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Abstract – In this paper, compensation algorithms 

based on the instantaneous powers defined in the αβ0 
reference frame and in the phase mode (abc phases) are 
described.  The main objective is to clarify some 
concepts, regarding to instantaneous powers defined 
directly in the phase mode, hereafter called as the abc 
Theory, and the instantaneous real and imaginary powers 
of the pq Theory.  Compensation characteristics derived 
from each one of these set of power definitions, applied to 
a shunt active filter, are highlighted and simulation 
results are shown. 
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I. INTRODUCTION 

NSTANTANEOUS active and reactive power definitions, 
in a general sense, is of great interest in the field of Power 
Electronics.  A consistent base of instantaneous power 

definitions is fundamental to design controllers for active 
power line conditioners. 

The traditional active, reactive and apparent powers, 
defined in the frequency domain, and several other power 
quality indices that are derived from them, only serve for off-
line calculation and analysis of power quality issues.  In 
general, power definitions in the time domain offer a more 
robust basis for the use in controllers for power electronic 
devices, because they are also valid during transients. 

Active filters have been developed since 1983, when one 
of the first prototypes based on instantaneous power theory 
has been reported [1][2].  Based on that theory, known as the 
pq Theory, other control strategies for active power line 
conditioners were derived [3][4][5][6], including its 
extension for the use in three-phase four-wire systems [7]. 

When compared with other active filter controllers, the 
controllers based on the pq Theory have being criticized 
mainly due to the following concerns. 
1. Controllers based on the pq Theory need low-pass filters 

to separate control signals corresponding to the 
instantaneous real and imaginary powers into average and 
oscillating parts.  These low-pass filters introduce 
attenuation and phase shift in the Bode diagram, which 
results in time delays that degenerate the dynamic 
performance of the active filter; 

2. Controllers based on the pq Theory demand more 
calculations, since they need the use of Clark 
Transformation; 

3. Under distorted and/or unbalanced system voltages, the 
shunt active filter does not compensate properly the load 
currents and injects harmonic currents into the network, 
which are not originally present in the load current. 
The first argument above is really a problem, but not only 

for the pq Theory-based controllers.  The synchronous-
reference-frame-based controller also needs low-pass filters 
to separate the average portions of the direct (id) and 
quadrature (iq) current components [8][9].  Under non-
sinusoidal system voltages, the current minimization 
methods also need some kind of filtering to obtain an 
average load conductance to determine the instantaneous 
active portion of the load current [10][11][12][13]. 

The second argument above represents a cost that should 
be paid to gain flexibility to compensate independently the 
average or oscillating portion of the real (active) and/or 
imaginary (reactive) powers, and the instantaneous zero-
sequence power as well.  Without the use of Clarke 
Transformation, the complexity of other controllers that use 
directly the abc line currents and phase voltages increases 
quickly, when that flexibility is necessary [13].  For instance, 
the compensation of positive and negative-sequence 
components included in the real (active) and imaginary 
(reactive) power, separately from zero-sequence 
components, without the use of the pq Theory, becomes a 
drawback that needs to be overcome. 

Finally, the third argument contains a little of 
misinterpretation of the original control algorithm as 
proposed by Akagi et al. [1].  This algorithm compensates 
the load current in order to guarantee constant instantaneous 
real power drained from the network.  Therefore, under non-
sinusoidal voltage conditions, the compensated current 
cannot become sinusoidal [14]. 

Some specialists have the opinion that "the best control 
strategy" is the one that guarantees compensated currents 
drained from the network, that are proportional (they have 
the same waveforms) to the system voltages.  Under 
balanced harmonic-free system voltages, this strategy 
compensates the load current by forcing the compensated 
current to be sinusoidal and in phase with the system voltage.  
With other words, the compensated currents get the same 
waveform as the system voltages, suggesting that the 
network is "supplying a pure-resistive equivalent load". 

Summarizing, under non-sinusoidal and/or unbalanced 
system voltages, it is impossible to implement a shunt active 
filter that satisfies simultaneously: 

i) Constant real power drained from the network; 
ii) Sinusoidal compensated current; 
iii) Proportionality between the system voltage and the 
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compensated current. 
Thus, a choice has to be made to design the appropriate 
controller for the active power line conditioner that 
guarantees one of the three options listed above.  This paper 
clarifies some confusing points in the literature, regarding to 
instantaneous powers defined directly in the phase mode 
(abc instantaneous phase voltages and line currents), 
hereafter called as the abc Theory, and the real, imaginary 
and zero-sequence powers of the pq Theory.  Moreover, the 
compensation characteristics derived from each set of power 
definitions will be highlighted. 

II. CURRENT COMPENSATION ALGORITHMS BASED ON 
THE PQ THEORY 

The αβ0 transformation is an algebraic transformation of 
three-phase voltages and currents into a stationary reference 
frame, also known as Clarke Transformation.  The αβ0 
transformation of a three-phase voltage and its inverse are 
given by: 
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Similar equations hold on for the line currents ia, ib, ic.  
One advantage of applying the αβ0 transformation is the 
automatic separation of the zero-sequence components into 
the 0-axis (v0 and i0 variables). 

The instantaneous powers defined in the αβ0 reference 
frame are the real power p, the imaginary power q and the 
zero-sequence power p0.  They are given by: 
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The instantaneous active three-phase power can be 
written in terms of αβ0 components as described in equation 
(4). 

0003 ppivivivivivivp ccbbaa +=⋅+⋅+⋅=++= ββααφ  (4) 

This equation shows that the instantaneous active three-
phase power p3φ is always equal to the sum of the real power 
p and the zero-sequence power p0. 

On the other hand, if the α - β variables of the imaginary 
power q are replaced by their abc variables, the following 
equation can be written. 

[ ]cabbcaabc ivivivivivq ⋅+⋅+⋅=−=
3

1
βααβ  (5) 

Based on equation (3) it is possible to achieve the real 
currents (iαp, iβp).  Since the zero-sequence power is 
extracted from the real power, these real currents will not 
produce imaginary and / or zero-sequence power, 
independently of harmonics and / or unbalances that the 
system might have.  The real currents may be determined by 
using equation (6). 
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Transforming the real currents iαp and iβp into abc 
variables, the equation (7) is achieved. 
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where, 
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The same idea, based on equation (3), may be used to 
determine the imaginary currents (iαq, iβq).  The imaginary 
currents will produce imaginary power only, independently 
of harmonics and / or unbalances that the system might have.  
The imaginary currents may be achieved by using (9). 
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Transforming these imaginary currents in terms of abc-
variables, equation (10) is achieved. 
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Hereafter, the active and non-active currents, determined 
by means of minimization methods, are compared with the 
real and imaginary currents, respectively.  It is possible to 
realize that the imaginary currents are the same as the non-
active currents, independently of harmonics and/or 
unbalances that the system might have.  However, 
differences appear between the real and the active currents 
under the presence of zero-sequence unbalances. 

III. CURRENT COMPENSATION ALGORITHMS BASED ON 
INSTANTANEOUS ACTIVE AND NON-ACTIVE CURRENTS 

A control algorithm for shunt current compensation is 
introduced, which is based on the set of power definitions 
presented by Fryze, in the 30’s of the last century.  The 
reactive (non-active) current of three-phase system is that 



 

component of the load current which does not produce any 
active power; but increases the current amplitude and the 
losses in the conductors.  The non-active current can be 
determined through minimization methods.  For the 
formulation, a hypothetical load current ik, k = (a, b, c), is 
assumed to consist of an active portion ipk and a non-active 
portion iqk, that is, 
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The method involves minimizing the aggregate currents in 
the load, but under the constraint that the currents iqk do not 
generate any active power.  With this, the task consists of 
finding a minimum of: 
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The solution is well known for the calculation of the 
active currents [5][11][10], and is repeated here to compare 
with another method for finding directly non-active currents 
that are not found in the literature.  This problem means that 
load currents should be minimized by extracting a maximum 
of non-active current and can be solved by applying the 
Lagrange Multipliers Method, which leads to the following 
system of equations. 
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Solving (13) for λ  gives 
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By filling in (14) in (13), the instantaneous non-active 
currents are found to be: 
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Comparing (11) with (15), the active currents are given by: 
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Therefore, the restriction imposed in the minimization 
method forces the active current calculated in (16) and the 
currents ia, ib, ic of the generic load to produce the same 
instantaneous active three-phase power (p3φ), when 

multiplied by their respective phase voltages va, vb, vc, that is, 

pccpbbpaaccbbaa3 ivivivivivivp ++=++=φ  (17) 

Hence, from the energy transportation point of view, they 
are fully equivalent.  The difference is that the active 
currents ipa, ipb, ipc (minimized currents) do not generate any 
instantaneous non-active (imaginary) power and have 
smaller rms values. 

When the active currents achieved by equation (16) are 
compared with the real currents determined by equation (7), 
the only situation in which they will produce the same results 
is when the sum of the line currents of the load, as well as 
the sum of the phase voltages at the point of common 
coupling, is equal to zero.  Otherwise, different results are 
achieved. 

As explained, the real currents produce only real power.  
Contrarily, the active currents in (16) can produce real 
power, as well as zero-sequence power.  Another interesting 
aspect is that, depending on the unbalances in the system 
voltages, the compensated currents drained from the network 
may become unbalanced and contain zero-sequence 
components that are not originally present in the load 
currents, which constitutes in a serious drawback. 

A new methodology is proposed here to achieve the non-
active currents.  It is based on the concepts of the imaginary 
power, extracted from the pq Theory [1], together with the 
Lagrange Multipliers method.  Therefore the task consists of 
finding a minimum of: 
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By the same way, this problem can be solved applying the 
Lagrange Multipliers Method, which leads to the following 
system of equations. 



















=







































0
2
2
2

0
3200
3020
3002

c

b

a

pc

pb

pa

abcabc

ab

ca

bc

i
i
i

i
i
i

vvv
v
v
v

λ

 (19) 

Solving (19) for λ  gives 
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By filling in (20) in (19), the instantaneous active currents 
are found to be: 
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Comparing (11) with (21) one sees that the non-active 
currents are given by: 
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which is the same as the imaginary currents defined in (10), 
but can present different results from that defined in (15), in 
the presence of zero-sequence components.  Thus, although 
the same symbol is used, the non-active currents achieved in 
(15) cannot be confused with that from (22).  The restriction 
imposed in the minimization method forces the non-active 
currents calculated in (22) and the currents ia, ib, ic of the 
generic load to produce the same imaginary power, as 
defined in the pq Theory, that is, 

( ) ( ) 33 qcabqbcaqabccabbcaabc ivivivivivivq ++=++=  (23) 

Note that the non-active currents iqa, iqb, iqc do not generate 
any instantaneous active power. 

IV. SIMULATION RESULTS 

Three cases have been simulated in the MATLAB 
simulator in order to verify that, in the presence of zero-
sequence components, the compensation method derived 
from (15) presents some drawbacks. 

Fig. 1 shows the basic principle of shunt current 
compensation.  Two control strategies can be derived from 
the previous discussions about current decompositions.  In 
the first case, the control algorithm is based in the pq Theory 
and the shunt compensator provides the imaginary currents 
of the load, calculated as in (10).  Therefore, the 
compensated currents drained from the network are given by 
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In the second case, the control algorithm is based on the 
decomposition method into active and non-active currents.  
In this case, the active currents are calculated as given in 
(16) and the shunt compensator provides the non-active 
currents, calculated as given in (15).  Therefore, the 
compensated currents drained from the network becomes 
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The first case describes the performance of equations (24) 
and (25) in the presence of a zero-sequence component in the 
load current only.  Next, a case comprising a zero-sequence 
component in the system voltage only is shown.  Finally, a 
test case with zero-sequence components simultaneously in 
the system voltage and in the load current is presented.  The 
total simulation time for each case is equal to 40ms. 

Fig. 2 shows the considered system voltages, which are 
balanced and composed only from the fundamental positive-
sequence component.  The load currents contain a 
fundamental positive-sequence component plus a zero-

sequence component, also at the fundamental frequency. It 
may be observed, that the positive-sequence component of 
the load current is lagged by 60 degrees from the system 
voltage, and the zero-sequence component is in phase with 
the voltage. 

Fig. 3 shows the compensated currents drained from the 
network when the shunt compensator is providing the 
imaginary current of the load.  In other words, the 
compensated currents are given as in (24). It may be verified 
that the compensated currents present the same unbalance as 
that of the load currents.  This means that the zero-sequence 
currents are not compensated, as it was expected.  Since the 
imaginary power of the load is being provided by the shunt 
compensator, the compensated current contains a smaller 
positive-sequence component that is in phase with that of the 
system voltage. 

Fig. 4 shows the results when the active and non-active 
current decomposition method is applied.  The compensated 
currents become balanced, since the presence of a zero-
sequence component in the current only does not produce 
any zero-sequence power and do not contribute to the active 
currents given by (25).  In other words, when there is an 
unbalance due to zero-sequence components in the load 
current only, in the second compensation method the neutral 
current of the load is treated as non-active current and is 
compensated by the shunt compensator. 

The system voltages and load currents considered in the 
second simulation case is shown in Fig. 5, where the load 
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Fig. 1.  Principle of shunt current compensation 
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Fig. 2.  System voltages and load currents with zero-sequence 

unbalance 



 

currents are balanced and the system voltage contains a zero-
sequence component at the fundamental frequency.  As 
expected, the zero-sequence components in the voltage do 
not affect the calculation of the imaginary current in the first 
control strategy, and the compensated currents, given by 
(24), continue being balanced, but now in phase with the 
voltages and present smaller rms values, if compared with 
those of the load current, as it may be observed in Fig. 6. 

Contrarily, the second compensation method is influenced 
by zero-sequence voltages and inserts an undesirable zero-
sequence component in the compensated current, as can be 
seen in Fig. 7, not present in the original load current. 

Finally, the third simulation case considers the presence 
of zero-sequence components, simultaneously in the system 
voltage and load current.  Fig. 8 shows the system voltage 
with zero-sequence unbalance at the fundamental frequency, 
whereas the load current is unbalanced by a 2nd harmonic. 

The results for both control strategies are shown in Fig. 9 
and Fig. 10.  Again, the first method presents better 
performance, since it does not alter the zero-sequence 
components in the load current, whereas the second method 
achieves compensated currents (active currents) that are 
modified by the presence of zero-sequence components in 
the system voltage. 
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Fig. 3.  Compensated currents when the imaginary current of the load is 

being compensated (case #1) 
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Fig. 4.  Compensated currents comprising only the active current of the 

load (case #1) 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-2

0

2

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-1

0

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-2

0

2

ia ib ic

va vb vc

vzero

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-2

0

2

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-1

0

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-2

0

2

ia ib ic

va vb vc

vzero

 
Fig. 5.  System voltages with zero-sequence unbalance and load currents 
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Fig. 6.  Compensated currents when the imaginary current of the load is 

being compensated (case #2) 
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Fig. 7.  Compensated currents comprising only the active current of the 
load (case #2) 
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Fig. 8.  System voltages with zero-sequence unbalance and load currents 

with zero-sequence unbalance at second harmonic 
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Fig. 9.  Compensated currents when the imaginary current of the load is 

compensated (case #3) 
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Fig. 10.  Compensated currents comprising only the active current of 
the load (case #3) 

V. CONCLUSIONS 

Compensation algorithms based on the pq Theory and 
abc Theory were presented, under the presence of zero-
sequence components.  The controller based on the active 
currents does not treat coherently the zero-sequence 
components in the load current, since it is compensated 
(treated as non-active currents) or not (treated as active 
currents), depending on the absence or presence of zero-
sequence components in the system voltages. 

To overcome such problem, the use of the real and 
imaginary currents is imperative as determined in the 
approach based on the pq Theory, and additionally to take 
the decision if the zero-sequence currents of the load should 
or should not be compensated separately and completely, as 
already proposed in previous works, listed in the reference, 
dealing with shunt active filters for three-phase four-wire 
systems. 
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