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Abstract— In this paper the design of a control system for

rotor flux oriented controlled induction motor drives using Hoo
optimal control theory is carried out. Two H. problems are
considered: (i) a 1-block problem with the view to maximizing
the system performancej(ii) a 2-block problem with the weights
initially chosen for maximizing both the system performane
(transient response) and the system tolerance to uncertatin

in the plant model (robust performance), and in the sequel

the weights are modified to account for transient performane

In this paper twoH, problems are consideredi) a 1-
block problem, with the view to maximizing the system per-
formance (assuming the shaft velocity as the variable to be
controlled); (i) a 2-block problem with the weights initially
chosen for maximizing both the system performance (tratsie
response) and the system tolerance to uncertainty in tim pla
model (robust performance), and, in the sequel, the weagbts
modified to account for transient performance and noise-atte

and noise attenuation. All the designed controllers have len
implemented in a real system, and the results are shown in the

paper.

uation. Differently from [5], [6], the solution here is olad
following the standard 1984 approach [4], [8]. The main ad-
vantage of using such an approach over DGKF solution is that
the designer has a clear view on how to change the weights
in order to improve the control objectives. Furthermore, th
Vector control, ., control theory, optimal control, feed- |;se of 1984 approach has led to an interesting resultftae
back system. controller, solution to the 1-block problem is a Pl conigoll
whose parameters are tuned according to the so-calledatter
model control [9]. This unexpected result justifies, frore th
H, theory point of view, why PI controllers have been suc-
cessfully used in field oriented control of induction motors
Another point which differs this paper from [6], is that here
the weight for robustness is obtained from frequency respon
experiments carried out in the real system by perturbing the

KEYWORDS

. INTRODUCTION

Rotor flux oriented controlled induction motor drives have
recently received great attention in the literature [1], Ehd
the references therein. This has led to the so-called veotor
trol method which is based on the transformation of the manli
ear model of the induction motor in a linear time-invariargtfi x :
order model. In order to obtain an exact first order model, ipstlmated rotor ime constant-. ) ]
is necessary to pre-multiply the system by a matrix whose ele Itis w_eII known that the o_bjectlves of robustness and noise
ments are functions of the rotor flux angle. However, thidang attenuation are expressed in terms of the same 2-bibck
is not known exactly, being estimated from the rotor time-con ©Ptimization problem; the only difference is that the weigh
stant (the ratio between the rotor inductance and resigjanc MUSt now be a high pass rational function. This problem has
and the shaft velocity. Since, up to now, there is no reliabl@/SC Peen tackled in this paper, and the results obtaineu fro
method for the exact determination of the rotor time cortstan Practical implementation are shown.
the transformation does not lead to an exact first order model 1. ALINEAR MODEL FOR ROTOR FLUX

The difference between the exact first order model (which ORIENTED CONTROL OF CURRENT-FED
in this paper will be referred to as the nominal model) and INDUCTION MOTORS
the real model can bg seen as a model uncertainty. This SUG A Theoretical background
gests that robust design technigues can be employed tomobtai
a controller for this system. One of the design techniquas th  Assuming as inputs, the stator current vector componentsin
can be used is the so-callédl,, optimal control theory [3], field coordinates;sq(t) (the stator current component in the
[4]. This approach has been deployed in previous works, [5Klirection of the magnetising current vector, usually nefdito
[6], in which 2-blockH ., problems have been formulated and as the direct component) angd,(¢) (the quadrature compo-
solved using the so-called DGKF approach [7]. The main difnent of the stator current, which is perpendiculai 3g(t)),
ference between these works is the choice of weights: in [5then current-fed induction motors can be modeled as [1]:

scalar weights have been used while in [6], although stable d ' .
rational functions have been used as weights, they have been Tr E@mR(t) +imp(t) = isa(t)
chosen according tél,, dogmasj.e. the weight for robust- d isq(t)
. . . . . _ q
ness is a high pass function, as prescribed inHhg theory, %P(t) = w(t) + m 1
without checking if this is what actually happens when the es d ) ) @)
timated rotor time constant is supposed to be different from J%w(t) + fw(t) = kimgr(t)isq(t)
the real one. d
w(t) = Es(t)

1 Partially supported by CNPq

11 Partially supported by CAPES whereTr = Lp/Rp denotes the rotor time constarty
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Fig. 1. Block diagram of an ideal inverter in cascade with memnt fed induction motor, and with a rotor flux angle estionat

andRp are, respectively, the rotor inductance and resistanceurrent-fed induction motor which relatég,,.(t) andw(¢)
imr(t) is the magnetising currenp(t) is the rotor flux an- is given by:

gle with respect to the stator axig,is the motor inertiaf is G(s) = Q(s) _ Klsdres _ kabslsdres 4)
the viscous frictionw(¢) is the instantaneous angular veloc- Isgres(s)  Js+ f Ts+1

ity of the rotor, k is the coupling factor, which is a function \;herer — J/f andkays = k/f.

of the total leakage factor of the motor and of the stator in- Although appealing from the theoretical point of view, this
ductance, and(t) the angle of rotation of the rotor, measured gpproach has the following drawback: since the rotor flux an-
in the stator frame of coordinates. Notice that, if in Eq9, (1 le p(t) cannot be measured, it should be estimated. However,
the direct component of the stator current is made constangs shown in Fig. 1, its estimate depends on the knowledge of
.8, isa(t) = Isa, then, after a brief transient, which is dic- {he rotor time constarttz, whose value cannot be determined
tated by the rotor time constaffiz, i..r(t) becomes equal precisely. If by chance the value of the estimated rotor time
to Isgl- Wh'en this happens, the electrical torque becomes onstantl is exactly equal tdl’z then the behavior of the
function ofis,(t), only, and, thus, the model of a current-fed system estimator-+inverter+induction motor can be desdrib
induction motor becomes analogous to that of a constant fiel Eq. (4). However, in generdly # Tx, and thus Eq. (4)
de-motor controlled by the armature current. Howevey(t) s no longer a reliable model for the system. One way of tak-
andisq(t), are not accessible; they are actually functions ofyq into account model uncertainty is to use, instead of the
the line currentss (1), is2(t) andiss(t), as follows: transfer function given in Eq. (4), a so-called perturbedsr

3 V3 V3 - fer functiqnGp(s). .In this work, multjpliqative unstructured
{iscl(t)}_ g cosp(t) —-sinp(t) ——-sinp(t) {251( )] perturbation [10] will be used, which is given by:

5 ot Gp(s) = [1+ Wi()|G(s), (5)
—5 sinp(t) == cosp(t) ——=cos p(t) where W (s) is a stable transfer function and will be deter-

(2)  mined from frequency response experiments carried outat th

Therefore, in order to have as inputs the direct and quadra€al system by pefthbir@R- This provides the necessary in-
ture components of the stator current, one has to carry out garmation for dealing with controller design within thé.

inverse transformation of Eq. (2), given as: control theory.
2 cosplt)  —Zsinp(t) B. Parameter identification and model validation
. 3 3
?Sl(i) _ ) isa(t) 3 The motor used to validate the theory presented in this
zzigtg =| —gsinp(t) 5 cosp(t) {isq(t)} ) paper is a class A three-phase two-paleconnected induc-
_@ in (1) _@ ) tion motor with squirrel-cage rotor. Its nominal values:are
3 SnP 3 ‘®P (i) Power: 60V; (i) Line voltage: 30/, (iii) Frequency:

The device which causes the motor currents to follow the ref60H z; (iv) Line current: 2.8 and (v) Rotor inertia: J =
erences given in (3) is called a current-controller PWM in-0.00057K g.m?.
verter (in this work it will be simply referred to as inverter According to the model given in Fig. 1, the only param-
Itis clear from Eq. (3) that the inverter inputs are the debir eters to be determined a#;, k.,s andr. Let us consider,
values for the direct and quadrature components of therstataitially, the identification of7z,. An immediate choice for
current, here denoted &gy, 7 (t) andigyr. ¢ () and as outputs  the estimated value &fz (TR) is that obtained by performing
the line currentss (¢), is2(t) andigs(t) necessary to make standard tests for determining the steady-state circudeho
isa(t) andigy(t) (the actual values) equal their reference val-parameters [11]. For the induction motor used in this work,
ues. it has been obtainedz = 0.0519s. A better estimation for
Assumingisarer(t) = Isarer (cOnstant), then the transfer the rotor time constant can be obtained if we notice that the
function for the system formed with an ideal inverter and asystem inverter+estimator+induction motor only behaves a
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Fig. 3. Block diagram of a standard negative unit feedbackesy.
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forms of the reference, error, external disturbance, duwipd
sensor noise signals, affs) and K (s) are the transfer func-
tions of the plant and the controller, respectively. Stabib-
bustness (or system tolerance to plant uncertainty), imgck
of square integrable reference signals, transient pegnoa,
external disturbance rejection and noise attenuation sualu
control objectives and can be expressed in terms of the mini-
mization of theH ., norms of transfer functiofss follows:

1. Robust stability:

Angular speed (rpm)

min (6)
Stabilizing K (s)

whereW; (s) is a stable rational weighting function de-
fined according to Eq. (5) anfi(s) = G(s)K(s)[1 +
G(s)K(s)]! is the transfer function betweeris) and
y(s).
Tracking of square integrable reference signal and tran-
sient performance:

W1 T oo,

Time (Seconds)

(b)
Fig. 2. Step responses for the real system (solid lines) anthé

Simulink model (dotted lines).

and ideal first order one whefj; is exactly equall’; (the 2.
actual value of the rotor time constant). A better estinmatio
of Tr can then be obtained by trial-and-errioe,, by chang-
ing the value ofl'; in the real estimator until the system re-
sponse to an step input matches that of a first order one. This
has actually been done in this work, leading to a valuépf
approximately 5% smaller than that obtained previousty,

min - {|W2 S|, )
StabilizingK (s)

whereWs(s) is a stable rational weighting function used
to place more penalty on the relevant frequencies and
S(s) = [1+G(s)K(s)]7t = 1—T(s) is the well known
sensitivity function.

Tr = 0.0493s. Consider, now, the estimation &f,,; and
7. Since the value of'y is such that the system now be-
haves as a first order one, usual tests for estimation of the pa

3. Rejection of square integrable external disturbance sig

nal:

rameters of first order systems can be deployed to Aind Stabm%}é‘;ms) 155G oo- (8)

andr. Among the available techniques, the so-called Method 4. Noise attenuation:

of Area [12] seems more appropriate due to the noise intro- < b_lr_ninK( : IWaT || 0o- 9)
abilizing K (s

duced in the system response by the sensor. At this point,
it is worth remarking that, before applying a step signal in
isqref (), itis necessary to apply a constant inputd@:. (t),
i.e, igares(t) = Isares. FOr the experiments carried out in
this work, it has been adoptdd,,.; = 2.8A. Finally, aver-
age values fok,;,; andr have been obtained after performing
these experiments for several step signals with different a W
plitudes, leading td,;s = 14.7287 and7 = 0.2030. WzS , (10)
Fig. 2 shows the comparisons between the simulation re- 2 )
sults (dotted lines) and those obtained experimentalljdso Where: = 1 for robust stability and = 4 for noise attenua-
lines) by applying to a Simulink model, equivalentto thedio tion. Itis importantto remark that sind&(s)+S5(s) = 1, then
diagram of Fig. 1 (with the above estimated valueFof kupe control obje.ct_lves addre_ssed in Eq. (10) are confhgtmgmm N
andTx = Tr), and to the real system step signals of ampli-S€nse that it is not pO_SS|bIe to have at the same time syablllt_
tudes3.2246 A (Fig. 2.a) andr.29994 (Fig. 2.b). It is worth robustness qnd _tran3|ent_ performance. The only excepstion i
remarking that in both cases, steps of amplitud&024 were ~ When the weighting function8’, (s), W>(s) andWy(s) place

initially applied t0i g,/ (¢) and thatlg,..; = 2.8A. more penalty on different frequencies, as follow®:in lin-
ear systems, frequency response identification usualislea

more imprecise description at high frequencies, and thus, i
this case}¥; (s) must be a high pass transfer functii; sig-

nals to be tracked have usually a pre-defined frequency, and
thus,Ws(s) must be a low pass transfer functidiii) finally,

wherelV,(s) is a stable rational weighting function used

to place more penalty on the noise dominant frequencies.
H. optimization problems can also be formulated to take
into account two or more control objectives; for example, ro
bust stability and tracking or noise attenuation and tnagki
can be addressed simultaneously, as follows:

min
Stabilizing K (s)

I1l. CHARACTERIZATION OF CONTROL
OBJECTIVES IN TERMS OF THE
MINIMIZATION OF H.,, NORMS OF TRANSFER

FUNCTIONS

Consider the block diagram of Fig- 3 whergs), e(s), 1The Hoo-norm of a stable transfer functiol (s) is defined ag H || oo =
d(s), y(s) andn(s) denote, respectively, the Laplace trans-max,cg, |H(jw)|, where].| denotes absolute value.
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sensor noises have usually high frequency componentshwhic
implies thatiW, (s) must also be a high pass transfer function.
In order to obtain the solutions df, optimization prob-
lems posed above, the first step is to guarantee that the-resul
ing controller stabilizes the nominal transfer functiomidris
done through the so-called Youla-Kucera parametrization,
which the controller is parametrized in terms of a stable and
proper rational transfer functidi)(s) as follows:
Y(s) — M(s)Q(s) T e
K= XN e 4
whereN(s), M (s), X(s) andY (s) are stable rational func-
tions such that

iSaref (A)

N(s)
and satisfy the Bezout equation
X(s)M(s)+Y(s)N(s) =1. (13)
It can be shown [4] that all the optimization problems de-
scribed by Egs. (6) to (10) can be transformed into the fol-

lowing problem

z 25 3
Time (seconds)

in T — 10|, 14
Q(SI)E%HWH 1 — Q)| (14) (b)

whereT}(s) andT;(s) are rational functions and depend onFig. 4. Closed loop response for a step reference sigrialQtfrpm
the optimization problem which is being considered. Thisop  (a) and control signals,.¢(t) (b) obtained from the real system
timization problem is usually referred to, in the literatuas a (solid lines) and by simulation (dotted lines).

model matching problem [4].

this function by a rational one. This is carried out by intod

IV. A1-BLOCK H.. CONTROLLER FOR SPEED ing a polynomial factofs 4+ 1 on the denominator polynomial

CONTROL of Q(s). i.e.
Qr(s) = ——Q(s) ot
pP\S) = = s) = =
A. Problem formulation and main results Ts+1 kabsIsaref(Ts + 1)

. I . where7 is chosen with the view to approximati and
The control problem to be considered initially has a unique ! PP 4 (s)

control objectivej.e. tracking and transient performance of aQ(S) at the frequency range of interest. Direct substitution
reference signal, which in this case is the rotor angulasorel of N(s), M(s), X(s), Y'(s) and@p(s) given by Egs. (16),

. i . ) 17) and (19) in th ntroller expression (11) and afteressom
ity. Within the H, framework, this control object leads to the( ) and (19) in the controller expression (11) and aftereso

A ; : straightforward calculation, results in:
optimization problem given by Eq. (7). Therefore, using the g

(19)

Youla-Kucera parametrization (11) in Eq. (7), and after som T Ts+1 1
| 3 ization (11) in Eq. (7) K(s) = - — K, (1+—) (20
straightforward calculation, one may write: kabslsdrefT 8 T;s
min ~ [|[WaS|leoc = min  ||[Wa(X — NQ)M|| o where
Stabilizing K (s) Q(s)ERH oo K, = T andT: = 7. 1)
. kabslsdref? ’
= min [T} - T5Q[, (15) , .
o Q(s)ERHo Eq. (20) above shows that tiié,, controller which optimizes

where, in this casel} (s) = Wa(s)X(s)M(s) andTs(s) =  tracking and transient performance is a Pl controller whose

Wa(s)N(s)M(s). Notice that, since the plant transfer func- harameters are tuned according to the so-called internéémo
tion (4) is already stable, then an immediate choiceN@s)  principle applied to PID controllers [9]. This is an amazing

and}M (s) which satisfy Eq. (12) is given as: result and explains, from thH ., point of view, why PI con-

N(s) =G(s)andM(s) = 1. (16)  trollers have been used successfully in vector control.theo

Itis therefore easy to see thal(s) andY'(s) solutions to EQ.  jmportant contribution of this result is that it presents tor-
(13) will be given by: rect way of tuning the PI controller, as shown in Eq. (21).-Fur

X(s)=1landY(s) = 0. (17)  thermore, notice from Eq. (21), that the proportional g

Thus, itis not hard to see that the solution to the optimirati  increases when decreases. The importance of this fact is that
problem (15) is trivial and independent@df,(s), being given it does not contradict the control system theory for whia th

by: increase in the gain is used to speed up the system response
Q(s) = 1 _7s+1l ) (18) and theH. control theory, for which the best controller for
G(s)  kabsIsare performance is obtained wherpproaches zero.
However this solution is improper and, therefore, does abt s
isfy the requirement tha(s) € RH... In order to circum-  B. Experimental results

vent this problem, whatis usually done [13] is to approxinat With the view to showing the validity of the theoretical

2Such a function is usually referred to asBR#fl . function or to belong to results presented in this section, two réalk PI_ controllers
RHoo. have been used to control the rotor velocity of the real
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induction motor whose parameters are given in Subsection

[I-B. In all experiments /g4,y = 2.84, and thus, according
to Eq. (21), the controller parameters must be tuned as:

~0.0049223

K, = andT; = 0.2030. (22)

Experimental results are shown in Fig. 4 for= 57 and

7 = 7/5. Fig. 4(a) shows the rotor speed for a step refer-

ence signal ofl400rpm and Fig. 4(b) shows the behavior of
the quadrature component of the stator current; the solasli

have been acquired from the real system while the dotted Iinq:
have been obtained from simulation. Notice that the respons

rise time and settling time have decreased, respectively) f
approximately.39s and3.15s for 7 = 57 to 50ms and40ms
for 7 = 7/5, producing the expected results.

V. 2-BLOCK H,, CONTROLLERS

According to Eq. (10) when other control objectives, such

as robust stability or noise attenuation, are to be conséier
addition to system performance, it is necessary to forrawdat
2-block H,, problem. Furthermore, substituting Eq. (11) in
(10), the following problem, equivalent to that given in Y19

{ ~W;YN ~W;N

obtained:
i |- hs
Q)R ||| WaX M } [ WaN ] 9
wherei = 1 for robust stability and = 4 for noise attenua-
tion. Defining

(23)

~W; YN [ -wiN ] -
then Eq. (23) is equivalent to:
i T — ToQ| co- 25
omn, 1Ty — T2Q|| (25)

As pointed out in Section Ill, the weighting functiofi; (s)

andW,(s) should be, respectively, low and high pass trans-
fer functions, and are chosen by the designer in order teeplac
more penalty at the desired frequencies. On the other hand,

Magnitude

10
Angular frequency (rad/sec)

ig. 5. Experimental results obtained 6 = 0.0493s (-0-) and by
perturbingTr in +50% (-0-) and—50% (- x -) and|G(jw)]||1 +
W1 (jw)| (solid lines).

A. Influence of the inexact knowledge of the rotor time con-
stant on the induction motor linear model

As point out in Subsection 1I-A the inexact knowledge of
the rotor time constant will be considered as a model uncer-
tainty. In this work it has been used the so-called model with
multiplicative perturbation given in Eq. (5). It is cleaofm
Eq. (5) that, for each frequenacy,

Gp(jwr)

—1=Wi(y 28
Glion) 1(jwr) (28)
and, thus, it is straightforward to see that
’M_l < [Wh (jwr)| < M—H’. (29)
G(jwr) - ~ | G(jwe)

Itis worth noting that3(jwy,) will be obtained fofl’z nominal
while Gp(jwy) will be obtained from the system frequency
response by perturbirifjz. Fig. 5 shows the results obtained
experimentally by perturbingz in +50% (cross-dotted line)
and —50% (star-dotted line). From these data, a first order
weight, defined according to Eq. (26), is given by:
~0.2(s+131)

Wi(s) = s+ 23

(30)

weight IV, (s) takes into account uncertainties on the matheNOtice that, this weight satisfies Eq. (29) for eagh as can
matical model and, for this reason, should be obtained expeP€ Shown in Fig. 5 (solid lines). Furthermore, it is clearttha

imentally; this will be the subject of the next subsection. |
both cases, first order weights will be deployed, havingghe
fore, the following transfer functions

Wi(s) = ai(s +bi) and W (s) ax(s +b2)

(s + ¢) (s 4+ c2)

wherea;, b;,c; > 0,41 = 1,4, bo > ¢ andby < ¢4. The
relationship betweeby andc; will be defined from frequency
response experiments. ExpressionsTopfs) andT>(s) can
be obtained by substitution of Egs. (16), (17) and (26) in (24
being given as:

(26)

0 _ai(s+bi)
Ti(s) = [LHM] o) = | (TR [P
(34 c2) ohen)
(27)

Differently from the 1-block problem, it is not possible tb-0
tain here a closed solution. It is well known that the solutio
for the 2-blockH ., problem is obtained by iterative methods.
The readers are referred to [4] for more details on the smuti
of problem (23) forT} (s) andT»(s) given by Eq. (27).
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the rational function given by Eq. (30) places more penalty
at low than at high frequencies. This contradicts the usstal a
sumption ofH., control theory tha#i/; (s) should be a high
pass transfer function. Therefore, the weight used in [6] to
address robustness bears no relationship with practiceg si

it has been chosen as a high pass transfer function. The main
implication of the weight given in (30) is the fact that both
weightsiV; (s) andWs(s) place penalty at the same frequency
range (low frequencies) and thus the 2-bladk, problem
cannot be used to improve robustness without severe degra-
dation on system performance.

B. 2-block H., controller for transient performance and
noise attenuation

Consider again the minimization problem given in Eq. (24)
for i = 4, i.e,, with the objective of noise attenuation at the
plant output being incorporated to the controller desigh. |
is important to remark that since the tachometer is the main
source of noise, then the measure of the noise attenuatios at
plant output will be made in an indirect way, namely, through
the measure of the plant input signal, which in the present
work isiggref(t).



isqref (A)

2 25 3
Time (seconds)

@

1000

Angular speed (rpm)

(1]
(2]

Time (Seconds)
(b)
Fig. 6. Closed loop response for a step reference signalGifrpm
(a) and control signals,.. (t) (b) obtained from the real system

(solid lines) and by simulation (dotted lines) for the 24XdH
controller

(3]
An important step in the design df, controller is the 4
choice of weights. Although the designer knows what theil[ ]
frequency responses should look like, better weights are
chosen in a trial-and-error bases. Indeed, using as weights [5]

s+30 0.1(s+1)
= = l
Wals) = g andWa(s) = =g G
then the followingH ., controller has been obtained:
=
K(s) = 0.0345(s + 10)(s + 5.7477)(s + 0.3229) (32) [6]

(s + 49.2995)(s + 0.6664) (s 4 0.0072) °

The system closed-loop response for a step reference signal
is shown in Fig. 6(b) and the corresponding control signal
(isqref(t)) is shown in Fig. 6(a). Notice that the rise time is
now90ms and the settling timé30ms, approximately, which
is slightly worse than the corresponding performance irdex [7]
for the 1-blockH ., controller for7 = 7/5, whose response
is shown in Fig. 4.b. In addition, since the controller has no
pole at the origin, the response exhibits a steady-stabe efr
approximately0.91%; it is important to remark that a smaller (8]
steady-state error could be obtained by increasing theadt-g
of Wa(s). 9]

As far as noise attenuation is concerned, notice from Fig.

7 that the noise level ifsq. £ () has decreased from approxi-

mately -10 ta25% for the 1-blockH , controller (top plot) to

-5 t0 6% for the 2-blockH ., controller (bottom plot). ]
VI. CONCLUSION [11]

In this paper,H,, optimal control has been successfully [12]
applied for speed control and noise attenuation in rotor flux
oriented controlled induction motor drives. Another cdnir
tion of the paper is that the influence of the inexact knowéedg [13]
of the rotor time constant on the linear model of inductiorr mo
tors and speed performance cannot be simultaneously consid
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Percent noise in iSqref

25 3 35
Time (seconds)

Percent noise in iSaref

25 3 35
Time (seconds)

Fig. 7. Noise level iNgqref(t) for 1-block (top plot) and 2-block
(bottom plot)H ., controllers

ered in anH, design since the former gives rise to a low pass
weighting function; therefore contradicting the usiial, re-
quirement of high pass weighting function for robust siapil
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