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Abstract – This work proposes a modification to a 

robust state observer based on the concept of sliding 
mode for rotor flux and motor speed estimation. The 
sliding mode observer characteristics are refined by 
proposing a new procedure for rotor flux integration, 
allowing appropriate estimation in a wide speed range. 
The flux and speed estimates are employed in the direct 
field oriented control system and they are evaluated 
considering transient behavior, static accuracy, 
robustness to noise, parametric variation and different 
operation speeds. The performance is also compared with 
that provided by the extended Kalman filter flux 
estimator proposed by [1] associated with an adaptive 
speed estimator [2].  
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I. INTRODUCTION 

 
The field-oriented control technique has been widely used 
for high-performance applications. The rotor flux and speed 
determination is the main implementation problem. The two 
basic approaches are: a) direct sensing; b) estimators and 
observers systems. 

The use of sensors brings severe disadvantages in cost 
terms, reliability and immunity the noise, degrading the drive 
system performance. The estimation techniques based on the 
mathematical model of the induction motor (IM) are affected 
by parametric variations, mainly the rotor resistance, due to 
changes in the IM operating temperature [3]. 

Speed estimation systems that use Reference Model 
Adaptive Systems (MRAS) presents stability and robustness 
to parametric variations on a large speed operation range, but 
its performance is deficient in low speeds [2]. Aiming at 
removing this, in the present article a speed sensor-less 
system is presented using a robust flux and speed rotor 
observer based on sliding mode. These techniques have been 
explored for providing good properties, as insensitivity to 
parametric variations and noises, external disturbance 
rejection and fast dynamic response [4]. 

The procedure based on sliding mode considered in [5], 
although efficient, presents problems in low operation speeds 
due to the approach used for the pure integrator in the 
determination of the rotor flux estimation. In this work we 
blend the approach presented in [5] combined with a strategy 

inspired by [6], resulting in a good performance. 
Simulations and performance comparisons between the 

proposed algorithm and the works developed for [1] and [2] 
are presented.  

In section II the mathematical model of the induction 
motor is presented. Section III deals with the configuration 
of the direct field-oriented control system. A summary of the 
rotor flux and speed simultaneous estimators is presented in 
section IV. The results and performance comparisons are 
found in section V, and the conclusions in section VI. 

 
II. IM MATHEMATICAL MODEL 

 
The dynamic model of an IM in the stationary reference 
frame ( βα − ) , using the nomenclature based on [7], can be 
described as 
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III. INDUCTION MOTOR DRIVE SYSTEM 

 
The block diagram of the IM drive system with rotor flux 
reference field-oriented control, and rotor flux and speed 
estimation, is presented in Figure 1. 
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By means of Park’s transformation [7], the equations used 
for the control loop design are determined, 
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The rotor flux and speed control loop (Fig. 1) is 
implemented through a proportional-integral (PI) controller, 
and each of them is adjusted by means of the optimal 
performance index ITAE [8]. The IM nominal parameters 
and gains of the PI controller are presented in appendix A. 

 
IV. FLUX AND SPEED ESTIMATORS  

 
The flux and speed estimation algorithms considered in this 
work are robust observers based on sliding mode techniques, 
Kalman filters and MRAS. The main characteristics are 
summarized as follows. 

4.1  Robust flux and speed observer based on sliding mode 
theory 

The work proposed by [5] aims at bringing robustness to the 
parametric variations and external disturbance using sliding 
mode techniques. The flux and speed estimation system 
comprises a current observer, a rotor flux observer and a 
rotor speed estimator. 

From (1) the dummy variables αV  and βV  are  
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The current and flux observer are proposed in the 
following 
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where αV̂ , βV̂ , αsî e βsî  are the observed value of 

αV , βV , αsi e βsi , respectively, and the switching surface are 

defined as follows 
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Subtracting (1) from (8) the following error dynamic is 
obtained, 
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The switching gain is designed via Lyapunov method, 
implying an error dynamic globally asymptotically stable, 
equation (11), if this gain is defined as [5] 
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Based on the concept of the equivalent control, the system 
dynamic can be described as 

0=s&  (13) 

and, with an appropriate gain k, equation (12), the system 
described in (11) is asymptotically stable, and in sliding 
mode condition 

Transf.
Park

Transf.
α−β

isαref

isβref

ρ

is1ref

is2ref

is3ref

isdref

isqref

i

is2

is3

MOTOR

3φ

wr

Inversor

TL

wrref +

-
Controle de
Velocidade

Φ rref

T

+

-

Determinação
do vetor de

fluxo de rotor

is3
Φ r

is1

is2

Vs3

Vs1

Vs2

^
^

Controle
de Fluxo

Determinação
da velocidade

do motor

is3

is1

is2

Vs3

Vs1

Vs2
wr
^

wr
^

'

'

s1

 
Figure 1. Direct field-oriented drive system. 
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According to (11) and (13), αV̂ , βV̂  can be obtained by  
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where K is the switching function defined as 
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Using equation (7) and results from equations (9) and 
(15), the speed estimator can be derived as follows 
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Figure 2 shows a block diagram of the rotor flux and 
speed estimator. 

To reduce the chattering phenomena, the sign function is 
replaced by  
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where ξ  e 0r  are positive constants. However, the precision 

and stability is not guaranteed when ξ<s . Therefore, 

looking for a behavior closer to that established by equation 
(12), ξ  is set as small as possible, and the value of 0r  
should be large enough to reduce the chattering phenomena 
effectively [5]. 

4.2  Robust flux and speed observer based on sliding mode 
theory with a programmable LPF 

The rotor flux estimate is obtained through a pure integrator 
in (9), implying in drift and saturation problems. Thus, the 
pure integrator is usually replaced by a low pass filter (LPF). 
However, when the motor frequency is lower than the cutoff 

frequency of the LPF, an estimation error will be produced. 
On the other hand, setting a very low cutting frequency there 
still remains the drift problems due to the very large LPF 
time constant. 

In this work we propose to replace the LPF with a fixed 
pole for a programmable LPF with variables pole and gain, 
with phase compensation, similar to the procedure used in 
[6] but in the rotor flux reference frame. At first, the pure 
integrator in (9) is replaced by a LPF, i.e., 

asve

rl

+
=

′ 1φ̂         
 (19) 

where rlφ ′  is the estimated rotor flux, a is the LPF pole and 

ev is the integration term in equation (9). The LPF gain and 
phase compensation is derived from Figure 3 (Table I), 
where eŵ is the estimated angular frequency of the signal ev . 

 

To solve drift and attenuation problems the pole a  is 
allocated proportionally to the motor speed, that is 
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where Lk  is a positive constant. 
Therefore, from (19) and (20) 
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The estimated value eŵ  is the angular frequency of the 
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Figure 2. Block diagram of the speed observer system. 
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Figure 3. Programmable LPF and pure integrator diagrams. 

Table I. 
 Pure integrator and LPF phase and gain compensation. 

 Phase Gain 
Pure Integrator  90o eŵ1  

LPF ( )aweˆtan 1−−  22ˆ1 awe +  
Compensation ( )1exp ϕj−  

ee waw ˆˆ 22 +  
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rotor flux components, rwΦ , obtained from (4). Figure 4 
shows the programmable LPF. 

4.3  Extended Kalman filter for rotor flux and speed 
estimation using MRAS technique 

The rotor flux estimation issue can also be dealt with by 
using a Kalman filter algorithm. The parameter identification 
problem can also be considered, by including the rotor 
resistance in the state vector and then using an extended 
Kalman filter [1]. 

The model of the estimation process, equation (2), is 
discretized and expressed as  

( )
( )

( ) ( )

( ) ( ) 







′
′



















′
−

−
′

−
=








+′
+′

)(
)(

1

1

1
1

'

n
n

L
nRT

nwT

nwT
L

nRT

n
n

r

r

r

ra
ra

ra
r

ra

r

r

β

α

β

α

φ
φ

φ
φ

 

( ) ( )
( )

( )
( )






+








+

nw
nw

ni
ni

L
nRLT

r

r

r

r

r

rma

β

α

β

α
'

 

(23) 

where ( ) ( ) ( ) t
rrr nwnwnw ][ βααβ =  represents the state noise 

and aT  is the sample time. 
To determine the observation equation associated with the 

estimation process, (23), the voltage model, defined as 
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is discretized as follows 
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Therefore, the observation process is defined as 
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where ( ) ( ) t
rrr nZnZnZ ][)( βααβ =  represents the measurement 

noise. The state and measurement noise are assumed not 
correlated, with zero mean and covariance Q and N, 
respectively.  

By defining the system state vector as 
( ) ( ) ( ) ( )[ ]nRnnnx rrr ′′′= βα φφ , the prediction and estimation 

equations proposed in [1] are written as 
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The function ( )( )nnnxf ,|ˆ  represents the dynamic relation 
between states and input system variables, equation (23), 
( )1+nyr  the output vector and 23xK  the gain matrix of the 

filter. 
The estimated measurement vector, equation (26), is given 

by 
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The algorithm called delayed state filter [9] is used to 
obtain the filter gain matrix, in such form that the elements 
of the main diagonal of the covariance matrices are 
minimized.  

The speed estimation is performed through the algorithm 
considered by [2], applying the MRAS technique, Fig. 5. 
The voltage model, (24), is regarded as a reference model 
and the current model, (1), as an adjustable model. The error 
between the states of the two models is then used to drive a 
suitable adaptation mechanism that generates the estimate 
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(30) 

where 

βαβα φφφφε rrrr ''''
ˆˆˆ ′′−′′=  

(31) 

The filters applied to the MRAS solve the drift and initial 
conditions problems, but they bring attenuation problems in 
low speed operation. The gains 1k  and 2k  are calculated in 
accordance with the procedure described in [2]. 

 
V. SIMULATION RESULTS  

 
The simulations of the direct field-oriented control and drive 
systems (Fig. 1) and the estimation algorithms were 
performed via, MATLAB/SIMULINK. The estimation 
algorithms and the IM model are started simultaneously. The 
speed reference is a square wave with period 2 seconds and 
amplitude from 100 to –100 rad/s or 100 to 0 rad/s. 
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Figure 4. Block diagram for the programmable LPF 
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Figure 5. Block diagram of the speed estimation using MRAS technique. 



  
 
 

A low pass filter with cutoff frequency 5 Hz is used to 
smooth the estimated speed, due the presence of 
measurement noises. 

The noise co variances applied on current and voltage 
measurement are 22  0.4 VVs =σ , 22  25.0 Ais =σ , and 

222 / 0.1 sradwr =σ  for the rotor speed measurement. The IM 
initial conditions are setting different from zero. In all cases 
the load torque is fixed in 10 Nm, and the reference value of 
the rotor flux is kept in 1.13 Wb. The rotor resistance is fixed 
at 50% of its nominal value. 

5.1  Comparisons between LPF with fixed pole and 
programmable LPF 

At first, a comparison is made between the application of the 
LPF with fixed pole and the programmable LPF, both 
employed for flux and speed estimator (Fig. 6). 

The pole is fixed in 10, the constant Lk  is adjusted to 10 
and parameters 0r  and ξ  setting in 2 e 0.05, respectively. A 
speed reference signal from 100 to -100 rad/s is applied. 

5.2  Flux and speed estimation using a robust observer 
based on sliding mode 

The robust observer with the programmable LPF of section 
5.2 is used with the same setting parameters, and a speed 
reference signal of 100 to 0 rad/s, to evaluate its behavior in 
low speeds (Fig. 7). 

5.3  Flux and speed estimation using an extended Kalman 
filter associated with MRAS technique 

The EKF setting parameters are: initial error covariance 
matrix ( )5.0,5.0,5.0)0( diagP = ; state noise covariance matrix, 

( )61,61,61 −−−= eeediagQ ; measurement noise covariance 
matrix ( )31,31 −−= eediagN  (Fig. 8). 

Figure 6 shows the effectiveness of the programmable 
LPF in speed reversion (100 to –100 rad/s), compared to the 
use of the LPF with fixed pole. The programmable LPF 
solves the drift and initial conditions problems, performing 
phase and gain compensation, alleviating the effects of the 
LPF (Fig.6 (a)-(b)), improving the quality of the estimate 
rotor flux (Fig. 6 (c)-(d)). 

The two estimators considered in Figures 7 and 8 present 
satisfactory steady state performance, with average operation 
speed. The observer based on sliding mode theory presents a 
faster dynamic response and is more robust to the rotor 
resistance variation. The variation of the gain k in 
accordance with (12) brings stability and robustness to the 
parametric variations and external disturbances.   

Figure 8 shows that the speed control is not affected by 
the incorrect rotor flux estimate, from 2 seconds (Fig. 8 (a)-
(b)) onwards. It is also important to note that the rotor 
resistance estimation error degrades the flux estimation, 
interval 2-3 seconds, degrading the control system 
performance.  

In the region of zero-speed operation, the MRAS system 
presents some difficulties (Fig. 8), and can even became 
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Figure 6. Robust rotor flux and speed observer with LPF (a)-(b) 
and programmable LPF (c)-(e). 
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Figure 7. Robust rotor flux and speed observer  based on sliding mode. 
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Figure 8. Extended Kalman filter for rotor flux and speed estimation 

associated with MRAS technique. 
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unstable [2]. The use of the programmable LPF allows a 
better performance for the observer based on sliding mode in 
this region of operation (Fig. 7). 

The rotor flux and speed estimator based on Kalman filter, 
as expected, presents low sensibility to the noise when 
compared to the robust observer with programmable LPF 
[2]. 
 

VI. CONCLUSIONS  
 
In the present work it was evaluated the application of a low 
pass filter with variable pole, with phase and gain 
compensation, in a robust rotor flux and speed observer 
based on sliding mode. 
The sliding mode based techniques provide robustness to the 
parametric variation and external disturbance, and a fast 
dynamic response. The application of the programmable LPF 
reduces the effects of the standard LPF, allowing a better 
performance of the algorithm in lower speeds of operation. 
Moreover, comparisons are made with the proposal in [1], 
where an extended Kalman filter combined with MRAS 
technique is used to estimate both rotor flux and speed. 
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TABLE II 
 IM nominal parameters. 

RS  LS  ′R R  
RL′  mL  J n 

0.728 
Ω 

0.0996 
H 

0.70
6 Ω 

0.0996 
H 

0.0969 
H 

0.062 kg 
m2 

4 

TABLE III 
IM nominal conditions 

380 V 16.5A 7.5kW 50 Hz 

TABLE IV 
IM Loop control parameters 

kpΦ
 

Φik  G pΦ
 

66.11 2047.40 
97.30

97.30
+p

 

kpw
 kiw

 Gpw
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8 92
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