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Abstract – This paper presents a brief overview of usual 
discrete design procedures and discusses the application 
of digital signal processing on power electronics and 
power systems. An improved solution for digital 
processing using the unusual Delta-Transform instead of 
the conventional Z-Transform is also proposed. Special 
attention is deserved to the cases of high sampling 
frequency and fixed-point Digital Signal Processors 
(DSP) implementations. Since it is very frequent to use 
some kind of filter in the mentioned applications, the 
discussion has been directed to the implementation of 
practical digital filters. Simulations and experimental 
results validate the implementation of band-pass and 
band-stop filters using the delta operator in a 16 bits 
DSP. 
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I. INTRODUCTION 
 

Traditionally, designers working on power systems, power 
electronics or industrial applications are quite familiar with 
continuous system modeling. Thus, the Laplace Transform 
(s-Domain) has been the most useful tool when developing 
and analyzing a plant, controller or even a desired filter. 
However, new systems have been designed mostly using 
discrete systems, as a consequence of the advances on digital 
signal processing and the effective cost reduction of the 
modern Digital Signal Processors (DSP). 

Essentially, there are two foremost methods to map from 
continuous to discrete-time domain, the impulse invariance 
and the bilinear transformations [3,6]. The latter is probably 
the most useful since it allows the representation of any sort 
of filter or system.  

However, independently of the chosen transformation, 
when the sampling frequency is much higher than the 
Nyquist definition (e.g. greater than 50 times), stability 
problems may arise on the resulting discrete system [2]. Such 
problems can become significant in some practical 
applications, especially in fixed-point or finite word length 
DSP implementations. 

Since the conventional and most practical tools in digital 
systems modeling are based on the Z-Transform and its shift 
operator [3,6], this paper presents a brief discussion of the 
problems related to discrete designing using z-Domain, 
specially when high sampling frequencies and quantization 
effects are present [5,6]. After that, discusses the utilization 

of the so-called Delta-Transform to solve these problems (γ-
Domain) [1,2]. Such method is based on difference or 
derivative operator’s theory and was firstly explored and 
presented by Middleton and Goodwin [1,2] and Feuer and 
Goodwin [4]. The Delta-Transform has been successfully 
applied in control theory, circuits and systems areas, 
particularly related to digital filtering [8] and estimation for 
digital control [9]. However, besides this success, it is quite 
uncommon to find any literature in power electronics [7,10] 
or power systems [11] applications, as recently mentioned in 
[7]. 

Such theory can be applied to any discrete system [4], but 
since it is frequent to use some kind of filter (low-pass, high-
pass band-pass, band-stop) in power electronics or power 
systems modeling and controlling, this paper explores the 
results on implementing digital filters based on Z-Transform 
and the clearly enhanced results obtained when applying the 
Delta-Transform technique in fixed-point DSPs under high 
sampling frequencies. 

Simulations of band-pass and band-stop filters validate the 
methodology of designing and implementing digital filters 
based on the delta operator and experimental results using a 
16bits DSP development board confirm the expectations. 

 
II. TRANSFORMATION FROM CONTINUOUS  

TO DISCRETE SYSTEMS 
 

The canonical form of a linear continuous system is 
depicted in (1) and represents the transfer function between 
input X(s) and output Y(s) Laplace Transforms. This 
function is expressed by numerator (N) and denominator (D) 
polynomials in the Laplace Domain (s-Domain): 
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From the stability point of view, it is known that 
continuous systems are asymptotically stable if and only if 
their poles are located in the left side of the s-Domain plane 
(continuous stability region). For frequency response 
analysis, “s” should be substituted by “ ωj ”. 

Considering that continuous systems can always be 
represented by discrete models and any continuous signal can 
be represented by sequences of numbers (since basic 
sampling and bandwidth rules are ensured, e.g. sampling 
theorem) [3,6], the two central questions on implementing 
discrete systems are: firstly, defining a discretization method 
for the corresponding continuous system and secondly, 
manipulating an input sequence {x[k]} in order to obtain a 
desired output sequence {y[k]}, by means of discrete-time 



operators and difference equations. The use of these 
operators is very important when manipulating or analyzing 
discrete systems exactly because it defines the calculations 
and the input samples necessary to obtain each output value. 

Next sections discuss the use of two different discrete-
time methods, the Z-Transform and its associated Shift 
Operator (q) and the Delta-Transform and its associated 
Delta-Operator (δ). Moreover, their relation with the 
continuous systems and how the Delta-Form can be used to 
optimize digital filters will also be discussed. 

 
III. Z-TRANSFORM AND SHIFT OPERATOR 

 
Expression (2) defines the Z-Transform to any sequence 

{x[k]} and (3) represents the canonical form of a discrete-
time system H(z), obtained using any of the referred 
discretization processes: 
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From (3) it is possible to deduce the relation between the 
input X(z) and output Y(z) of the Z-Transformed system. 
Then, the inverse Z-transformation of such relation yields the 
nth order linear difference equation: 
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Comparing expressions (3) and (4), one observes that the 
multiplication factor z-1 in the z-Domain corresponds to a 
shift in the corresponding sequence, that is: 

]1[)(1 −↔− kxzXz .         (5) 

Then, it is usual to define a shift operator in a backward 
(causal) sense as in (6) and to associate it to the factor z-1 in 
the z-Domain. 
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Using the above shift operator, expression (4) can be 
rewritten as  
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Although the “q” operator and the variable “z” have 
distinct meanings, some authors usually formulate discrete 
systems substituting the “q” by “z” [3,4]. 

Expressions (3), (4) and (7) also represent the classical 
formulation of Infinite Impulse Response (IIR) systems, 
which lead to Finite Impulse Response (FIR) systems when 
[ai , i≠0] are all zero. It is important to point out that a0 is 
equal to 1 when no coefficient scale or normalization is 
necessary. 

Similar to continuous systems, the complex variable “z” 
should be converted into sTje ω  in order to obtain the 
frequency response of the discrete z-Domain systems. This 

term with 0≤w≤2π, defines the unitary circle (UC) centered 
on the origin of the z-Domain plane, as the domain for the 
frequency response function. The UC is also the boundary 
region for the poles of stable discrete systems, since such 
systems must have their poles inside this circle. 

As previously mentioned, the smaller the sample period is, 
the more critical is the stability of a system, because the 
poles and zeros are progressively shifted towards the position 
(1,0) of the z-plane [2,11]. Therefore, high sampling 
frequency clusters the relatively low frequency poles and 
zeros together, increasing the sensibility of the coefficients of 
the system.  

Such clustering effect is especially severe in practical 
implementations of low frequency filters using finite word 
length or fixed-point DSPs. In such implementations a 
simple truncation, normalization or coefficient quantization, 
can take the system away from the desired characteristics and 
even take the system to complete unstable operating 
conditions, even for small variations in the poles position.  

Section (V) will briefly discuss some traditional solutions 
to these problems, but in some conditions the discrete design 
is almost impracticable. Simulation and experimental results 
will illustrate such detrimental effects. 

Conversely, the application of the Delta Operator and its 
associated transform seem to be a simple and direct 
methodology to avoid such problems on discrete-time 
systems. It makes possible the pre-optimization of the 
system’s coefficients using a single parameter, improving the 
numerical representation and rounding sensibility of the 
digital design, as will be summarized and illustrated in next 
sections. 

 
IV.  DELTA-TRANSFORM AND DELTA OPERATOR 

 
As presented in [2,4], the forward (anti-causal) delta 

operator is based on the following differentiation: 
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and can be related with the forward shift  operator as 
1. +∆=δq , where ∆ could be theoretically associated to the 

sample time, but practically, it is a free optimization 
parameter when designing the digital coefficients. Note that 
as ∆ goes to zero, δ represents the continuous differentiation 
operator d/dt or the Laplace variable “s”. 

Considering that the same relation is valid for the complex 
variables ( 1. +∆= γz ), where γ represents the Delta or γ-

Domain, and based on (2) it is possible to define the Delta-
Transform as following: 
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Likewise (3), the canonical form of discrete γ-Domain 
systems is expressed by: 
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and from the inverse delta transformation, it can be 
represented by the linear difference equation: 

(11).])[(.])[(.

])[(.])[(.][][
1

1

1
100

kyky

kxkxkxky
n

n

n
n

−−

−−

−−−

+++=

δαδα

δβδββα

L

L
 

Thus, if the forward delta operator represents a discrete 
derivative function, the inverse causal (backward) delta 
operator δ-1, for a sequence {x[k]}, can be defined using 

1. +∆=δq  and the first order Euler integration method as 
following: 
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In the same way that the time shift operator “q” should not 
be interpreted as the z-Transform complex variable “z”, “γ” 
is the equivalent complex variable to the γ-Domain and 
should not be replaced by “δ”. 

Using (12), one can evaluate the discrete time difference 
equation (11) by means of input and output sequence’s 
samples in a different way that in (4). To illustrate this 
possibility, a second order delta difference equation is 
presented in the next section. 

Considering the relation between the discrete z and γ 
domains as expressed in (13), it is possible to show that for 
the frequency response and stability analysis, the stability 
region for the γ-Domain is limited by a circle of radius (1/∆), 
centered on   (-1/∆), as detailed in [2,4]. On the limit, 
considering very small sampling periods (high sample 
frequencies), such stability region converges to a circle with 
a very large radius on the left side of delta domain, exactly as 
in the s-Domain. 

This is  quite different from the z-Domain stability region. 
Thus, (13) and (14) are quite important when analyzing the 
relations between the discrete variables by means of the 
forward and backward equations, respectively.  
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The importance of converting γ to z domain and vice-

versa [2] is based on the possibility of manipulating discrete 
systems in order to obtain better results using γ-Domain 
concepts, or even the possibility of analyzing designed γ-
Domain systems, by means of the usual z-Domain analytical 
and computational tools. 

Besides the connection between these two discrete 
domains, a γ-Domain system could even be designed directly 
from a continuous time original system. This is possible, e.g., 
using a modified bilinear transformation, as described in [2].  

 
V. FIXED-POINT OR FINITE WORD LENGTH 

IMPLEMENTATIONS 
 

Considering the problems related to fixed-point and finite 
word length implementations [5,6] and the availability of 

high level floating point DSPs, microprocessors or 
compilers, one could ask why not use just these high level 
technologies? But, although there are several types of 
modern DSP using floating-point and high-precision 
arithmetic, the hardware and software complexity in their 
assembly represent additional costs and a considerable 
increasing in their chip or code dimensions when compared 
to the conventional fixed-point structures. Thus, next 
sections will review the problems and usual solutions about 
fixed-point implementations and the possible advantages 
related to γ-Domain designs. 
 
A. Quantization Effects and Usual Solutions 
 

The most relevant problems with fixed-point or limited 
precision floating point implementations are basically related 
to the quantization of coefficients and internal variables 
(result registers). To limit these constants and variables with 
a determined bit size, one usually uses some procedure to 
avoid overflows (internal saturation, rounding, 
normalizations and truncations) and make a specific designed 
discrete system feasible. 

Traditionally, there are several different methods to solve 
or at least to reduce these problems [5,6]. The most 
significant are based on: 

• breaking nth order systems into a composition of 
first and second order sections; 

• choosing the better direct or transposed form to the 
discrete system realization (DFI,DFII,DFIt,DFIIt); 

• selecting the appropriate cascade or parallel 
structure to implement high order systems. 

 

Nevertheless, if high sampling rates are required, even 
using such solutions it is quite difficult or sometimes 
impossible to realize some precise z-Domain discrete 
systems, with limited bit size. Then, sophisticated solutions 
based on multi-dimension coefficients optimization are 
required. 

In general, when none of these solutions are possible or 
efficient enough, one usually develops an equivalent FIR 
system to represent the desired digital system. The drawback 
on doing that is the significant increasing on the number of 
coefficients (order) in the corresponding digital system. 

Assuming second order sections of IIR discrete systems, 
the following section illustrates how to implement a γ-
Domain realization, capable of optimizing the coefficients in 
order to achieve a stable discrete system even if reduced bit 
size is used. 
 
B. γ-Domain Realization 
 

Although the numerator (β) and denominator (α) 
coefficients could be calculated directly from the continuous 
system, Table I demonstrates how they can be achieved from 
the discrete z-Domain coefficients [8]. 

Then, the delta coefficients can be optimized as a function 
of ∆ aiming to ensure lower quantization or roundoff noise 
effects or also to define the maximum internal DSP variables 
size of the digital filter. This is achieved because the spread 
of the delta coefficients is controlled by ∆.  



Table I. Relationships between the shift and delta 
coefficients on a second order section. 
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Conversely, the spread of the shift coefficients is fixed 

and dependent of the sampling frequency and according to 
previous discussion, when finite precision and high sampling 
frequencies are used, these values could lead the filter to the 
unstable region on the discrete z-Domain.  

From (11), a second order digital IIR filter can be 
implemented using the delta operator as follows:  
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Using Transposed Direct Form II (DFIIt) realization, as 
depicted in Fig. 01 (not considering the S and Q blocks) and 
the causal delta operator as defined in (12), the delta filter 
could be implemented using the intermediate input (i1 and i2) 
and output (o1 and o2) variables, according to the following 
steps: 

Rearranging expression (15) arises: 
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If, ])[][(][ 222 kykxki αβ −= and ])[(][ 2
1

2 kiko −= δ , then: 

])[][][(][ 2111 kokykxki +−= αβ  and ])[(][ 1
1

1 kiko −= δ . 

This demonstrates that it is necessary to calculate o2 first 
and then o1, as follows: 

])1[]1[.(]1[][ 2222 −−−∆+−= kykxkoko αβ , 

])1[]1[]1[.(]1[][ 21111 −+−−−∆+−= kokykxkoko αβ . 

Thus, the output of a second order delta digital filter can 
be represented by (17). 

010 /])[][(][ αβ kokxky += .  (17) 

In order to improve and turn simpler the delta filter 
implementation, it is rather important that ∆ and α0 be a 
power of two, in such a way that multiplications and 
divisions by these values can be implemented as simple 
right/left shifts in the DSP’s arithmetic. 

Note that the delta form filter realization represents a 
slight increase in the computational complexity (number of 
multiplications and additions), when compared to the shift 
form (4). However, it is much faster than usual solutions 
using FIR filters. 

The “Q” block in Fig.01 represents all the quantization 
effects due to coefficients truncation, rounding of the 
multiplication and summation result registers, etc, while the  
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Fig. 01 – Transposed Direct Form II Digital Filter Structure. 
 

“S” block represents additional saturation operation, 
implemented e.g., in anti-windup routines. 

Next sections present simulation and experimental results 
of usual digital filters implementation using delta operators 
based on Direct Form II realization and fixed-point DSPs. 

 
VI. SIMULATION OF NARROWBAND  

DIGITAL FILTERS 
 

There are several different applications requiring some 
kind of digital filter in power electronics or power systems 
areas, such as active power filtering, motor controlling, ups 
(uninterruptible power supplies), power quality monitoring 
and analysis, etc. Some of these applications demand 
switching frequency ripple elimination, harmonics 
elimination, fundamental wave identification, feedback 
signals filtering, sinusoidal control references generation, etc.  

Probably, the most useful structures are band-pass, band-
stop and low-pass digital filters. However, the problems 
discussed before have significant effects especially in 
narrowband filters. Thus, the following simulations consider 
the hard task on implementing second order digital band-stop 
(notch) and band-pass filters, with stopping or passing-band 
set to 2Hz and central frequency (fo) at 60Hz. The sampling 
frequency is set to 12kHz. 

DSP Matlab toolbox was used in order to emulate the 
filter behavior when implemented in a fixed-point digital 
processor. Such functions allow simulating almost the exact 
fixed-point arithmetic, which means, coefficients 
normalization, truncation and roundoff, according a defined 
DSP bit size and also the length of internal variables 
(multiplications and summations result registers). The 
definitions were based on the ADMC401 16 bits DSP, from 
Analog Devices. 

Fig.02 shows that the frequency response of the 16 bits 
quantized notch filter, implemented using shift operators 
(Fig.02a), is unstable or inefficient (dashed line) when 
compared to its continuous reference (solid line). The 
attenuation should be around 35dB instead of 3.9dB, while 
the phase shift is almost -50º and should be zero. 



 
(a) - quantized “16 bits” filter using shift operator. 

 

 
(b) - quantized “16 bits” filter using delta  operator. 

 

 
(c) - quantized “12 bits” filter using delta  operator. 

Fig. 02 – Band-stop digital filter: frequency response. 
 

On the other hand, the quantized filter using delta 
operators (Fig.02b) exactly matches the frequency response 
of the continuous filter. Indeed, even reducing the bit size to 
12 bits, the filter presents attenuation of 32dB, as shown in 
Fig.02c. 

The ideal frequency response of a digital band-pass filter, 
with the mentioned features, is depicted in Fig.03a (solid 
line). Its 16 bits quantized band-pass filter, using shift 
operators, is unstable or inefficient as shown by the dashed 
line. However, the same 16 bits filter implemented in delta 
form has exactly the same response of the ideal filter, as 
shown in Fig.03b.  

In all the simulations, the parameter ∆ was adjusted to 
(1/32) in order to optimize the filter responses and modify 
the spread of the delta coefficients. 

 

 
(a) - quantized “16 bits” filter using shift operator. 

 

 
(b) - quantized “16 bits” filter using delta  operator. 

Fig. 03 – Band-pass digital filter: frequency response. 
 
 

VII. EXPERIMENTAL RESULTS USING  
A FIXED-POINT DSP 

 
In order to validate the previous simulations, next figures 

present experimental results of such filters using a 16 bits 
fixed-point DSP (ADMC401). 

An interesting application of notch filters in power 
system’s quality analysis is the band-pass “algorithm” 
present in [12] and depicted in Fig.04. It should be 
responsible for the fundamental voltage waveform 
identification, but if implemented in a fixed-point DSP, using 
shift operators, it could be completely inefficient. 

Fig.05 presents the algorithm input (vin[k] - quasi-square 
wave), output (v1[k] – sinusoidal wave) and residual 
(harmonic) signal. As foreseen in Fig.02a, the second order 
notch filter does not effectively attenuate the 60Hz (which 
means that the harmonic signal contains a significant part of 
fundamental wave), besides rotating its phase angle. The 
consequence is that the band-pass algorithm output  
(sinusoid) is out of phase and attenuated, relative to the 
theoretical fundamental component of the quasi-square wave. 

A digital band-pass “filter” with the same features of the 
simulation in Fig.03 was also implemented using shift and 
delta operators. Fig. 06 shows that the second order shift 
filter realization is worthless, since the attenuation and phase 
are absolutely out of the designed points. Besides, it is a very 
hard task to implement a higher order band-pass digital filter 
without major instabilities. 



+

Notch Filter

- +

Vin[k] Vres[k] V1[k]

 
Fig. 04 – Band-pass algorithm based on notch filter. 

 
On the other hand, Fig. 07 shows a fourth order band-pass 

digital filter implementation in delta form (cascade 
structure). Since the delta realization and the correct choice 
of parameter ∆ (1/16 in this case) improve the quantization 
sensibility, all truncation, rounding and saturation effects will 
not affect significantly the filter response. 

Thus, using the same square wave input, it is possible to 
evaluate accurately its fundamental 60Hz wave, with correct 
amplitude and phase angle. By simple subtraction, one could 
even extract the residual or harmonic signal, to be used in 
several power systems or power electronics application, such 
as active power filtering [10] or THD estimation [12]. 
 

 
Fig. 05 – 16 bits band-pass “algorithm” input, output and residual signal, 

using shift operator. 

 
Fig. 06 – 16 bits band-pass digital filter using shift operator. 

 
Fig. 07 – 16 bits band-pass digital filter using delta  operator. 

 
Finally, experimental results using a fixed-point 16 bits 

DSP have demonstrated that if delta form is used, even hard 
tasks such as very narrowband filters, can be implemented 
yielding good results. On the other hand, if shift form is 
applied, the results are absolutely unacceptable. 

 
VIII. CONCLUSIONS 

 

This paper discusses the problems on implementing digital 
systems when high sampling frequencies and fixed-point 
DSP are required. The unusual Delta Operator was 
summarized and used in order to optimize the discrete 
coefficients in such a way to improve the system’s sensibility 
to quantization effects. Simulations results have shown that 
the delta filter performance is significantly superior to the 
conventional shift realization.  
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