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Abstract – This work investigates the effects of two 

FACTS devices, namely SVC (Static VAR Compensator) 
and STATCOM (Static Synchronous Compensator), on 
small-signal power systems angle stability. This 
investigation is carried out for a single machine 
connected to an infinite bus via a reactive transmission 
line. The study is based on investigation of the 
eigenvalues of the linearized power system model in the 
framework of dynamic bifurcation theory. The presented 
simulations results enable a comparative analysis of the 
effects of these two controllers on power systems low 
frequency electromechanical oscillations damping. 

This work presents a comparative study of the effects of 
two FACTS devices, namely, SVC and STATCOM, on 
power system electromechanical oscillations damping. The 
investigation is carried out for a single machine infinite bus 
system with the inclusion of these two FACTS devices. 
 

II. FACTS DEVICES 
 

Much attention has been paid to FACTS devices in the last 
years. The first applications of this technology have begun 
with the SVC utilization TCR – based (Thyristor- Controlled 
Reactor) with either fixed or switched capacitors thyristor-
controlled (TSC – Thyristor-Capacitor Controlled). 
Nevertheless, more recent advances in the framework of 
power electronics have allowed the use of new generation 
FACTS devices, such as voltage source converter based 
(VSC – Voltage Source Converter) with the GTO (Gate-
Turn-off) technology. In this technology are the STATCOM, 
SPFC (Static Power Flow Controller), SPS (Static Phase 
Shifter), UPFC (Unified Power Flow Controller), etc [5]. 
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I. LOW FREQUENCY ELECTROMECHANICAL 

OSCILLATIONS 
  

III. POWER SYSTEM MODEL A phenomenon that is of great concern in the planning and 
operation of modern interconnected power systems is the 
low frequency electromechanical oscillations. These 
oscillations are consequences of the generators dynamical 
interactions when the system is subjected to disturbances. 
Common load fluctuations can lead to its appearing. These 
oscillations are more evident like synchronizing power flow 
oscillations and can be a direct consequence of the 
dynamical interactions between generators groups (one 
group oscillates against another), or between a generator (or 
group of generators) and the rest of the system. The first case 
establishes inter-area mode oscillations, and the second, local 
mode oscillations. The frequency range is 0.1 to 0.8 Hz for 
inter-area modes, and 1.0 to 2.0 Hz for local modes. These 
modes are worth paying attention because they have low 
natural damping, and it can be either very reduced or 
negative, mainly due to the voltage regulator action. This 
may have disastrous consequences to the interconnected 
systems stability, leading to partial or total collapses (black-
outs). 

 
• SVC 

 
A practical model of a SVC is a controllable reactor and a 

fixed capacitor. Throughout an adequate coordination of the 
capacitors and the reactor controller, the bus reactive power 
injected (or absorbed) by the SVC can be continually varied 
in order to control the voltage, to maintain the suitable power 
flow in the transmission network either over normal 
operating or disturbances conditions. 

The analysis of the SVC influence on damping local mode 
oscillations in electrical power systems is accomplished for 
the single machine infinite bus system with an intermediate 
bus, in which the SVC is connected, as shown in Figure 1. 
This intermediate bus is located in the transmission line 
medium point, because this is the best place to reactive 
compensation, since the voltage sag is deepest in this point in 
a non-compensated line [5]. 

 
The most common control action in use today to 

circumvent these problems employs Power Systems 
Stabilizers (PSS).  The function of this device is to extend 
stability limits by modulating generator excitation to provide 
damping to the electromechanical oscillations. However, 
other effective solution such as the use of FACTS (Flexible 
AC Transmission Systems) devices to damp low frequency 
electromechanical oscillation is being considered. These 
devices allow the useable transmission capacity increase as 
well as the control of the power flow over designed 
transmission routes [4], [9]. 

 
 

Figure 1 – Single machine infinite bus system with FACTS 
devices 

 
 

  
 
 



is the system state matrix. The following equations describe the SVC model [1]: 
  

• STATCOM 
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(1)  

The STATCOM integrates the SVC technique and the 
voltage source conversion, and is a novel concept to reactive 
power control. This novel technology, whether compared 
with conventional compensation methods using TCR and 
TSC (like SVC), shows a superior performance and best 
applicability to angle stability and harmonic control. The 
STATCOM considered here is analogous to an ideal rotating 
synchronous condenser operating under no load conditions, 
generating a balanced three-phase voltage, with controlled 
amplitude and angle. This ideal machine does not have 
inertia, and its response velocity is almost instantaneous, and 
does not affect the system impedance. Therefore, it can 
generate and absorb reactive power. Besides, it can exchange 
active power with the system if coupled to an appropriate 
energy source, and can supply to or absorb active power 
from the system [2], [4]. The functional model of the 
STATCOM is shown in Figure 2. If this function is not 
explored, the STATCOM becomes a reactive power 
generator, and the supply energy source can be eliminated 
[4]. 

 
The power system electromechanical stability problem can 
be represented by a set of differential and algebraic 
equations, as follows, 
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where x is a vector of dynamic state variables and y is a 
vector of algebraic variables, and µ is a parameter, which can 
be varied slowly, such as nodal powers. For small-signal 
stability analysis, we assume the system parameter variation 
is slow enough so that the model can be linearized around 
some equilibrium point as, 
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where J1, J2, J3 and J4 are Jacobian matrices of f and g related 
to dynamic state and algebraic variables, respectively, and B 
is the perturbation matrix. For the system shown in Figure 2, 
the following state equations can be formulated according to 
nodal power balance methodology [3], [8]: 
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Figure 2 – STATCOM functional model 

  (4) The STATCOM may be represented by the following set 
of equations [2]:  

The coefficients A and R represent local sensitivity functions 
of active and reactive powers, respectively. They are related 
to the state variables and their expressions are presented in 
[8]. Eliminating the vector of algebraic variables, provided 
det J4 ≠ 0, the state-space system can be obtained as 
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(7)
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(5) Equation (7) can be linearized, resulting in the following 
dynamic equation: where  

3
1
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The system of Figure 1 is simulated over a range of 
operating points. The parameters are found in appendix A. 
The small signal angle stability assessment is performed by 
monitoring the eigenvalues of matrix A as the system loading 
is increased. Figures 4 and 5 illustrate the critical 
eigenvalues loci of state matrix system without and with 
SVC for a loading increase up to 1.3 p.u. As can be seen, the 
Hopf bifurcation does not occur for the system with SVC. 

( )uKI
T

I s
STATCOM

s ∆+∆−=∆
1&  (8)

 
Let the output of the STATCOM controller be: 
 

(9)ωω ∆+∆−=∆ KVKu mu  
 

 where Ku and Kω are the gains of voltage and damping 
control loop, respectively. 

 
 
Figure 4 – Eigenvalues loci 

 
 
Figure 5 – Eigenvalues loci 

An important remark is that the remote signal ∆ω may not 
be readily available to the STATCOM, but it can be either 
synthesized from local measures or received from a 
communication system. The characteristic Voltage x Current 
of the STATCOM and SVC can be seen in Figure 3. 
 

 

 
Figures 6 and 7 show that for a loading increase up to 1.4 
p.u., the Hopf bifurcation occurs for the system with SVC 
(Figure 6), but not for the system with STATCOM (Figure 
7). 
 

 
 

Figure 6 – Eigenvalues loci 

 
 

Figure 7 – Eigenvalues loci 

 
Figure 3 – V x I characteristics of SVC and STATCOM 

 
For the STATCOM case, the following state representation 

can be obtained:  
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 At last, for the loading up to 1.7 p.u., Figures 8 and 9 
illustrate that the Hopf bifurcation occurs for the system with 
STATCOM, but not for the system with speed deviation 
feedback. 
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Figure 8 – Eigenvalues loci 

 
 

Figure 9 – Eigenvalues loci  (10)   Figures 10 and 11 show the real part of the critical 
eigenvalues as the system loading is increased. As can be 
seen, these Figures show that the STATCOM provides better 
effectiveness than the SVC in keeping system angular 
stability.  

It is worth noting that the component of line 5 and column 
1 of the matrix J1 is equal to zero only if no supplementary 
stabilizing signal is used.   

 
VI. SIMULATIONS AND RESULTS   

  
 
 



VII. CONCLUSIONS 

 
 

Figure 10 – Real eigenvalues 
loci 

 
 

Figure 11 – Real eigenvalues 
loci 

 
This work has examined the effects of the SVC and the 
STATCOM on power systems low frequency 
electromechanical oscillations. The studies of these two 
FACTS devices were conducted using eigenvalues 
analysis and bifurcation theory. The simulations results 
presented show that the STATCOM provides better 
effectiveness than the SVC in keeping small-signal angle 
stability. 
 

 VIII. APPENDIX A 
Table 1 shows the exact instability limit for each case.  
 Table 2 – Generator, AVR and transmission line 

parameters Table 1: Instability limit (pu.) 
  

M D Re 
(pu) 

xd 
(pu) 

x´
d 

(pu) 
xq 

(pu) 
T´

d0 
(s) Ke  Te (s) xe 

(pu) 
0.0 0.0 0.0 1.6 0.32 1.55 6.0 12.5 0.05 0.1 

without FACTS with SVC with 
STATCOM 

with 
STATCOM 

1.06 1.33 1.62 1.95* 
  
* with supplementary speed deviation feedback control Table 3 – SVC and STATCOM parameters 
  
Figures 12 and 13 show the step response for loading 
increase up to 1.4 p.u. and 1.5 p.u. 

ksvc (pu) Tsvc (s) Kstatcon Ku Kω Tstatcom 
20 0.05 1.0 100 100 0.005 s 
  

IX. APPENDIX B 

 

 
E   generator voltage 
δ   generator rotor angle 
ω   generator rotor speed 
E’q  quadrature axis winding voltage 
E’d  direct axis winding voltage 
EFD  field voltage 
M  Inertia constant 
xd   direct axis reactance 
x'd  transient direct axis reactance 
xq   quadrature axis reactance  
T'do  transient open-circuit direct axis time constant 

 Ke  AVR gain 
Figure 12 – Step response Te  AVR time constant 

 xe   transmission line reactance 

 

Vm   bus m voltage 
Vt   bus t voltage 
θm  bus m angle 
θt   bus t angle 
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Figure 13 – Step response 
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