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Abstract – In this paper, a methodology for the vector 

control for linear induction motor by considering end 
effects is presented. A comparison with the conventional 
induction motor model is also performed. 
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I. INTRODUCTION 
 

In recent years the vector control technique has been 
widely used in the way to allow that induction motor drivers 
result in high performance, such as that in the direct current. 

 
The basic idea behind the vector control is uncoupling the 

flux and the torque of an induction motor, such as a torque 
response similar of a direct current machine is obtained. The 
flux orientation can be obtained by aligning the rotor flux 
vector with the reference d-axis, therefore becoming a highly 
coupled non-linear system dynamic control in a linear and 
uncoupled one. 

 
The aim of the control oriented by the field is maintaining 

constant the d-axis rotor flux and making null the q-axis 
rotor flux. 

 
The dynamic model of the linear induction motor (LIM) is 

analyzed by using the dq model of the equivalent electrical 
circuit with end effects included. A speed inverse function 
factor is determined to express the effects that the linear 
induction motor speed causes in the magnetization branch of 
the equivalent electrical circuit [1]. 

 
For a LIM with short primary and infinite linor, where the 

primary is movable and the linor is fixed, the primary will be 
continuously entering in a new linoric region. This new 
linoric region tends to oppose to the sudden increase in the 
penetration of the magnetization flux allowing a gradual 
accumulation of the magnetization field density in the air 
gap. The appearance of a new linoric region and its influence 

in the magnetic field modifies the LIM performance when 
compared to the conventional induction motor [2]. 

 
Figure 1 shows the linear induction motor used in this 

research, from which were obtained the parameter values 
given in table I. 
 

 
Figure  1 - Double face linear induction motor with 

linor (secondary) in aluminium  disc. 
 
The spatial distribution of the magnetic flux density along 

the width of the primary depends on the relative speed 
between primary and linor (secondary). For null speed of the 
primary, the LIM can be considered as having an infinite 
primary and in this case the end effects can be neglected. 
 

II. LIM MATHEMATICAL MODEL  
 

The q-axis equivalent circuit of the linear induction motor 
is identical to the q-axis equivalent circuit of the 
conventional induction motor, i.e. the parameters do not vary 
with the end effects. 
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However, the air gap flux is affected by the d-axis entry 
linoric currents. Therefore, the d-axis equivalent circuit of 
the conventional induction motor cannot be used in the linear 
induction motor analysis when the end effects are considered 
[1]. 

 
Figure 2 - dq equivalent circuit of the LIM including 

the end effects. 
 
Figure 2(a) shows the d-axis equivalent circuit which 

magnetization branch is different from the conventional 
induction motor. In Figure 2 (b) the equivalent circuit is the 
same that the conventional induction motor. 

 
From the dq equivalent circuit of the LIM (Fig. 2), the 

primary and linor voltage equations in a synchronous 
reference system (superscript “ ”) aligned with the linor 
flux are given by [1]: 
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where  is the primary voltage,  

 the linor voltage,  the 

primary inductance,  the linor inductance,  

the primary leakage inductance,  the linor leakage 

inductance, and   the magnetizing inductance. Subscripts 
“s” and “r” denote the primary and linor values, respectively. 
Subscripts d and q denote d-axis and q-axis values, 
respectively. ,  are the primary voltages; ,  

the linor voltages; ,  the primary electrical currents; 

,  the linor electrical currents; λ , 

 the primary and linor linkage flux; ,  

the primary and linor resistances; ω  the slip frequency;  
the pole number;  the linear speed in m/s;  the primary 
length in meters; Q  is a factor related to the primary length, 
which quantifies the end effects as a function of the speed 
(ν ). 
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It can be seen in (10) that the Q  factor depends on the 

inverse of the speed, i.e. for null speed the primary length 
can be considered infinite and, therefore, the end effects can 
be neglected. 

 
One can see that the primary length decreases with 

increasing speed, therefore increasing the end effects. It will 
reduce the magnetization current of the LIM. This effect can 
be quantified by modifying the magnetization inductance. 

 
The resistance inserted in series with the inductance 

 in the magnetization branch of the d-axis 
equivalent electrical circuit is determined from the increase 
of the loss with increasing linor inducted electrical currents 
in the entry and exit. These power losses can be represented 
by the linor resistance times the  factor, i.e. , 
serially connected in the d-axis magnetizing current branch 
[1][2]. 

The thrust is given by: 
e
dsi                   (11) 

 
III. VECTOR CONTROL FOR LIM 
 

The vector control for LIM can be analyzed in the same 
way as the conventional induction motor. One problem in the 
LIM case is that a new resistance and inductance, which are 
speed dependent, are included in the magnetization branch. 
This will difficult the flux and thrust decoupling.  

In this paper the parameter variations are neglected. 
However, new research will be carried out to develop new 
techniques that include parameter variations.  

 
 A. Slip speed 

In order to determine the slip angular speed, the linor q-
axis flux must be considered zero ( ). Then, the linor q-

axis electrical current can be determined from (8) giving the 

 . 
 
 
 



following equation: 
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From (4) one can obtain the slip frequency : 
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where rrr RL=T  is the linor time constant. 

   The slip frequency equation  is the same that the 
conventional induction motor. The main difference is the 
characteristic . 
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Replacing (15) in (7) one can obtain: 
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where  is the differential operator representation p dtd . 
If we consider constant linor flux in (17), we can obtain: 
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For a LIM in low speed operation, i.e. for ( )Qf  
approximately zero in (19), one can obtain an equation to the 
slip frequency similar to the used for the vector control of the 
conventional induction motor. 

 
The slip frequency ω , which depends on the rotor time 

constant and 
sl

( )Qf , can be determined from (19). However, 
linor resistance variations can make it difficult to obtain the  
linor and thrust decoupling.  

 
Several control strategies have been elaborated in order to 

obtain a vector control that does not depend on the parameter 
variations. 

The primary angular frequency can be determined by 
adding the linor angular speed with the slip frequency. This 
will give us: 

slre ωωω +=                               (20) 

The transformation of the linear speed of the LIM to an 
angular speed is given by: 

ν
τ
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p
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where:  represents the linor angular speed and τ  is the 

step polar, which is given by 
rω p

PDp =τ .  From the 

knowledge that dtd ee θ=ω , the linor flux position angle 
related to the primary can be determined  by : 

∫ ∫+= dtdt slre .. ωωθ                        (22) 

 The linor flux instantaneous position angle has to be used 
in the transformation of the stationary reference systems to 
synchronous and vice-versa,  as can be seen in the block 
diagram of the vector control in Figure 3. 
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Figure 3 - Block diagram of the  vector control for LIM 

 
B. Determination of the primary reference electrical current. 

The aim of the vector control is obtaining the linor flux 
and thrust decoupling. Therefore a constant steady-state linor 
flux is necessary.  

 
The linor flux can be separated in two parts as can be seen 

in the appendix. The  “1” index parts are independent of the 
extremities effects and the “2” index parts are dependent of 
the end effects. The linor flux has to be considered constant, 
therefore (17) can be rewritten as: 
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Replacing (24) in (23) one can obtain (25) after some 
mathematical manipulations. 
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 From (26), it can be seen that the linor d-axis flux (index 
“2”) is a function of ,  and , where  is a 1dsi 2dsi ( )Qf 1dsi

  
 
 



control variable.  
In order to obtain the control current ( )e

dsi 1 , by maintaining 
constant the linor reference flux ( )*e

drλ , equation (27) has to 
be considered: 
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 The primary reference current ( )*
1

e
dsi  is applied to a PI 

controller as seen in Figure 3. 
 

IV. VECTOR CONTROL SIMULATION FOR 
LIMs 

 
 The LIM values used in the dynamic simulation are shown 
in Table  I. 

TABLE I 
Linear Induction Motor Values  

LIM –1 

Data   Values (Unit) 
Primary length - D   210 mm 

Primary width    45 mm 
Pole number - P   2 

Pole pitch   98.5 mm 
Slot number   12 

Linor thickness   4.5 mm 
Air gap length   10 mm 

 Primary  resistance - R   
s

 5.348 Ω  

Linor resistance -  
rR   11.603 Ω  

Primary inductance -  
sL   0.1073 mH 

Linor inductance -  
rL   0.094618 mH 

Magnetizing inductance - L  
m

  0.09213 mH 

Inertia moment – J   0.00247 Kgm2 

 
Figure 4 shows a SIMULINK block diagram of the vector 
controller. In the simulation, the following values were used: 
a 2 m/s velocity reference signal at 0.1 s, and a load of 60 N 
applied in the [0.3, 0.4] second interval. Figure 5 shows the 
thrust response obtained with the above reference signal 
values. The d-axis linor flux should be constant and equal to 
the reference linor flux of 0.5 Wb. Instead, as shown in 
figure 6, a small disturbance occurred soon after the 
reference velocity and load were applied. A PI controller was 
used to obtain the linor flux values shown, which are 
considered satisfactory. The q-axis flux shown in figure 7 
has a near-zero value, which is a satisfactory response for the 
vector control. Figure 8 shows the reference velocity and the 
actual velocity attained by the LIM, where one may note that 
even with the application of the load in the [0.3, 0.4] second 
interval, the resulting velocity disturbance was small, which 
is a very satisfactory result. Figure 9 shows the d-axis and q-
axis primary currents, while figure 10 shows the current of 
one phase applied to the LIM. In Figure 11 we have a 
comparison between the d-axis linor fluxes for two cases of 
reference velocity values: 2 m/s and 5 m/s. Note that, for the 
higher velocity the disturbances are more marked, due to the 
increased extremity effects appearing at higher speeds. 
 

 
Figure 4 - Simulation diagram of the vector control for 

LIM by using the SIMULINK. 
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Figure 5 - Thrust simulation . eF
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Figure 6 -  Simulation: Linor d-axis flux (solid line) 

and linor flux reference λ  (dashed line) of  0,5 Wb for 
the speed reference to 2 m/s 
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Figure 7 - q-axis linor flux simulation 
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Figure 8 – Simulation: Linor speed ν  (solid line)  and 

speed reference (dashed line)  of  2 m/s. 
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Figure 9 - d-axis primary current of “1” index (solid line)  

and  q-axis primary current (dashed line). 
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Figure 10 - Current simulation of a LIM primary phase 

 
Changing the speed reference to 5 m/s, one can verify that 

the d-axis linor flux becomes less than the speed reference of 
2 m/s, due to the increasing of the end effects caused by the 
increased speed as shown in Figure 11. 
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Figure 11 - Simulation: Linor d-axis flux (solid line) for 
the speed reference to 2 m/s and (dashed line) for the 

speed reference to 5 m/s. 
 

V. CONCLUSIONS 
 

As a first step in studying the vector control for LIM by 
using vector control techniques, we have obtained good 
results in comparison with what has been predefined.  

 
In order to have a good vector control the d-axis linor flux 

graphics must be constant in relation to the preset reference. 
However, the q-axis linor flux would be zero. Small 
variations in the linor flux were observed as shown in 
Figures 6 and 7. These variations come from the end effects. 

 
One can observe that the end effects become more 

accentuated with increasing speed, as can be seen in Fig. 11. 
 
Equations (19) and (27) were used in the LIM vector 

control and they have worked very well in relation to the 
speed reference and strength load reference as can be seen in 
Figures 8 and 5, respectively. 

 
It can be seen that in spite of the small d- and q-axis linor 

flux variation, the responses have been maintained without 
suffering from oscillations maintaining the high performance 
proposed by the vector control. 

 
We point out that new methodologies are been studied in 

order to consider the parameter variations and minimize the 
linor flux variations.  

 
VI. APPENDIX 

 
A. Separating the dq Primary Currents from the Linor 
Current 

The d- and q-axis primary currents and linor current of the 
LIM can be determined after some mathematical 
manipulation of the equations (1) to (8), and it is obtained: 
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The dq primary currents and linor current of the LIM can 

be separated in two parts, where the first one is independent 

  
 
 



from the end effects and the second one is dependent from 
this effect. The first part behaves as a conventional induction 
motor current and the second part represents a function of 
the attenuation that exists in the LIM due to the end effects. 

 
In order to obtain these currents, it has to be considered 

that the linkage flux is separated into two parts: the first  
refers to the linkage flux that is independent of the end 
effects and it will be denoted by the “1” index. The second 
part refers to the linkage flux that is dependent from the end 
effects and it will be denoted by the “2” index. These fluxes 
are obtained from the following equations: 
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Inserting the equations (A.3 to A.6) in (A.1 to A.2), and 

after some mathematical manipulations one can obtain the 
following expressions: 
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B. Separating the Linkage Flux. 
The linkage flux can be obtained from the following 

differential equations: 
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