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Abstract – This paper discusses the design and analysis 
of digital Phase Locked Loop (PLL) algorithms for power 
electronics applications. The design is based on a stationary 
abc frame model using instantaneous active or non-active 
power definitions as the PLL reference. Both three-phase 
and single-phase structures are considered. Since the 
fundamental waveform and frequency tracking is of great 
interest for utility connected devices, the PLL steady state 
and transient dynamic performances are analyzed under 
different supply disturbing conditions. Simulation results 
validate the models and experimental results using a DSP 
board system confirm the expectations.  
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I.   INTRODUCTION 
 

Accurate and fast detection of the utility mains frequency 
and fundamental waveforms are of great interest for power 
systems control and power electronics applications. The 
controllers of most electronic equipments, such as power 
systems relays, active power filters, uninterruptible power 
supplies (UPS), controlled rectifiers, FACTS devices, etc, 
must be synchronized with the fundamental frequency of the 
utility voltage. For this reason, different algorithms and 
circuits have been proposed in the last decades in order to 
provide the necessary information [1-4]. Fast dynamic 
response, precision in steady state and robustness under the 
presence of harmonics or transients have been the most 
important issues to deal with. 

The methods of frequency identification or 
synchronization are usually derived from zero crossing 
techniques, adaptive discrete Fourier transform, 
demodulation techniques and phase-locked loop (PLL) 
systems [1,2]. Each of these methods presents advantages 
and disadvantages, depending on the final application, utility 
conditions and the characteristics of the digital system they 
are implemented.  

Originally the PLL systems were derived from the classical 
feedback control structure using a phase detector, a voltage 
controlled oscillator (VCO), a low-pass filter and a 
comparator. Their use in a vast sort of different applications 
showed useful results in electronic devices, power system 
control and communications networks [2]. However, the 

recent and increasing use of digitally processed systems 
have pointed to the necessity of an improved digital PLL 
design, best suited for this new context. In the case of power 
system control, the most promising approaches have been 
derived from the instantaneous power definitions [5,6,8]. 

Some of the recent works were based on synchronous 
frame (dq) transformation, and present quite useful results, 
although at the expense of increased complexity due to such 
transformation [3,4,7]. Other interesting strategies use 
stationary frames (αβ or abc) [5,6] to model the three-phase 
PLL system and are also based on instantaneous power 
references. 

This paper discusses a methodology to design and 
analyze digital PLL structures for both, three or single-phase 
applications. The PLL is based on a stationary abc frame 
model and instantaneous active or non-active power 
definitions. Since the precision and dynamic behavior of the 
PLL is extremely dependent on its proportional-integral (PI) 
regulator, common to all conventional models, the design and 
practical aspects of implementing such regulator are also 
discussed. Simulation results validate the model under 
different conditions and experimental results using a Digital 
Signal Processor (DSP) confirm the expectations. 

 
II.  THREE-PHASE POWER SYSTEM PLL 

 

The interest on a three-phase power system PLL algorithm 
can easily be explained since it does not need any kind of 
low-pass filter. The resulting lower order structure has an 
improved dynamic response compared to the traditional PLL 
circuits using VCO and phase detectors. 

The power based PLL structure is described in Fig. 01 and 
uses a proportional-integral (PI) controller to track the system 
angular frequency (ω =2πf) and a digital integrator to 
transform the evaluated angular frequency (ω) into the 
angular phase function θ (t)= ω t. Since the interest is to 
develop a digital PLL, a sampling delay function may be 
added to the PLL model in order to represent the sampling 
process (sampling time  Ts). A feed-forward signal (ωff =2π fn) 
is also included to improve the initial dynamic performance of 
the PLL system, where fn is the utility nominal frequency. 

 

A. Stationary abc Frame PLL Model 
 

The approach is based on using phase or line derived 
voltages as the PLL input signals [5], represented by vxa
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Fig. 01 – Generalized Three-Phase Power System PLL Model. 

 

and vxc in Fig.01. Fictitious feedback current signals are 
synthesized from the final evaluated angular frequency (ω) (or 
phase angle function θ=ω.t) and used to calculate a fictitious 
instantaneous active or non-active power component 
symbolically represented by (pq’abc). If necessary, a 
fundamental waveform generation block could use θ to 
emulate the fundamental positive sequence components of 
the input voltages. 

 
B. Fictitious Active (p-PLL) and Non-Active (q-PLL) 

Instantaneous Power References 
 

In terms of αβ components, as discussed in [6], the three-
phase PLL reference could be based on instantaneous active 
or non-active power components.  

However, using directly the stationary frame abc variables, 
equations (1) and (2) can be used [10], depending on which 
reference is selected  (active or non-active power), 
respectively: 
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Since the fictitious feedback currents are mathematically 
imposed to be sinusoidal and balanced (they always sum up 
to zero, 0''' =++ cba iii ), the above fictitious powers could also 
be calculated, even in the presence of neutral wire (three-
phase four wire system), thus: 
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The filtering and controlling capabilities of the PI regulator 
will try to ensure that the sinusoidal and balanced fictitious 
currents are mathematically in phase or orthogonal to the 
corresponding measured voltages, according to the suitable 
features originated from the instantaneous active and non-
active power definitions [11]. 

Therefore, depending on the available number of voltage 
sensors and the information intended to be extracted from the 
PLL, it is possible to choose the instantaneous power 
reference from (1-4). Notice that vxa and vxc have different 

values depending on choosing active or non-active power 
reference. 

Considering the system’s frequency identification as the 
most important task, the reference choice does not matter. 
However, for some applications, it could be interesting to 
track the utility phase-angle function (θ ) in order to generate 
a fundamental waveform reference in-phase or orthogonal to 
the mains voltages. Such strategies are used, for example, in 
active controlled rectifiers, shunt and series active filters, 
UPS, distributed power generation systems, etc.  In these 
cases, choosing the reference depends on the desired control 
strategies and goals.  

If the instantaneous power reference is set to zero (pq* 
=0) and the control error signal is defined by the difference 
(pqerror = pq* ±  pqabc), it is worth to comment on the expected 
results concerning the PLL performance [6]. In order to cancel 
the instantaneous power error, the fictitious power must also 
converge to zero. If the active power (pabc) were defined as 
reference, the p-PLL will force the fictitious feedback currents 
to be orthogonal to the measured voltages and the resulting 
orthogonality (±90º), depends on the sign used to calculate 
the error: current advanced (+90º) if negative sign (-pabc) and 
delayed (-90º) if positive (+pabc) sign were chosen. 

 On the other hand, if the non-active power (qabc) were 
used as reference, the q-PLL will force the fictitious currents 
to be in-phase (0º) or in opposite (180º) to the measured 
voltages, respectively if negative or positive sign were 
attributed for (qabc). 

If, e.g., instantaneous active power reference with positive 
sign were defined and the evaluated angular frequency (ω) 
closely tracks the measured voltage frequency, the fictitious 
phase currents are perfectly orthogonal lagging (-90º) the 
corresponding fundamental phase voltages. Nevertheless, if 
for any reason the utility voltage frequency deviates from its 
nominal value (ωff), the PI regulator will set its output to 
correct the final PLL angular frequency (ω) so that the 
orthogonality between the fictitious currents and original 
phase voltages will be guaranteed. 

Thus, using simple trigonometric manipulation, adding or 
subtracting a fixed known phase angle φ, which could be 
either (+/-90º) or (180º) to the calculated PLL phase function 
θ(t), the fundamental voltage waveforms could be 
synthesized, e.g., using the resulting angle as the argument to 
a sinusoidal function table or polynomial approximation to 
speed-up the fictitious current calculation.  

 
C. Design Methodology 

 

As mentioned before, one of the most important points on 
designing the digital PLL is the correct tuning of the 
proportional and integral PI controller gains, which are 
closely related to its precision and dynamic behavior.  

Although several papers have discussed this problem 
[3,7,8], there is great interest in a methodology capable of 
providing the best tuning for both, three and single-phase 
application. This paper also considers the question of tuning 
the PI regulator’s gains as a classical control problem. 

Assuming that the usual sampling frequencies are 



 
 

 

considerable higher than the systems bandwidth, the non-
linear feedback functions of Fig.01 can be simplified to the 
linear structure of Fig.02. This is possible because small 
variations of θ yield sin (∆θ)≅∆θ [3,4]. 
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Fig. 02 – Simplified Three-Phase Power System PLL Model. 

 

Given that the feed-forward term (ωff) is just used for the 
initialization procedure, there is no need to consider it in the 
transfer functions. 

Thus, assuming that the digital integrator and the sampling 
delay function represent the plant to be regulated by the PI 
controller, its transfer function can be expressed as following: 
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The resulting open and close-loop transfer functions, 
including the controller and the plant, become respectively: 
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The resulting third-order system should be ideally 
controlled with fast time response, good dynamic 
performance, and small steady-state error, besides it should 
be robust under transients and noisy input. However, in 
practical applications this tuning is a very hard task, and the 
designer may choose to focus on the most important features, 
for each particular project. 

Since no general methodology is capable of defining the 
optimum control gains to achieve the ideal PLL performance, 
different tuning methods can be applied. 

The symmetrical optimum method used in [3,5,9] might be 
an efficient alternative for this problem. Such method defines 
the controller gains, so that the amplitude and phase 
frequency responses of (7) are symmetrically related to the 
open-loop crossover frequency (ωc), which is centered at the 
geometric mean of the pass-band frequencies of (7). 
According to this method, the proportional and integral gains 
can be associated with the crossover frequency by means of 
a normalizing factor (α) and calculated by equations (8): 
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α

ω 2
c
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Equation (9) associates the factor α with the theoretical 
damping factor [9], which defines the damping or filtering 
capabilities and the dynamic performance of the PLL model. 

 
1.2 += ςα .         (9) 

 

As it could be graphically verified [3], the bandwidth ωc 

decreases exponentially with the linear increasing of the 
damping or α factor. In other words, as lower this factor is, as 
faster the PLL dynamics will be, but poorer will be its filtering 
capability, thus reducing the PLL robustness under distorted 
utility conditions. 

Under the assumption of small sampling delays, the third 
order system (7) could be reduced to the canonical form of 
second order system (10), without affecting the control 
capabilities. Such consideration is possible since the pole 
relative to the sampling delay, placed in the left side of the s-
plane, is quite far from the origin and the other two dominant 
poles. Thus 
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and the gains of the PI regulator could be designed as: 
 

nPK ξω2= ,      2
nIK ω= .      (11) 

 

where ωn is the closed-loop crossover frequency and ξ is the 
damping factor. 
 
D. Stability Analysis and Dynamic Performance 
 

Considering a particular design with closed-loop 
crossover frequency (ωn) defined as 45 rad/s and ξ=0.707, 
Fig. 03 shows the frequency response of the closed-loop 
system using the second order method (10-11), where KP=64 
and KI=2,025. The step response in this case is depicted in 
Fig. 04 and confirms that the system is stable. 

 Fig. 05 and 06 illustrate, respectively, the open-loop and 
closed-loop response if the design were based on the 
symmetrical optimum method (7-8). The open-loop crossover 
frequency (ωc) was defined as 64 rad/s and the sampling 
frequency as 12kHz, then KP=64 and KI=22. 

For both methods, if the closed-loop bandwidth were 
decreased, the convergence of the step response would be 
slower, however the PLL rejection to input noise and 
distortions would be increased. For practical applications, an 
interesting approach could be initialize the PLL with an 
extended bandwidth and then decrease it to the desired one. 

 
III.  SINGLE-PHASE POWER SYSTEM PLL 

 

Since it could be necessary to track the frequency in 
single-phase applications, it is suited to modify the previous 
structure in order to ensure that it works in such situations. 

All the discussions for the three-phase PLL are still valid. 
However in this case, the very convenient characteristic of 
automatically rendering constant active or non-active 
fictitious power is lost. 

To overcome this problem, a digitally designed adaptative 
moving average window is used as a fast dynamic response 
low-pass filter and applied to the error signal (perror), as 
depicted in the diagram of Fig. 07. 

 



 
 

 

 
Fig. 03- Bode Diagram of the 3φ PLL using second  

order method – closed-loop. 
 

 
Fig. 04- Step Response of the 3φ PLL using second order method. 

 

 
Fig. 05- Bode Diagram of the 3φ PLL using symmetrical 

optimum method – open-loop. 
 

 
Fig. 06- Bode Diagram of the 3φ PLL using symmetrical 

optimum method – closed-loop. 
 

 
A. Stationary Single Phase PLL Model 

 

Now, the approach is based on a single-phase voltage (v) 
measuring and the fictitious feedback current (i’) to define the 
fictitious active power reference as following: 

 

'.ivp =′ .                              (12) 
 

So, the calculated power error is applied to the moving 
average filter in order to extract its mean value, which is 
forced  to  be  zero  in  the  same way as  in  the  three-phase 
p-PLL. Thus the fictitious current is forced to be orthogonal 
to the input measured voltage.  
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Fig. 07 – Generalized Single-Phase Power System PLL Model. 
 
B. Adaptative Moving Average Filter 
 

The moving average filter is designed in such a way to 
extract from the instantaneous oscillatory power (12), its 
constant mean value as in (13): 
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where T is the input fundamental period, which is dependent 
of the instantaneous evaluated angular frequency. 

Considering the filter impulse response as h(t) and using 
the following convolution, its output should be: 
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Comparing (13) and (14), it is possible to notice that h(t) is 
a rectangular pulse defined between 0 and T, with amplitude 
equal to 1/T: 
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where u(t) is the unit step function. 
Thus, the moving average filter can be represented in the 

Laplace domain as: 
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Using Taylor series, the non-linear filter transfer function 

(16) can be simplified resulting the linear approximation as in 
(17). And since the values of the terms of order superior than 
1 are insignificantly small at 60Hz, they can be neglected, 
rendering an almost constant and unitary gain: 
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In order to ensure that the number of samples in the 
fundamental window is always constant, this strategy needs 
to alter the window size or the sampling frequency according 
to the grid frequency variations. Such task can be done e.g., 
by manipulating the evaluated real angular frequency or 
taking into account the number of samples between two 
consecutive zero crossing of the generated (sinusoidal) 
fictitious current. 



 
 

 

Hence, the single-phase PLL model leads to the same 
expressions of the three-phase case and the plant, open-loop 
and close-loop transfer functions yield identical. In addition, 
the simplified single-phase structure is equal to that 
presented in Fig. 02. Thus, all the previously discussed 
methodology of tuning the PI regulator gains is valid for both 
structures, as well as the stability and dynamic analysis. 

 
IV.  SIMULATION RESULTS 

 

The most important problems affecting the PLL 
performance may be observed if the input signals are 
corrupted by harmonics, high-frequency noise, frequency 
variations, line notching and unbalances. Since these kinds of 
disturbing become more and more common in the supply 
networks, it is important to evaluate the PLL performance 
under such conditions. The simulations were carried out 
using the software PSIM/SIMCAD and C++ routines. 

With the parameters adjusted according the symmetrical 
optimum method, the three-phase p-PLL was submitted to the 
following two simulation cases. The sampling frequency is 
12kHz and ωc was set to 64 rad/s. Fig. 08 shows that even 
with 10% of harmonics and 5% of unbalance in the input 
three-phase voltages, the PLL is able to track the input 
frequency and phase angle (θ) in such a way that the 
fictitious currents are orthogonal (+90º) to the inputs. If the 
input fundamental waveforms are required, a waveform 
generator using (θ-90º) as argument can be used. 

Then, adjusting the single phase PLL accordingly (10-11), 
with ωn = 45 rad/s and ξ =0.707, Fig. 09 illustrates its good 
filtering and tracking performance. 

 

 

Fig. 08- 3φ PLL with unbalanced and distorted input (h=11,10%). 

 

 
Fig. 09- 1φ PLL with distorted input (h=11,10%). 

V.  DIGITAL IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

 

While simulating or implementing in floating-point DSP, 
the PLL algorithms usually present good performance and are 
relatively simple to implement. However, if fixed-point 
microcontrollers or DSP were used, additional attention must 
be directed to ensure the desired performance. 

The most important points are probably related to the 
saturation routines and anti wind-up strategies. Since the 
expected angular frequency is previously known (ωff), it is 
recommended to limit the PI output (ω) within an appropriate 
range (a percentage of the nominal angular frequency, e.g., 
5%, 10%, etc.). This may avoid instabilities or even that the 
system converges to an undesired point. 

Hence, in order to validate the previous simulations and 
discussion, next figures present preliminary results of the 
three-phase power system p-PLL, implemented using a 16 bits 
fixed-point DSP (ADMC401). The PI regulator gains were 
designed based on (10-11) and the sampling frequency was 
set to 12kHz. 

Using ωn = 23.63 rad/s and ξ =0.707 (KP=32, KI=5,122) Fig. 
10 shows one of the input phase voltages and its 
corresponding fictitious current (upper traces), which follows 
the phase angle (θ) generated by the PLL tracking system 
(lower traces) and is advanced (+90º) to the input. 

Fig. 11 and 12 present the input phase voltage (lower 
trace), its fundamental waveform (upper trace - generated 
using a sine function with [θ - 90º] as argument) and the PI 
input error (around zero). Note how the dynamic response 
can be improved changing the closed-loop bandwidth (ωn) 
from 23.63 rad/s to 90 rad/s. However, this could decrease the 
PLL filtering capabilities and its robustness to distorted, 
noise and unbalanced inputs. 

As mentioned above, it is advisable to limit the PI output 
in a certain range. Nevertheless, if the range were quite 
narrow, it can affect significantly the dynamic response of the 
PLL. Note the difference between Fig. 13 (10% limit) and Fig. 
14 (2% limit), where the time scales were 10ms and 20ms, 
respectively. The narrow range constrains the PI tracking 
dynamics, even if the system keeps working. 

Finally, Fig. 15 presents an input phase voltage and its 
fundamental waveform (generated from θ-90º) and shows that 
the PLL frequency and phase angle tracking are not affected 
by a significant input voltage variation. 
 

 
 

Fig. 10 – Input phase voltage, the PLL phase angle and 
 the corresponding fictitious current. 



 
 

 

 

 
Fig. 11 – Input voltage, its fundamental waveform 

and the PI input error (ωn = 23.63 rad/s). 
 

 
Fig. 12 – Input voltage, its fundamental waveform  

and the PI input error(ωn = 90 rad/s). 
 

 
Fig. 13 – Instantaneous angular frequency (ω - 10% limit), 

PI input error and θ. 
 

 
Fig. 14 - Instantaneous angular frequency (ω - 2% limit), 

PI input error and θ. 
 

 
Fig. 15 – Input variation and its fundamental waveform. 

 
VI.  CONCLUSIONS 

 

This paper proposes the design and analysis of digital 
Power System PLL structures, which are equally valid for 

three-phase and single-phase systems. Using stationary abc 
frame, the PLL model is based on active and non-active power 
definitions. Simulations and preliminary results have shown 
the performance and tracking capabilities of the digital PLL 
system. Moreover, practical aspects if implementing the PLL 
in fixed-point digital systems have been discussed. 
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