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Abstract — Direct Torque Control of induction motors
is the latest step in motor drives. Hysteresis band
amplitude choice is one of the initial difficultiesinvolved
in the technique since it determines ripple frequecies
and amplitude error of control variables. Correlation
between hysteresis bands, ripple frequencies andrer
amplitudes is due to the establishment of limit cyes in
inner control loops. In this paper, an alternative
structure which simplifies designers work through he
control of flux and torque error amplitudes by mears of
dithering is presented. A simulation environment
developed in MATLAB/ Simulink is used to obtain the
results. This environment takes into account the
dynamic behavior of each individual block allowingfor
the project and test of controlling structures forDTC in
an inexpensive way.
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I. INTRODUCTION

Direct Torque Control — DTC started to be developethe
80’s, due to works of Takahashi and Noguchi (1%8%)
Depenbrock (1988) applying field orientation anchtsd
modulation principles.

As a main feature, DTC presents a quick torqueomsp
and an excellent speed regulation in the speedaidabp,
proving to be an adequate alternative to transponta
systems such as motor drives in electric vehiclgre it
substitutes the former scalar control with
performance (Faiz et al., 1999).

Classical DTC strategy uses two and three-levelkehgsis
comparators to perform a comparison between staigr
and electrical torque with their references. Thiategy is
characterized by the presence of ripple oscillation the

stator flux and torque control loops as a drawback.

Frequency and amplitude of these ripple oscilfetiappear
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improved

as consequences of applied hysteresis band angditud
Hence, hysteresis band amplitude choices are pesbeas
an initial problem for designers, since they arsoaemted
with ripple oscillation frequencies and precisidriroposed
references.

In this paper, the effect of hysteresis band annbdéis on
ripple oscillation frequencies in a traditional DT@ve was
studied. Later on, an alternative strategy whidbved for
the design of frequency and amplitude of rippleillzgons
was proposed. Designers work is simplified throubh
direct definition of amplitude errors to be expéctan the
control variables.

Results where obtained by the use of a simulation
environment developed by Ferreira and Haffner (2000
using MATLAB/ SIMULINK. This environment takes into
account the dynamic behavior of each individualcklo
allowing for project and test of DTC controllingsttures
in an inexpensive way

IIl. TRADITIONAL DTC

DTC philosophy is based on hysteresis control ofjue
and stator flux, implemented with two independemntool
loops,Fig. 1 In the torque control loop, a direct comparison
between reference and estimated torque is performed
allowing for very fast torque response though with
increased switching frequency applied to the irarertn
each calculation cycle, hysteresis controller tsswdre
processed together with stator flux position to egate a
new command for the inverter. A motor model is used
estimate stator voltage, stator flux and torquengidine
information obtained from the current sensors a@ bk
sensor.

Since both control loops are implemented with hnestis
comparators, limit-cycle ripple oscillations areselved in
flux and torque loops. They appear mainly as comsece
of hysteresis band amplitudes, but also of switghin
strategies, mechanical speed and sampling period.
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Fig. 1. Traditional DTC Strategy
Fig. 2 and Fig. 3 show ripple oscillation frequency [ll. DTC WITH RIPPLE FREQUENCY FORCED BY
dependence on hysteresis band amplitudes. Reselts w DITHERING
obtained using the motor parameters listed in the
APPENDIX. Two different topologies where tested for the inipos of

ripple frequencies. The first strategy establishigmple
oscillations simultaneously on the flux and torgqugmntrol

& Torque reference =30 N.m loops while the second acts only on the flux loop.

—— Torque reference =15 N.m

Both topologies use relay comparators without hgsis,
reducing the problem of limit-cycle oscillationsa this
case, the limit-cycle oscillations are due to thelag
between acquisition and processing of measurealsign

Sinusoidal signals are superposed to referencerserro
before relay comparators introducing oscillatiomsilar to
limit-cycle oscillations and stabilizing the corttoop. The
advantage of this alternative is to permit sepdrate
amplitude and frequency definitions which are dpse
related to reference errors and to the switchimegjuency
resulting on the inverter (Fig. 4).

Strategy 1, uses a two-level relay without hysierigsthe
torque control loop. This approach does not petoné@pply
) null vectors in four-quadrant operations, which as
Fig. 2 R.elation between amplitudg of torque hystereaisland drawback considering its increase in inverter shiftg. On

ripple frequency - DTC without Speed Control. the other hand, operation without null vectors leighes
flux faster and is more suitable to near-zero-speed
operations (Buja, 1997).
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frequency - DTC without Speed Control. Fig. 4: Frequency Imposition, Strategy 1.
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Strategy 2, which implements dithering only in thex
loop, proved to be more adequate. It results irduced
switching on the inverter by using the same thexell
torque comparator presented in the traditionaledffig. 1).
It allows for null-voltage vectors to be applied four-
guadrant operations.

IV.RESULTS

Through the use of the simulation environment dgyed in
Matlab/Simulink (Fig. 5), testing and validation okw
topologies is straightforward. Results were sawvedthie
simulation environment and analyzed offline. Thetlsta
function PSD (Power Spectral Density Estimate) wsed
to estimate power spectral density in the frequer@lysis
of the control loops.
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Fig. 5. Simulation environment in Simulink
A. Comparison between strategies

Simulations were held without flux estimation arugeed
control since the work focus was only comparingedént
strategies and their influences on ripple frequesciA
torque reference of 30 N.m and a load of 10 N.mewe
applied to the simulation model. Inverter switchesre

actualized every 2%is and therefore simulation time step

was fixed to Gus.

Frequency analysis was performed through spectra

distributions using power spectral density estioratwith
Hanning window of 4096 points. Fig. 6 refers tee th
traditional DTC strategy while Fig. 7 and Fig. ereto
strategies using dithering. Comparing the altevesti the
effectiveness of ripple imposition is evident.
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Fig. 9.

Stator Flux Magnitude — Traditional DTClexf hysteresis
band = 0.01, torque hysteresis band = 2.
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Fig. 12. Torque — Strategy 1 — flux dither fregeyefemplitude = 0.01,
frequency = 825 Hz) and torque dither frequencypléode = 2,
frequency = 3.0 KHz).
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band = 2.
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Fig. 9 to Fig. 13 show torque and flux responsedte
studied cases.

Fig.12 shows increased torque ripple which is dudé
application of a two-level relay comparator, hendthout
utilization of null vectors in the control. Flux éstablished
faster in Fig. 11 for the same reason.

B. Comparison through Total Harmonic Distortion

Flux ripple frequency imposition was verified by ans of
total harmonic distortion estimation. THD functionas
developed in Matlab according to equation (1).

R-R
0
where RPstand for power density integrated in the barainfr

THD =

1)

APPENDIX

The induction motor parameters used in the simaratare
presented in Table I.

TABLE |

Induction motor parameters
Number of poles 4
System inertia 0.062 kg.m
Stator resistance 0.728Q
Rotor resistance 0.706Q
Stator inductance 0.0996 H
Rotor inductance 0.0996 H
Mutual inductance 0.0969 H
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V. CONCLUSION
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oscillations. Therefore, simplifying design of hggsis band
amplitudes.

Strategy 1 presents a better flux regulation with a
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machine starting.
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