
COMPARATIVE STUDY ON FLUX OBSERVERS FOR
 INDUCTION MOTOR DRIVES

Ademir Nied

Seleme I. S. Junior
Benjamim R. de Menezes

Gustavo G. Parma
Júlio C. G. Justino

Universidade Federal de Minas Gerais
Av. Antônio Carlos 6627

Belo Horizonte – MG – CEP 31270-010
{nied,seleme,brm,parma,julio}@cpdee.ufmg.br

Abstract – This paper presents a comparative study

between two traditional flux observers and two neural
flux observers. The neural network topology is a
standard multilayer perceptron network, and the two on-
line training algorithms are based on Sliding Mode
Control (SMC) theory. The stator flux neural observers
present a better performance with respect to rotor
resistance uncertainties whereas the traditional ones have
a better response when the uncertainties are with the
stator resistance.

KEYWORDS

Flux Observers, Sliding Mode Control, Artificial Neural
Networks, Flux Neural Observer.

I. INTRODUCTION

It is quite known that the precise magnetic flux estimation
is crucial for the implementation of the various approaches
of direct field oriented control for induction motors (IM).
Several methods for the flux acquisition have been proposed.
It is usual to classify them as either Flux Estimators or Flux
Observers [1], [2].

Consider a linear multivariable system modeled in the
State Space as:

)()()()(tttt ωDBuAxx ++=& (1)
)()()(ttt ωHCxy += (2)

where, x(t) e are, respectively, the n-dimensional state
vector and its derivative, u(t) is the m-dimensional vector of
the known inputs and ω(t) is the k-dimensional vector of the
unknown or unavailable inputs, representing the external
disturbances and the parametric uncertainties. Eq. (2) is the
measured outputs equation of the system, where y(t) is the p-
dimensional vector of these outputs. A, B, C, D and H are
matrices of appropriate dimensions considered as known.

)(tx&

Thus, the estimation process consists in generating state
x(t) from the known or available input u(t), and from the
output, y(t), given the matrices A, B, C, D and H. In simple
words, the estimation is a sort of real time simulation of the
equations which govern the system dynamics, in order to
obtain the state variables which, for some reason, are not

available to measure. It is also true that this simulation is in
open loop.

The estimator performance can be ameliorated by using
both the input, u(t), and the output, y(t) in (1) and (2).
Therefore, an observer can be obtained by using a predicted
error correction term in this real time simulation
(estimation), which is a function of the difference of the
predicted output,)(ˆ)(ˆ tt xCy = , and the real (measured) one,
y(t). The observer resulting from this procedure is described
as:

)]()(ˆ[)()()(ˆ)(ˆ tttttt yxCLDBuxAx −+++= ω& (3)
)()(ˆ)(ttt ωHxCy += (4)

where L represents the gain matrix of the observer, whereas,
the term within the brackets is the prediction error correction
term. The prediction error dynamics is obtained by putting
(3) into (1), as:

)()()()()(ttt ωLHDeLCAe +−+=& (5)

Notice that when L=0, the observer becomes an estimator.
The error dynamics is given by the eigenvalues of the matrix
(A+LC). If this system is observable, by choosing
appropriately the values of L, the eigenvalues of (A+LC) can
be arbitrarily chosen, thus imposing arbitrarily the error
dynamics. In the presence of uncertainties (w(t)≠0), high
values of the gains in L, chosen in order to assure a fast
convergence of the observed error, have also an impact on
the effect of the disturbances, given that the eigenvalues of
the matrix (D+LH) are also changed with L. Therefore, there
is a tradeoff between a fast convergence and a low sensibility
parameter uncertainties and external disturbances.

The observer is an estimator in closed loop, using the
input signals and a feedback signal obtained from the system
output and the process dynamic model. The prediction error
correction term allows a faster tracking capability then that
of the corresponding estimator whose dynamics is dictated
by the natural dynamics of the system. There are several
schemes of observers proposed in the literature. In [2], ten
different topologies of observers are presented, using
different structures for the correction term.

The issue of flux observers, robust with respect to
parameter variation, capable of a fast convergence is still

lacking some effort of research. In this sense, Artificial
Neural Networks (ANN) is a valid alternative. By training
the ANN adequately, using the right inputs, it is possible to
predict the unavailable variable, the stator flux in our case, in
a robust way.

The paper is organized as follows: Section II describes the
stator flux neural observer whereas Section III presents the
on-line training algorithms proposed by [3] and the adapted
algorithm with the simplifications based on [4]. Section IV
shows a comparison of simulation results between
conventional observers (Gopinath and Luenberger) and
neural observers. Finally, Section V presents the
conclusions.

II. STATOR FLUX NEURAL OBSERVER

The most popular algorithm for training multi-layer ANN
based on MCP node [5] is back-propagation [6]. The training
made by adjusting the weights of the ANN through the
gradient method, aiming at the minimization of the cost
function (error) of the system. On-line training algorithms
have to be able to adapt the ANN parameters as a function of
parameter variations occurred in the plant, thus allowing a
better modeling of the system. According to [7], on-line
training algorithms, based on the Sliding Mode Control
theory [8], present high speed of convergence and
robustness.

The induction motor can be modeled in an orthogonal
reference (α,β-frame), disregarding the homopolar
component, by the following equation set:

dt
d

iRv s
sss

α
αα

ϕ
+= (6)

dt
d

iRv s
sss

β
ββ

ϕ
+= (7)

where:

Rs: stator resistance;
vsα, vsβ: stator voltages referred to the (α,β-frame);
isα, isβ: stator current (α,β-frame);
ϕsα, ϕsβ: stator flux (α,β-frame).
Consider Eqs. (6) and (7) above. The stator flux

components can be derived using the stator current and
voltage. The α and β stator current components are used as
the input to the ANN, having the α and β components of the
stator flux as the output. The α and β components of the
voltage are used for the ANN on-line training, as depicted in
Fig. 1.

The ANN used has two layers, with 2 inputs, 5 nodes of
the hidden layer and 2 outputs. The number of nodes of the
hidden layer was determined by the analysis of the
simulation results which minimizes the computational
burden as the number of nodes varies, provided that the flux
estimation is not compromised.

Fig. 1: Block diagram of the neural stator flux observer

Notice that the observer is based one parameter only, the

stator resistance, which doesn’t vary too much and can be
easily obtained by simple laboratory tests.

III. TRAINING ALGORITHMS

The development of the algorithms in this section is based
on the ANN structure shown in Fig. 2, in which:

n: inputs;
m: nodes of the hidden layer;
p: outputs;
T: input vector with bias;
YH: output vector of the hidden layer, with bias;
Y: output vector of the ANN;
Z: weight matrix which connects the input to the hidden

layer nodes, with dimension m × (n+1), being Zih the weight
which connects the input h (n≥h) to the input of the node i
(m≥i) of the hidden layer;

W: weight matrix which connects the output to the hidden
layer nodes, with dimension p × (m+1), being Wih the weight
which connects the output i (n≥h) to the output of the node j
of the hidden layer;

fH(.): activation function of the hidden layer nodes, using
the tangh function;

f(.):activation function of the output layer nodes, using the
tangh function;

f’H(.): derivative of the activation function of hidden layer
nodes related to the weights;

f’(.):derivative of the activation function of output layer
nodes related to the weights;

It can be seen from Figure 2 that:

YH = fH(R) (8)
Y = f(V) (9)
R = Z.T (10)
V = W.T (11)

where R is the linear output of the hidden layer and V is the
linear output of the output layer, i.e.,

∑
+

=

=
1

1

n

k
ikiki TZR (12)

∑
−

=

=
1

1

m

k
Hkjkj YWV (13)

Fig. 2: ANN used as a stator flux observer.

The on-line training algorithms for the ANNs based in

SMC are as follows:

A. Training algorithm according to Parma [3]

For each new node of the output layer there is a sliding
surface, defined as:

jjj CXXS 12 += (14)

)(')(1 jjdjj VfYYX −= (15)

t
X

X j
j ∂

∂
= 1

2 (16)

where Ydj is the j-th desired output for the output layer for j =
1,2,...,p.

For each node of the hidden layer, the following sliding
surface is defined:

HiHHIHi XCXS 12 += (17)

∑
=

=
p

j
jijiHHi WXRfX

1
11][)(' (18)

t
X

X Hi
Hi ∂

∂
= 1

2 (19)

Consider Eqs. (15) and (18). The following rules for the

updates of the weights are defined:

Hijjji YXSsignW 1)(.α=
•

 (20)

hHiHiih TXSsignZ 1)(.β=
•

 (21)
Once the sliding surface is defined, it is necessary to

determine the limits for gains α and β such that the existence

of sliding modes is guarantied. Therefore, the following
conditions have to be assured:

• Th (h=1,...,n) and Ydj (j=1,...,p) are bounded with
bounded derivatives;

• fH(.) and f(.) are bounded with bounded time
derivatives.

According to [8], the existence of sliding modes is assured
when , being the time derivative of S. The
deduction of the bounds on α and β are shown in [3]. In
order to make the sliding on the surface smoother, the
following gains were used: α=β=1e

0. ≤SS & S&

5. With such values,
chattering problems are avoided.

B. Adapted algorithm

Martens and Weymaere present in [4] an equalized error
backpropagation algorithm for the on-line training of
multilayer perceprons. The training is done by adjusting the
output of the ANN by the gradient method, aiming at
minimizing the cost function (of error) of the system output.
This proposition is summarized by the following equation:

i
i y

y
∂
∂

−=∆
εη , i = 1...p (22)

Considering Eq. (22), Eqs. (15) and (18) can be written

as:

)(1 jdjj YYX −= (23)

∑
=

=
p

j
jijHi WXX

1
11][(24)

The rest of the equations derived in [3] remain the same in

this approach. As for the bounds for α and β, the same
values were adopted, i.e, α=β=1.e5.

IV. SIMULATION RESULTS

A program written in C was developed in order to
compare the stator/rotor flux average percentage error of the
two algorithms presented in the previous section with the
two conventional Gopinath and Luenberger observers.

The conventional observers use the DUFOR (Direct
Universal Field Oriented Rotor) as a controller for the
simulation and implementation whereas the neural observers
use the UFOVS (Universal Field Oriented Stator). It is noted
that no special care was taken when selecting the control
gains. The main concern being the observers performance.
The numeric integration of the model differential equations
is performed using a forth-order Runge-Kutta method.

(a) (b)

(c) (d)
Fig. 3: Gopinath’s simulation results with 20% increase of the rotor resistance: (a) Rotor flux and rotor flux error during motor start/speed reversion at 150
elec.rad/sec. (b) Rotor flux and rotor flux error during application/rejection of load at 150 elec.rad/sec. (c) Rotor flux and rotor flux error during start/speed

reversion at 30 elec.rad/sec. (d) Rotor flux and rotor flux error during application/rejection of load at 30 elec.rad/sec.

The induction motor model parameters are presented in
Table I, whereas the simulation parameters are shown in
Table II.

In these simulations, the induction motor was submitted
to the following transients:

• motor start and speed reversion (with no load);
• application and rejection of load.
The above transients are done under the following

conditions of parametric uncertainty and speed:
• 20% increase of the stator resistance with motor

speed of 150 elec.rad/sec;
• 20% increase of the rotor resistance with motor

speed of 30 elec.rad/sec.
The weights of the ANN are initialized when starting

the motor through a sampling of normal distribution with
zero mean. After starting, the weights are updated with the
output values obtained at the last simulation step.

Some simulation results are shown in Figs. 3 and 4.
Figure 3 shows the transients of the Gopinath’s algorithm
with 20% increase of the rotor resistance. Figure 4 shows

the transients of the Adapted algorithm with 20% increase
of de stator resistance.

Those figures show the worst case for both observers:
Gopinath and Adapted. These worst cases correspondent
to: rotor resistance uncertainty for Gopinath, and stator
resistance uncertainty for Adapted. It can be seen that the
Adapted neural observer presents smaller flux error then
that obtained by Gopinath observer for rotor resistance
variation. The opposite happens when the stator resistance
varies. Nevertheless, the Adapted neural observer is less
sensitive for variations in stator resistance variation then
Gopinath is sensitive to rotor resistance drift. This can be
verified observing the results of Tables III and IV which
synthesize the results obtained by simulation.

The dynamic behavior of both torque and speed follow
those of the flux, given that the motor currents are
measured. Notice also that both neural observers present
similar results. Nevertheless, the adapted algorithm
approach has the advantage of being simpler and less time
consuming.

(a) (b)

(c) (d)
Fig. 4: Adapted algorithm’s simulation results with 20% increase of the stator resistance: (a) Stator flux and stator flux error during motor start/speed reversion

at 150 elec.rad/sec. (b) Stator flux and stator flux error during application/rejection of load at 150 elec.rad/sec. (c) Stator flux and stator flux error during
start/speed reversion at 30 elec.rad/sec. (d) Stator flux and stator flux error during application/rejection of load at 30 elec.rad/sec.

TABLE I
Induction Motor parameters

Power (HP) 2
Rated phase voltage (V) 220
Speed (rpm) 1720
Stator resistance (Ω) 4.08
Rotor resistance (Ω) 4.87
Stator leakage Inductance (H) 0.3154
Rotor leakage Inductance (H) 0.3235
Magnetizing inductance (H) 0.305
Rotational loss coefficient (W.s2/rad2) 0.018

TABLE II

Parameters used for the simulation
Integration step (µs) 1
Simulation time (s) 31 e 52

Sampling frequency (kHz) 4
Voltage at the DC link (V) 300
Load used for the transients (Nm) 4
Reference speed of the motor (elec.rad/s) 150
Reference flux (Wb) of neural observers 0.53
Reference flux (Wb) of conventional
observers

0.50

1 Simulation time for starting and speed reversion.
2 Simulation time for loading/unloading the motor.

TABLE III

Flux average percentage error with 20% increase of
the stator resistance

 Start/speed reversion Application/rejection
of load

 wr = 150
elec.rad/s

wr = 30
elec.rad/s

wr = 150
elec.rad/s

wr = 30
elec.rad/s

Gopinath 0.02 0.09 0.36 0.07
Luenberger with
vs3 0.02 0.09 0.37 0.07
Parma 0.9 0.91 0.67 1.79
Adapted 0.9 0.91 0.69 1.79

3 In this observer the estimator is based on the current
model whereas the correction term is derived from the
voltage model.

TABLE IV
Flux average percentage error with 20% increase of

the rotor resistance
 Start/speed reversion Application/rejection

of load
 wr = 150

elec.rad/s
wr = 30

elec.rad/s
wr = 150
elec.rad/s

wr = 30
elec.rad/s

Gopinath 2.18 0.51 3.6 2.92
Luenberger with vs 2.18 0.5 3.6 2.92
Parma 0.03 0.0 0.03 0.0
Adapted 0.01 0.0 0.01 0.0

V. CONCLUSIONS

A new neural network based observer for the stator flux

of induction motor has been presented. Simulation results
of this adapted algorithm and of the former one proposed
by Parma et al. [3] have been shown.

It can be seen that the much simpler adapted algorithm
proposed has the same good performance as the original
one. Nevertheless, the adapted algorithm approach has the
advantage of being simpler and less time consuming.

The neural network based observers are compared with
traditional Gopinath and Luenberger observers. It can be
verified from simulation results that the neural observers
of the stator flux present a flux average percentage error
(considering both case – 20% increase of rotor and stator
resistance) which is smaller than those for the traditional
observers.

Finally, one notes that:
1) The neural observers are depended on one electrical

parameter only (these observers are insensitive to rotor
resistance variations), the stator resistance, which doesn’t
vary too much and can be easily obtained by simple
laboratory tests. The traditional observers are depended on
two parameters: rotor and stator resistance;

2) The neural observers’ algorithms do not depend on
the motor speed measurement, which is a great advantage
nowadays, considering the industrial induction motor
drives trend.

ACKNOWLEDGEMENT

The autors are grateful to CAPES for the financial
support for this investigation.

REFERENCES

[1] G. C. Verghese and S. R. Sanders, “Observers for

flux estimation in induction machines,” IEEE
Trans. on Industrial Electronics., vol. 35, no. 1,
February 1988.

[2] Y. Hori, V. Cotter and Y. Kaya, “A novel induction
machine flux observer and its application to a high
performance AC drive system,” Proceedings of
10th World Congress on Automatic Control –
IFAC, Vol. 3, pp. 355-360, Munich, 1987.

[3] G. G. Parma, B. R. Menezes, A. P. Braga, J. C. R.
Oliveira e L. A. Aguirre, “Observador neural de
fluxo estatórico com treinamento on-line,” in
Proceedings of XII Brazilian Automatic Control
Conference – XII CBB, vol. IV, pp. 1301-1306,
1998.

[4] J-P. Martens and N. Weymaere, “An equalized
error backpropagation algorithm for the on-line
training of multilayer perceptrons,” IEEE Trans.on
Neural Networks, vol. 13, No. 3, pp. 532-541, May
2002.

 [5] W. S. McCulloch and W. Pitts, “A logical calculus
of the ideas immanent in nervous activity,” Bulletin
of Mathematical Biophysics 5, pp. 115-133, 1943.

[6] D. E. Rumelhart, G. E. Hinton and R. J. Willians,
Learning internal representations by error
propagation.. Parallel Distributed Processing:
Explorations in the microstructure of cognition, vol.
I: Foundations, pp. 318-362, Cambridge, MA: MIT
Press, 1986.

[7] A. Sabanovic, K. Jezernik and M. Rodic, “Neural
network application in sliding mode control
systems,” in IEEE Workshop on variable structure
systems, 1996.

[8] V. I. Utkin, Sliding regimes an their applications in
variable-structure systems, Moskow, Nauka, 1974.

	pagea3301: 331
	pagea3311: 332
	pagea3321: 333
	pagea3331: 334
	pagea3341: 335
	pagea3351: 336

