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Abstract - This paper highlights an adaptive 
weighted instrumental variable (WIV) algorithm for on-
line system identification by applying numerically robust 
orthogonal Householder transformations to control 
design purpose. Thus, the speed DC servomotor 
parameters estimation on the basis of data obtained from 
closed loop experiments, without modeling the noise 
disturbing the system, by direct, indirect and joint 
input/output methods is presented. The approach for the 
selection and usage of instruments proposed shows that 
the algorithm obtains acceptable results : the choice of 
instruments has desirable statistical properties and the 
instruments produce asymptotically unbiased estimates.  
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1. INTRODUCTION 
  

The problem of parametric identification of a linear 
system on the basis of data obtained from closed loop 
experiments has received considerable attention in the 
literature [9][12]. Often in the identification system area, a 
common concern and important problem is that the input and 
output measurements may be contaminated by noise. Another 
source of random noise in the measured data is that the 
system to be identified is also driven by disturbance at some 
point. It is a common problem in closed loop identification 
where many of the identification methods, that work well in 
open loop, fail when applied directly to measured input-
output data[6][7]. The reason is the nonzero correlation 
between the input and the unmeasured output noise that is 
inevitable in adaptive control schemes. For low levels of 
noise by using least squares (LS) method, for example, may 
produce excellent estimates of the system parameters. 
However, with larger levels of noise may require some 
modifications in this method to overcoming the inconsistency 
problem induced by noise acting on the system. Many kinds 
of modified least square method have been developed such as 
the generalized least square (GLS) method, the extended least 
square (ELS) method and prediction error (PE) method, 
where the noise model needs to be estimated at same time as 
the system parameters are being estimated. Thus the results 
of these methods are inevitably dependent upon the accuracy 
of the noise model and some constraint conditions on it must 
be satisfied in these methods to obtain consistent parameter 

estimates[2][5]. In general, however, it is very difficult to 
model the noise accurately and it is also hard to know a priori 
whether the noise model satisfies these conditions. To 
overcoming the bias problem without modeling the noise, the 
instrumental variables (IV) method can be developed. It 
provides a promising way to obtain consistent estimates 
which have certain optimal properties by choosing proper 
instrument variables [1][2]. However, it seems at the initial 
stage of the development that there has not been any general 
and efficient technique to choose suitable instrument 
variables for the identification of linear systems.  

Among the various efficiency issues, characterizing the 
performance of an algorithm, numerical and identification 
robustness are of great importance, this is, an algorithm with 
good numerical error properties, do not produce bias in 
estimates preserving good convergence properties when the 
input-output data are contaminated not only normal noise but 
also a small number of large errors that are often unavoidable 
and very difficult to pick them out before processing the data 
and tracking parameters that vary with time.  

This paper presents a weighted instrumental variable 
(WIV) algorithm based on orthogonal transformation via QR 
factorization to obtain the properties below presented. 
Simulation and experiments results show the efficiency of 
algorithm with the instrument variables proposed compared 
with some non-robust and robust algorithms already 
developed [8] and its application to closed loop 
identification. 
 

2. PROBLEM FORMULATION 
      

 Consider the ARX structure  
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where u(t) and y(t) are the system input and output, 

respectively. tξ  is an unknown noise disturbing the system. 

Denote : 
 

( )ncnb
T c.,..,c,b.,..,b 11=θ                           (2) 

( )nattnbtt
T
t yyuu −−−− −−= .,..,,.,.., 11a             (3) 

 
Then the system eqn. 1 can be expressed by following 
vectorial form: 
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Ξ+= θAY                                               (4) 

 
where 
 

[ ]n1
T .,.., yyY =                                        (5) 

[ ]p
T aaA .,..,1=                                         (6) 

[ ]n1
T .,.., ξξΞ =                                         (7) 

with p equal the dimension of the problem, i.e. ncnb + and 

n is the number of samples. 
We seek to obtain a consistent parameter estimation for 

the parameter θ  from the available observed data{ }n
tt uy 1,  

so that the error te  between the measured output of the 

system yt and the output of the associated model tŷ  is 

minimum in the least square sense, this is, the vector θ̂  that 
solves 

 
2

2
min bA −θ                                            (8) 

 
 

3. DERIVATION OF THE ALGORITHM 
 

Our algorithm uses orthogonal matrices to solve the least 
square problem in by QR factorization. The usage of 
orthogonal transformation for solving least squares problems 
is well established [10]. The usage of orthogonal 
transformation matrices is preferred because they are easy to 
invert, giving great accuracy and speed computationally, they 
are always perfectly conditioned and backward error analysis 
is simplified considerably when orthogonal transformations 
are used. The reason for this is that spectral and Euclidean 
norms, which are must commonly used in such analysis, are 
invariant under orthogonal transformations [11].  
 

3.1 Instrumental Variable Method 
 

The solution of the IV method is that a Z matrix is defined 
so that it is uncorrelated with the noise and correlated with 
the input and output. Therefore the following conditions must 
be satisfied 
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where G is a nonsingular matrix. The eqn.(9)-(10) guarantee 
asymptotically unbiased parameter estimates. 

In this paper, the set of instruments is chosen to be the 
delayed measurable inputs, i.e., the t-th row of the Z matrix is 
given by 

 

=tz [ pttt uuu −−− ...21 ]                    (11) 

 
where p is equal the dimension of the problem, i.e. ncnb + . 

 
Proof of consistency 

 
The standard proof of consistency for the IV estimator rely 

upon the uncorrelated of the sequence { }tξ . We now show 

that the estimates obtained by use of the proposed 
instruments in eqn.(11) is consistent when the sequence  

{ }tξ  is correlated. 

Consider the following stable model 
 

tttt ycuby ξ+−= −− 1111                              (12) 

 

where ut, yt and tξ  are the system input, output and unknown 

correlated noise disturbing the system which is assumed 
statistically independent of ut, respectively.  

The Z, A and Y matrix are given by 
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The corresponding IV estimator is  
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and 
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Stability of the system imply that the summations in eqn.(14) 
converge in probability to their expected values[6], i.e., 
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where ( ) [ ]ταβ βατ −= ttER . 

From Frechet’s theorem[6] 
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Developing the inverse in eqn.(16), we have 
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where ( ) ( ) ( ) ( )1R0R0R1R uyuuuyuu −−=∆ . 
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From eqn.(12), multiplying for 1tu −  e 2tu − , result 
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and 
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Substituting eqn.(22)-(23) into eqn.(19), we have 
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Thus, with the proposed instruments, produce 

asymptotically unbiased estimates, this is, 1̂b  and 1̂c  

converge in probability to the true parameters b1 and c1 and 
the estimator obtained is consistent. The proof was with two 
parameters for simplicity of analysis but can be extended to 
any one with similar result. 
 

3.2 On-line Identification Algorithm (WIV) 
 

In many applications, the structure of the model may be 
known, but its parameters may be known and changing with 
time because of change in operation conditions, aging of 
equipment, etc., rendering off-line parameter estimation 
techniques ineffective. Thus, this work was motivated by 
developing of an algorithm that provide frequent estimates of 
the parameters by properly processing the I/O data on-line 
and to adapt itself to possible variation of the parameters with 
time. 

The interest problem may be couched as 
 

YZAZ TT =θ                                          (25) 

 

where pn×Z , pn ×A , 1p×θ  and 1n×Y  are the instrumental 

variable matrix, data matrix, parameters vector and output 
vector, respectively.  

The eqn.(25) can be rewritten as 
 

WYZWAZ TT =θ                                  (26) 

 

where nn×W  and ( )1.,..,,diag 2n1n
n

−−= λλW , with 

10 << λ . The scalar λ  is known as the forgetting factor 

and it is used to place less weight on past data. 
Developing both sides in eqn.(26), as Z, W, A and Y are 

known, result 
 

bS =θ                                                     (27) 

 

where WAZS T
pp =× and WYZb T

1p =× . It is worth 

emphasizing that the resulting order of the S matrix and of 
the b vector are lower than order of the A matrix and of the Y 
vector, because p is equal to the number of parameters that 
will be estimated, implying less computational effort and, 
consequently, greater speed to solution of θ . 

Generically, the Z, W, A matrices and the Y vector are 
given by 
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Hence, WAZS T
pp =×  result 
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and WYZb T
1p =× is 
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From eqn.(28)-(29), we can observe that the elements of 

the S matrix and of the b vector are summations that depend 
of the actual and immediately former values, based on the 
dimension of the problem, of the input and output measures. 
This imply in generating, directly, i.e., in each sample, S and 
b, without need of a priori batch matritial operations, as in 
eqn.(26), with advantage that the order problem is lower to 
application of the QR factorization. 

Thus, the problem may be couched as that of finding the 
solution of 
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Applying QR factorization via House-holder orthogonal 

transformations, we have 
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bQSQ TTîmizemin −θ

θ
                        (31) 

 



  
 
 

and 
 

2

2
dR −θ

θ̂
imizemin                              (32) 

 

where pp×Q  is an orthogonal matrix, pp×R is an upper 

triangular matrix and 1×pd  is a resulting vector. Hence, the 

minimum point of eqn.(30) may be found by solving 

dR =θ̂ by back substitution. The algorithm receive an 

initial batch data to initial estimation and the updating is 
obtained for simple acquisition of input and output data and 
insert it into summations of the matrix S and of the vector b, 
this is, in the k-th sample, we have 
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4. APPROACHES TO CLOSED LOOP 

IDENTIFICATION 
 

  
In this paper, the proposed instrumental variable 

algorithm WIV will be applied to identification by direct 
approach, indirect approach and two stages method belong 
to joint input-output approach [ 6, 7, 12,14,15,16]. We will 
illustrate the applicability of the algorithm to identify 
sufficiently accuracy models, which represent the dynamic 
behavior of the plant in closed loop, important in 
identification for control, considering it as an alternative 
adaptive algorithm to closed loop identification.   

 
4. RESULTS 

 
In this section, we present an experimental application to 

show the applicability of the algorithm to closed loop 
identification as a basis to identification for control. 

 
4.1 Experimental results 

 
Our experiment is to identify speed DC servomechanism 

of the our control and automation laboratory. This 
identification process is divided in three steps: 1) Open loop 
identification as shown on Fig. 1, 2) Closed loop 
identification utilizing the direct method, shown on Fig. 2, 3) 
Closed loop identification utilizing the indirect method, 
shown on Fig. 3. 

The both 2 and 3 steps we use the proportional controller 
of Kp = 1, to illustrate the application of the algorithm to 
closed loop identification and we are concerned only with the 
identified model analysis. 
 

 
Figure 1. Step 1 : Open loop identification 

 

 
Figure 2. Closed loop identification by direct method. 

 

 
Figure 3. Closed loop identification by indirect method.  

To this experiment λ  is taken as 0.95, 25 pairs of input-

output data were utilized to initial estimation, the sample 
period T is taken 10ms and the total of points is 600. The 
input and reference signals are taken as the voltage of 4.0V. 
The Tab. 1 shows the obtained comparative results of the 
estimates of parameters in open loop and by closed loop 
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identification methods presented. 
 

Parameters Open loop Direct method Indirect 
method 

a1 -0.370435 -0.295373 -0.365008 
a0 -0.570980 -0.579290 -0.548080 
b1 0.082360 0.094971 0.082336 
b0 -0.030469 -0.010481 -0.023247 

Table 1. Identified parameters using the proposed algorithm to open loop 
and closed loop (direct and indirect methods) identification. 

 
Considering the open loop results as true parameters, we 

can note that the indirect method was better. This because the 
input data to algorithm consist the reference signal which is 
statistically independent of the noise disturbing the system. 
However, it is important emphasizing the effect of the 
nonlinearity from power amplifier circuit and the noise 
signals from the acquisition data system. 

The Fig. 4 shows the estimated and real curves of the three 
cases. 
The results clearly show the accuracy of the estimation by 
direct and indirect methods, this is, the real and estimated 
curves are practically equals and, thus, it shows the 
applicability of the algorithm to closed loop identification in 
the sense that the identified model represent the dynamic 
behavior of the plant in closed loop which is important in 
identification for control. 

 
Figure 4. Output estimation to the three cases above mentioned 

with the real curve in red and the estimated curve in blue. 
 
 

5. FINAL REMARKS 
 

An adaptive instrumental variable algorithm has been 
developed for system identification in this paper. A choice of 
instruments was proposed and the QR factorization by 
Householder orthogonal transformation was implemented. 
The proof of consistency of the proposed Weighted 
Instrumental Variable (WIV) method has been established 
and simulation results show a robust characteristic as 
accurate unbiased parameter estimation, fast convergence 
speed and its efficiency in dealing with outliers contained in 
input and output observations. The algorithm was applied to 
open loop and closed loop (direct and indirect methods) 
identification to extend its applicability to control schemes 
where the controller design is done iteratively based on 
identified model, this is, it is also applied to identification for 

control. 
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