W2(s).

As far as noise attenuation is concerned, notice from Fig.
7 that the noise level iniSqref (t) has decreased from approxi-
mately -10 to25% for the 1-blockH∞ controller (top plot) to
-5 to6% for the 2-blockH∞ controller (bottom plot).

VI. CONCLUSION

In this paper,H∞ optimal control has been successfully
applied for speed control and noise attenuation in rotor flux
oriented controlled induction motor drives. Another contribu-
tion of the paper is that the influence of the inexact knowledge
of the rotor time constant on the linear model of induction mo-
tors and speed performance cannot be simultaneously consid-

1 1.5 2 2.5 3 3.5 4 4.5 5

−10

0

10

20

30

Time (seconds)

P
er

ce
nt

 n
oi

se
 in

 iS
qr

ef

1 1.5 2 2.5 3 3.5 4 4.5 5

−5

0

5

10

Time (seconds)

P
er

ce
nt

 n
oi

se
 in

 iS
qr

ef

Fig. 7. Noise level iniSqref (t) for 1-block (top plot) and 2-block
(bottom plot)H∞ controllers

ered in anH∞ design since the former gives rise to a low pass
weighting function; therefore contradicting the usualH∞ re-
quirement of high pass weighting function for robust stability.
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