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Abstract: This paper proposes an artificial neural 

network (ANN) based space vector pulse width 
modulation (SVM) for a multi-level voltage-fed inverter. 
Basically, the approach uses two multilayer perceptron 
(MLP) type of neural network. The first ANN uses the 
amplitude and angle of the reference voltage vector to 
determine the nearest three vectors (NTV) by finding the 
triangle where the reference vector lies. The second ANN 
is used to calculate the duty cycles of the three space 
vectors. An erasable programmable logic device (EPLD) 
synthesizes the PWM waves. The main advantage of this 
approach is the fast and simple implementation of the 
highly complex SVM algorithm for multi-level inverters 
without loosing precision compare to the conventional 
DSP-based SVM algorithm. Simulation results for a five-
level inverter using the proposed ANN-based SVM are 
given and shown to be excellent. 

KEYWORDS: Multilevel inverter, space vector  modulation, 
artificial neural network 

I. INTRODUÇÃO 

The neutral-point-clamped (NPC) multi-level voltage-fed 
inverters (VFI) are becoming very popular recently for multi-
megawatts power applications. The main advantage of such 
inverter topology is voltage division, i. e., the output voltage 
is produced through small steps of voltage, and therefore the 
individual switches are submitted only to these small 
voltages steps [1]. The others advantages are: low harmonic 
distortion of the output voltage and low dv/dt.   The SVM 
algorithm for this inverter provides the additional advantages 
of harmonic reduction and higher range of undermodulation. 
In conventional SVM for multi-level inverter, the 
identification of the nearest three voltage vectors used to 
synthesize the reference vector is very complex. This 
involves tasks such as: identification of the sector and the 
triangle where the reference vector lies [3]; look-up table 
check; and many trigonometric operations for duty-cycle 
calculation [2].  Some simplifications of this algorithm have 
been proposed by [4] and [5]. Basically, these papers propose 
the use of the non-orthogonal reference system.  These 
contributions are undeniable for simplification of the 
algorithm. However, even with  these simplifications, the 
complexity of the algorithm is quite high. 

This paper proposes an artificial neural network (ANN) 
based space vector pulse width modulation (SVM) for a 
multi-level voltage-fed inverter. Basically, the approach uses 
two multilayer perceptron (MLP) type of neural network. 
The first ANN  uses the amplitude and angle of the reference 
voltage vector to determine the nearest three vectors (NTV) 
by finding the triangle where the reference vector lies.  The 
second ANN is used to calculate the duty cycles of the three 
space vectors. 

The switching state sequence times are calculated using 
the duty cycles, sextant and the triangle information. The 
switching times are then fed to an erasable programmable 
logic device (EPLD) that generates the PWM waves, which 
drive the inverter switches. Therefore, the most complex part 
of the algorithm is replaced by two simple feedforward 
multi-layer perceptron type ANN. 

II – MULTI-LEVEL INVERTER SPACE VECTOR PWM 

As mentioned in section I, the conventional SVPWM 
algorithm, due to its nature of handling the reference voltage 
vector as a whole, is very complex. This complexity 
increases even more as the number of levels (n) of the 
inverter increases, since the number of switching states 
increases with n.  

In a n-level inverter, although the number of switching 
states Ns is given by: 

3nN S =  (1) 

The actual number of voltage space vectors Nv is given 
by: 

 33 )1( −−= nnNV  (2) 

These voltage vectors divide the d-q plane into NT 
triangles. The relation between the number of triangles and 
the number of levels of the inverter is given in equation (3). 

2)1.(6 −= nNT  (3) 

For instance, the five-level inverter, shown in Fig. 1, has 
125 switching states, of which only 61 are effective space 
vectors, whose divide the d-q plane into 96 triangles.  

In the SVM algorithm, out of the Nv space vectors, only 
the nearest three vectors (NTV), whose are the adjacent 
vectors of the triangle where the reference vector lies, are 
used to compose the output vector. Fig. 2 shows the space 
vectors and triangles for the five-level inverter. 
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Fig. 1.– Simplified  representation of a five-level inverter 
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Fig. 2 – Switching states in d-q plane of a five-level inverter. 

II.1– Triangle Identification 

In order to assure the capacitor voltage balance, the 
correct sequence of the vectors used to compose the output 
vector is vital. This correct sequence is achieved by an 
accurate identification of the triangle where the reference 
vector lies. An convenient approach is to do the identification 
of triangle considering only one sextant, independently of the 
actual sextant where the command voltage vector V* lies. 
The result of this method is a significant simplification on the 
calculation of the duty cycles ta, tb, and tc. The simplification 
lies in the fact that the reference voltage vector can be 
considered to be always in the first sextant, which reduces 
considerably the number of triangles to be identified. For 
instance, in a conventional method for a five level inverter, 
the position where the reference vector lies should be 
identified in a 96 triangles universe. However, using the 
proposed simplification, this universe is only of 16 triangles.  

An strategy to identify the triangle where the reference 
voltage vector lies is given in [3]. This strategy uses 
coordinates translation and a rotation factor to determine the 
sequence of the numbers of the triangles in the first sextant.  
The sequence goes horizontally from the left to the right. 
This is not a good approach since the numbering sequence 
changes for inverters with different number of levels.  This 
problem is overcome in this proposed method, where the 
main idea is to use a diagonal ordination of the number of the 

triangle, in a crescent order from the center to the border of 
the hexagon. Basically, this is a masking in of the strategy 
done by [3].  Therefore, the triangle numbering sequence 
holds independently of the numbers of levels of the inverter.  

Figure 3 presents the proposed approach for numbering 
the triangles and the vector sequence for each triangle. The 
duty cycle of each vector is obtained in accordance to the 
average value principle, which is given by equation (4): 
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Fig. 3 –  Triangles numbering and vector sequences (duty 

cycles ta, tb, and tc) for sextant 1. 

II.2 – Switching Patterns 

The adequate strategy of using the redundant switching 
states guarantees the minimum number of switching, the 
optimum harmonic content, and best balance of the dc-link 
capacitor voltages. In the complete pattern, all the redundant 
vectors are used. The proposed algorithm is flexible in the 
sense that it can use either the complete or the reduced 
switching sequence pattern. In this work the complete 
switching pattern is used. The switching state sequence in a 
sampling period is pre-defined and depends on the number of 
the triangle in the hexagon where the reference voltage 
vector lies (Thex). However, the number of the triangle can be 
obtained using the number of the sextant where the vector 
lies (sext) and the number of the correspondent triangle in the 
first sextant (Tr). Equation (5) shows this relation. 

TrsextThex +−= 16).1(  (5) 

In this stage, the objective is to determine how much of 
each voltage level should be on in the switching period in 
analysis. For example, for phase A, the contribution of the 
voltage level 4 is the sum of the weighted duty cycles ta, tb 
and tc, as shown in equation  (6). 

cHexAcbHexAbaHexAaA tTKtTKtTKT )()()( 4444 ++=  (6) 

Where the coefficients Ka4A, Ka4A  e Kc4A are pre-defined 
and can be stored in a look-up table. Table 1 shows the direct 
and reverse sequences of the switching states necessaries to 
synthesize the reference vector lying in triangle 1. 
 

 



TABLE 1:  Switching state sequences for triangle 1 

Phas Direct Sequence Reverse Sequence 

A 0 1 1 1 2 2 2 3 3 3 4 4 4 4 4 4 3 3 3 2 2 2 1 1 1 0 
B 0 0 1 1 1 2 2 2 3 3 3 4 4 4 4 3 3 3 2 2 2 1 1 1 0 0 
C 0 0 0 1 1 1 2 2 2 3 3 3 4 4 3 3 3 2 2 2 1 1 1 0 0 0 
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II.3 – Synthesis of the PWM signals  

The PWM signals can be generated after obtaining the 
amount of time that each voltage level should be on for the 
three phases. An erasable programmable logic device 
(EPLD) is used to generate such signals.  

In order to assure the voltage capacitors balance the 
appropriate switching pattern has to be used. The correct 
switching pattern will depend if the reference voltage vector 
lies either in an odd (A, C e F) or in an even (B, D e F) 
sextant [6].  If the reference voltage vector lies in any of the 
odd sextants the switching sequence has to go from lower to 
higher level (0, 1, 2 , 3, e 4), as shown in table 1.  On the 
other hand, if the reference voltage vector lies in any of the 
even sextants, the switching sequence has to go from higher 
to lower level (4, 3, 2, 1, e 0). Therefore, the algorithm has to 
use an index to identify the sextant where the reference 
voltage vector lies. Figure 4 shows a logic diagram to obtain 
the PWM signals for the levels of one phase in the five-level 
inverter.  

 

III – NEURAL-NETWORK-BASED SVPWM 

As described in section II the space vector PWM 
algorithm is very complex and its complexity clearly 
increases as the number of level of the inverter increases. 
The algorithm complexity relies in two stage of the 
algorithm: i) identification of the triangle where the reference 
vector lies and ii) duty cycles calculation. These two stages 
of the SVM algorithm are the bottleneck of the algorithm.  

Artificial neural networks were shown to be very useful in 
implementation of SVM algorithm [6], [7].  It was shown in 
[7] that the switching times can be calculated by using two 
neural networks. One ANN calculates the voltage amplitude 
function, and  the other calculates the angle function. The 
outputs of the two ANN’s are multiplied, and finally the 
switching times are obtained by summing a constant to that 
product. However, this strategy is valid only for two and 
three-level inverters. As the number of levels increases, the 
precision of this strategy deteriorates. 
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(a) Sextants A, C and E 
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(b) Sextants B, D and F 

Fig. 4 – Logic used to obtain the PWM signals 
 



This work proposes a improvement in the strategy 
proposed in [6] and [7], once it generalizes the strategy to 
implement the SVM algorithm for multilevel inverter with 
any number of levels. Here, two neural networks are also 
used, however they have different function in the SVM 
algorithm from those two neural networks used in [6] and 
[7].  The first ANN maps the amplitude and angle of the 
reference voltage vector to the number of the triangle where 
such vector lies. As discussed previously, the triangle 
identification is a way to determine which voltage space 
vector should be used to synthesize the command voltage 
vector. But, in this approach, this information is also used to 
do a weight update of the second ANN.  The second ANN is 
used to map the amplitude and angle of the reference voltage 
vector to the duty cycles of the NTV.  Figure 5 shows the 
block diagram of the ANN based SVM for multilevel 
inverter.  
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III.1– Neural Network Based Triangle Identification  

This ANN maps the amplitude (V*) and angle (θ*) of the 
reference voltage vector to the number of the triangle (Tr) 
where such vector lies. Notice that Tr is the number of the 
correspondent triangle in the first sextant. The output of this 
ANN will feed two blocks in the proposed approach. The 
block used to generate appropriate switching sequence for 
capacitor voltage balancing and the block of the second 
ANN. The ANN used for triangle identification is a 
multilayer perceptron (MLP). In order to train this ANN, a 
training data set was generated using the conventional 
algorithm given in [3]. The training data set was composed 
by 3361 input/output patterns.  The ANN final topology was 
a 2-3-3-1 ANN, i. e., 2 inputs neuron, 2 hidden layers with 3 
neurons each, and 1 output neuron. The transfer function 
used for all neurons was tan sigmoid type, except for the 
output neuron that uses a linear transfer function. Although 
the ANN could have only one hidden layer, the total number 
of neuron would be higher, and therefore the ANN would be 
bigger. The training stop criteria used was the maximum 
number of epochs. For this ANN, the training was done in 
1250 epochs, and the sum squared error (SSE) after the 1250 
epochs was 0.001. The ANN was tested using 200 
input/output patterns chosen randomly, and the results were 
very good. Figure 6 shows the performance of the ANN 
based triangle identification for a modulation index of 0.53. 
The ANN identified the first sextant correspondent triangles 
correctly, which shows the success of the approach  
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Fig. 6 – ANN based triangle identification for reference 

voltage vector trajectory with m=0.53  

III.2– Neural Network Based Duty Cycle Calculation  
The second ANN used in the proposed approach maps the 

amplitude and angle of the reference voltage vector to the 
duty cycles of the NTV. However two problems must be 
overcome in order to train an ANN to do this mapping. The 
first problem is related to the size of training data, which is 
very large since the amplitude and angle range of the 
reference voltage vector in a multilevel inverter is very wide. 
The second problem is the highly nonlinear relation between 
the input variables (voltage and angle of the reference 
voltage vector) and the output variables (duty cycles of the 
NTV).  

The strategy adopted was to use a “quasi-dynamic” ANN, 
i. e. the MLP-ANN has a set of weights and bias for each 
triangle in the first sextant, and they are changed depending 
on the position of the reference voltage vector. Therefore, 
this ANN also receives information of the triangle number 
(Tr) from the first ANN. The great advantage of this method 
is that instead of being trained to the whole operation range, 
the ANN is trained for each of the 16 triangles of the first 
sextant resulting in 16 sets of weights and bias. Although the 
training seems to be very hard, it is not since: i) the 
nonlinearities are much less in only one triangle, which 
increase the trainability of the ANN; and ii) the training set is 
much smaller than for the whole operation range. The 
training of each triangle handles a training set 96 times 
smaller, which makes the training process much easier and 
less time consuming. Therefore, the training for the 16 
triangles is not as hard as seems to be and the 16 sets of 
weights and bias are easily obtained.  

The ANN used for duty cycle calculation is a multilayer 
perceptron (MLP). The training of this ANN used 16 training 
dada set with 1327 input/output patterns each. The ANN 
final topology was a 2-10-2 ANN, i. e., 2 inputs neurons, 1 
hidden layer with 10 neurons and 2 output neurons. The 
transfer function used for the hidden neurons was the  tan 
sigmoid transfer function, while the output neurons used   the 
linear type. The training stop criteria used was maximum 
number of epochs. The training of ANN for the each triangle, 
in the worst case, was done in 1500 epochs, and the SSE 
after 1500 epochs was 1x10-10. Figure 7 shows the 
performance of the ANN used to calculate the duty cycles for 
a modulation index of 0.53. The figure 7.(a) shows the duty 



cycle ta calculated using the ANN. Figure 7.(b) shows the 
error between the duty cycle ta calculated using the SVM 
equations and using the ANN. From the figure it is possible 
to see that the error is very small, and the maximum error is 
5.0x10-5, which indicates the outstanding performance of  the 
ANN. 
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Fig. 7 –  Duty cycle calculation using ANN 
(a) Duty cycle ta for m=0.53 
(b) Error of duty cycle ta  for m=0.53 

IV – SIMULATION RESULTS 

A SIMULINK/MATLAB model of a Volts/Hertz 
induction motor drive using a five-level voltage-fed inverter 
was built to validate the proposed approach. The two neural 
networks were also included in the system using the 
MATLAB Neural Network Toolbox. The drive system 
parameters are given in table II.  

TABLE II : Drive system parameters 

DC link voltage (Vdc) 
Sampling time (Ts) 
Induction motor 
 

300 V 
500 µS  (fs=2 kHz) 
1 Hp, 230 V, 4-pole 
frequency range: 0 – 60 Hz 
Power factor (full load): 0.85 
Efficiency: (full load): 86% 
Stator resistance (Rs): 0.5814 Ω 
Rotor resistance (Rr): 0.4165 Ω 
Stator leak. inductance (Lls): 3.479 mH 
Rotor leak. inductance (Llr): 4.15 mH 
Magnetizing inductance (Lm):78.25 mH 
Rotor Inertia (J): 0.10 Kg.m2 

Fan Load [TL= ωr2]: k= 8.25x10-5 

The system was simulated for modulation index m=0.53 
and for modulation index m=0.85. Figure 8 shows the line 
voltage waveform with the system operating with modulation 
index m=0.53. The figure also shows the current and the 
voltage line spectrum. It is possible to observe from these 
results that the proposed approach works very well when the 
reference voltage goes through the 3rd and 4th  levels 
(triangles 2, 6, 7, 8 and 4).   

5.94 5.95 5.96 5.97 5.98 5.99 6
-300

-225

-150

-75

0

75

150

225

300

Time S
V

 
(a) 

5.94 5.95 5.96 5.97 5.98 5.99 6
-8

-6

-4

-2

0

2

4

6

8

Time S

A

 
(b) 

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

 
(c) 

Fig. 8 – Simulation results for m = 0.53 (f=31.8 Hz) 
(a) Line voltage 
(b) Line current 
(c) Line voltage spectrum 

 



 
Figure 9 shows the line voltage waveform with the system 

operating with modulation index m=0.85. The figure also 
shows the current and the voltage line spectrum. The results 
are shown to be excellent for this modulation index as well. 
For this modulation index, the reference voltage goes 
through the 4th and 5th levels (triangles 5, 11, 12, 13, 15 and 
9). 
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Fig. 9 – Simulation results for m = 0.85 (f=51 Hz) 
(a) Line voltage 
(b) Line current 
(c) Line voltage spectrum 

 

V – CONCLUSION 

This paper proposed a Artificial Neural Network based 
Space Vector Pulse Width Modulation for multi-level 
inverters. The approach uses two ANN’s to do the two most 
complex parts of the SVPWM algorithm. While one ANN 
was used for triangle identification, the other was used to 
calculate the duty cycles of the nearest three vectors. The 
ANN was designed, trained, and tested and gave excellent 
results. The simulation for a Volts/Hertz induction motor 
drive using a five-level voltage-fed inverter was given. The 
line voltage, the line current and the line voltage spectrum 
for modulation indexes that involves transition between two 
levels were given and shown to be excellent. Experimental 
results of the proposed approach using DSP and/or /FPGA 
will be given in the near future.  
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