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 Abstract – This work deals with the study and 
development of a project methodology, for optimum 
design of the losses and magnetic volume of a DC-DC 
half-bridge ZVS asymmetric PWM converter. 
Theoretical, simulation and experimental results are 
presented based on a prototype with 500 Watts output 
power. 

KEYWORDS 
 

ZVS comutation, Half bridge converter assimectric, 
optimization of losses. 

 
I. INTRODUCTION 

 
The converter DC-DC HB ZVS-PWM presented in Fig.1 

it is a good solution for power supplies of 
telecommunications, for presenting the following 
characteristics: 

• Commutation under null voltage; 
• Few components for being a structure in half bridge; 
• Simple control strategy; 
• Low losses for conduction; 
• Low interference of EMI; 
• Voltage stress in the switches is equal the input voltage; 
This converter is derived from the isolated half bridge dc-

dc converter with the inclusion of the resonant inductor Lr, 
resonant capacitors C1 and C2. These two capacitors are the 
switches capacitances. D1 and D2 are the body drain diodes. 
DC1 and DC2 are clamping diodes with the purpose to reduce 
overshooting and ringing voltages on the output rectifier 
diodes. 

II. ASYMETRIC CC-CC ZVS-HB CONVERTER 
 

The asymmetric ZVS-HB CC-CC converter, is a 
converter that possesses a resonant stage during the 
commutation period through a circuit series LC that allows 
the so much when the switches goes into conduction as the 
blockade under null voltage. The prototype developed in this 
article it possesses the following specifications:  

Input voltage : Vi = 400 V 
Output voltage: Vo = 54 V   
Commutation frequency: fs = 100 kHz   
Output power: 500 Watts. 
The structure of the converter can be seen below in Fig.1.   
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Fig. 1 - DC-DC HB ZVS-PWM 

OPTIMUM DESIGN. 

The optimum design proposed by this work it felt in 
several stages. Firstly decreased her the volume of the 
magnetic elements to begin for the resonant inductor. They 
were still made studies to minimize the value of the resonant 
inductor in way to this to assist the commutation 
specifications ZVS under critical load and to guarantee the 
cycle of smaller work than the maximum stipulated by the 
planner.  They were lifted up equations and traced the way 
curves to find acceptable values of Lr (resonant inductor) in 
function of the transformer ratio for several situations of 
operation of output voltage and load.   

RESONANT INDUCTOR LR AND TRANSFORMER 
TURN RATIO 

The necessary condition for commutation ZVS is had it is 
that the energy stored in the inductor Lr it is enough to 
discharge the capacitor completely C1 loaded with the 
voltage (1-D)⋅Vi, in the most critical case. This condition is 
represented by the equation (1).   
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Where, D is duty cycle, Ceq is equivalent capacitance of 
mosfets and Io’ is nominal load current reflected to the 
primary side of transformer. Then : 
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Therefore in the worst case the converter operates with D 
= Dcrit when Io' = Io'crit. Dcrit is determined by the equation 
(3).   
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The duty cycle loss and the static earnings are certain for 
(4) and (5) respectively.   
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Where, Vdf is the voltage fall on the diodes of the exit 
rectifier and ‘n’ is the transformer ratio.  

The current of load critical referenced to the primary of 
the transformer is given for (113).   
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Where, ZVS% is the minimum percent of load where the 
converter have a commutation ZVS ( zero voltage switching 
). Substituting (4), (5) and (6) in the equation (3):   
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substituting (6) and (7) in (2), we obtain (8).   
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Starting from the equation (7): 
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Solving (9) as function of Lr obtains: 
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Solving numerical the equations (8) and (10) for several 
load values and output voltage we obtain them it curves 
presented in Fig.2. Where the curves ' a', ' b', ' c', ' of, ' e' and ' 

f' are regarding equation (10) and the curves ' g', ' h' and ' i' 
are referring the equation (8). Para the curves traced by the 
equation (10) the acceptable values are below the curve 
while for the equation (8) the values of resonant inductance 
acceptable are above the curve.   
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Fig. 2 - Resonant inductor Lr x n - I Saw = 400V.   

In order to assist the commutation specifications ZVS 
under critical load and maximum value of the work cycle the 
value of the resonant inductor should be in the area among 
the curves marked by the letters ' f' and ' g'.   

SEMICONDUCTORS STRESS AND LOSSES 

SWITCHES CONDUCTION LOSSES 

The effective currents in the switches S1 and S2 are given 
below by the equations, where, Io'_nom is the load current 
contemplated for the primary of the transformer.   

( )[ ]DDnomIoI eficazS ⋅−⋅⋅= 12_'_1  (11) 

( )[ ]DDnomIoI eficazS −⋅⋅⋅= 12_'_2  (12) 

The losses for conduction in the switches S1 and S2 are 
presented for (13). 
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The duty cycle is defined for (14).   
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Rated current I given by equation (15)   
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Substituting (14) and (15) in (13) and tracing the result of 
the losses in the switches in function of the transformer ratio 
obtains Fig.3. 
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Fig.3 Losses x Transformer  ratio 

Therefore, the conclusion is that the value of the 
transformer ratio should be the possible largest for it is had 
minimum losses in the switches and therefore the chosen 
value for the resonant inductor, as well as, the value of the 
transformer ratio should be in the point of intersection of the 
curves 'f ' and 'g ' of Fig.2. 
BRIDGE'S DIODES VOLTAGE STRESS 
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Fig.4 Bridge’s diodes stress x ' n’. 

As we can see in Fig.4 as well as the stress current in the 
switches, the voltage stress of the diodes of the rectifier 
bridge also decrease with the increase of the transformer 
ratio. 

OPTIMUM DESIGN FOR THE LOSSES IN THE 
TRANSFORMER   

COPPER LOSSES 

Through a study of the current densities or even of the 
area of occupation of the copper of the rolling up of the 
transformer, and starting from the effective currents of each 
rolling up, it is arrived to occupation indexes that minimize 
the values of the losses in the copper given a density of 
maximum current stipulated by the planner.  
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Using the method of Multipliers of Lagrange to meet the 
inflection point (minimum) of the system of equations 
described above we arrived to the values of the occupation 
coefficients wanted.   
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Where Im is the effective current of each rolling up.   
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Fig.5 Copper losses for α1 values   
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Fig.6 Copper losses for α2 values   
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Fig.7 Copper losses for α3 values   

CORE  LOSSES 

To the we write the losses in the core and losses in the 
copper in function of flux density we found the following 
equations:   
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Where Y is the coefficient of Steinmetz and X and Cm 
they are the constants of loss of the material lifted at 
laboratory.   
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Being added (19) and (20) deriving with regard ∆B 
arrived the (22). Solving the equation (22) to find the value 
of field density that minimizes the total losses in the 
transformer we found (23). 
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Solving the equation (129) we arrived the (130).   
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THE CORE 

To choose the core the following conditions for the 
geometric constants Kg and Kgfe they should be assisted.   
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Fig.8 Transformer losses 

EXPERIMENTAL RESULTS 

Starting from the presented calculations it was arrived to 
the following values for the resonant inductor and 
transformer. 

Lr = 20 µH  (the own linkage inductance of the 
transformer was used ); 

Transformer ratio : n= 2.7 ;  ( core EE-55 IP12 ) 
N1= 50 turns (33 x 33AWG ); 
N21 = 18 turns ( 56 x 33AWG ); 
N22 = 18 turns (77 x 33AWG ). 
With base in the harmonic content of the current in the 

primary of the transformer, shown in the Fig.9, in order to 
avoid the increase of the losses in the copper due to the 
effect skin, the wire 33 AWG was chosen for the 



  
 
 

construction of the transformer with ferrite core. 
The dotted line indicates the frequency of the harmonic 

component below which effect skin won't be had due to the 
use of the wire 33AWG. 
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Fig.9 harmonic content for primary current. 

Fig.10 presents the forms of wave of the voltage drain-
source and drain current during the commutation period. It 
can be noticed the turn on of switches under null voltage. 

   

 
Fig.10 Commutation 

   

 
Fig.11 output voltage and voltage before output filter.  

The theoretical revenue was of 96%. THE prototype got 
to reach 93% for nominal load and a pick of 95% to 38% of 
the nominal load. Fig.9 presents the experimental efficiency 
of the converter 
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Fig 13. Board On-Top 

III. CONCLUSION 
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The used methodology demonstrated to be quite efficient 

and the results obtained quite satisfactory.   
The use of the linkage inductance of the transformer as 

resonance inductance and the intrinsic capacitors of the 
mosfets turned the less voluminous converter and they 
helped to reduce the losses.   
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