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Abstract — This paper proposes a non-linear discrete large
signal model for space vector modulated three-phase
converters. This model take into account the switching
sequence, sampling instants and switching frequency. In
addition, this discrete non-linear model does not require that
the ripple over the variables to be small. Furthermore, two
average linear models are compared. The proposed linear
model, by least square approximation, results in better
approximation for lower ratios of the switching and
fundamental frequency. Simulation results are presented in
the paper.

KEYWORDS

Discrete Models. Modeling and Control. Space Vector
Modulated Converters.

I. INTRODUCTION

In the design of the three-phase PWM converters for
uninterruptible power supplies (UPS) and active filters, there
are two main steps: (i) the choice of the modulation strategy
and filters design, and (ii) the controllers design to achieve a
predefined dynamic performance. Regarding the choice of
the modulation strategy, several techniques, differing in
concept and performance, have been developed in the last
decades. Among them, space vector modulation has been
increasingly used [1-5], because it allows reducing the
commutation losses and/or the harmonic content of the
voltage (or currents), as well as to obtain higher amplitude
modulation indexes if compared with conventional
techniques[1,2]. Moreover, space vector modulation can be
easily implemented in digital processors, [3,4,5]. Once
defined the modulation technique and the filter design, the
controller design for the closed-loop operation can be
performed. Related to the controller implementation, it is
important to point out that digital control techniques for
three-phase PWM converters are widely used. On the one
hand, due to the well-known advantages of the digital
controls in terms of flexibility to upgrade and easy of
implementation, and on the other hand, due to availability of
relatively low cost microcontrollers and digital signal
processors (DSP) with dedicate peripherals to control static
converters.

The first step for the controller design is to derive a dynamic
model. Several papers on the literature deal with continuous
dynamic models for three-phase PWM converters. In [6],
average and small-signal models for three-phase PWM
converters are presented, in stationary and rotating
coordinates. This average model assumes that the control
inputs vary slowly relative to the switching frequency, as
well as that the ripple over the variables of the interest are
negligible. Therefore, its validity is restricted to the
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frequency ranges significantly smaller than the converter
switching frequency.

On the other hand, [7] proposes equivalent circuits for the
three-phase converters and filters in rotating dg coordinates
using time-varying ideal transformers, where their
transformation ratios are equal to the switches duty ratios
and a “gyrator” is introduced, to take into account the
resulting crosscoupling between the dg axes. From these
equivalents circuits, is simple to find a steady state operating
point as well as the small-signal input to output transfer
functions. Afterward, a systematic approach to small-signal
modeling three-phase PWM converters is proposed in [8].
Transfer functions useful for the controller design in the
continuous time-domain are derived from the small-signal
models obtained by the linearization of the large-signal
model at an operating point, assuming again that the ripple
variables due to the switching are negligible. In [8], the authors
investigate the effects of the controller digital implementation
and the discrete nature of the PWM modulation, which has
been taken into account through a ZOH on the inductor
currents. However, it is important to note that this continuous-
time model only describe the converter operating for balanced
three-phase systems. Subsequently, in [9] a small-signal model
for a space vector modulated converter for two specific
switching sequences, have been proposed. This model reveals
that the modulator introduces not only a gain, but also time-
varying delays and additional crosscoupling into the control
inputs when the system is representing in rotating dg
coordinates. On the other hand, a reduced order small-signal
model for three-phase PWM rectifiers is proposed in [10],
where the six-step PWM modulator [11] is used. Again, this
continuous-time model is valid for this considered modulation
and it is inadequate for discrete-time controllers design.
Discrete-models are preferred over continuous models since
the delays of the digital implementation can be easily
modeled and the resulting controller is in an adequate form
for its implementation. Large-signals average discrete-
models have been widely used for controller design of the
three-phase PWM converters, [12-17]. These models are
obtained by approximating the three-phase PWM converter
by a ZOH, and then, solving the linear time-invariant state-
space equation associated with the filter and load, along of
one discretization period [12,14,16,17].

These discrete models, in a similar way as the large-signal
average continuous model [6], are independent of the
operating point, and they consider that the ripples over the
variables of the interest are small. However, its validity
range, still not well defined, and the impact of the sampling,
modulation strategy and filter cut-off frequency, (on the
voltages and currents using for feedback), have not been



reported in the literature. Moreover, an additional
aggravating appear in medium and high power applications,
where the switching frequency is low to limit the switching
losses. As a result, low-order harmonics on the sampled
variables can appear, depending on the modulation strategy
and/or the sampling instants. These phenomena can occur as
well, when the filters are light, making the ripple over the
controlled signals more significant. It is important to point
out that neither previous model describes those phenomena.
The direct utilization of the measurements values containing
harmonics, to compute the control law, degrades the system
performance [1,18,19]. Therefore, to achieve a good
performance, its required that the measurement values appear
without harmonics. Some techniques to avoid the harmonics
into measured variables have been proposed. One is the
method of instantaneous sampling, which suggests that it is
possible to detect the fundamental component of a current,
by sampling it at the midpoint of the zero vectors, when a
space vector modulation with a symmetric switching
sequence is utilized, [18,19], or in the peaks of the triangular
carrier of the conventional comparison method [18]. Another
technique employs a low-pass filter in the measured
variables, and then, samples the filtered variables [18]. This
technique requires an additional hardware and introduces
delay on the sampled variables. Attempts to compensate the
additional dynamic of the filter by delaying the sampling
instants have been presented in [19]. However, this technique
increases the hardware complexity, and noises sensitivity.
For example, if a sampling is performed during a
commutation. It is worth to mention that the above-
mentioned efforts to eliminate harmonics on the measured
variables are restricted to the inverter for motor drives
applications, where the controlled plant can be approximated
by a first order model. In addition, the impact of utilizes
different switching sequences and sampling strategies have
not been investigated.

The focus of this paper is to investigate the impact of the
different switching sequences, as well as different sampling
strategies in digitally controlled three-phase PWM
converters for UPS applications. A large-signal non-linear
discrete model of the three-phase voltage-fed space vector
modulated converter is proposed. This discrete model is
compared with the linear model obtained by the
approximation of the PWM converter by a ZOH. The impact
of the switching frequency, sampling, cut-off filter frequency
as well as the switching sequences is investigated in details.

II. CONTINUOUS NORMALIZED MODEL OF THE

OUTPUT FILTER AND LOAD
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Fig. 1 — Three-phase Inverter and LC filter

A. State-space continuous model in stationary abc frame
A typical three-phase voltage source inverter with LC filter and
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load found in UPS applications is shown in Fig. 1. The DC link
voltage usually has low impedance and can be considered as an
ideal voltage source. On the other hand, the output LC filter and
load can be modeled by the following state-space equation,
where the load is considered as disturbances, that is:

x(®)=Ax()+ Bu(@®)+Fw() (1)
The matrices A, B, F in (1), can be found in the Appendix,
and the vectors x, u and w have been selected as:

. . . T T
X= [la lb lc Va Vb vc] >, U= [u12pwm u23pwm:| H

w=[i, i, i.]
Aiming to limit the dynamic range of variables for a fixed-
point implementation of the controller, a linear
transformation that normalizes the circuit variable is applied
to (1). By choosing the base values, the normalized voltage
and  current  variables can be  written  as:

v . 1
V., = % s L, =
base base

Now, defining a normalizing linear transformation T, as a
diag(l/lbase 1/Ibase 1/Iba:e I/Vbase I/Vbase I/Vbase)s the
normalized state, input and disturbance vectors become:

Xp () =Tyx(t),, u(?) = Vbaseun @), w)= I}m.s-ewn ()
As a result the state equation (1) can be written in a compact
form as (2),
X, () = T,AT,"x, (1) + T,BV,,u,(t) + T,FL, w,(). ()

B. State-space continuous model in rotating dq frame

By representing (2) into the off frame and then in the
rotating dg frame, see (A2) and (A3) in Appendix, the state-
space normalized continuous model of the LC filter and load
is obtained, as described by (3).

where, the matrices A, By, and Fy, are given in (A4) and,

T T T
X4 :[vd v, i iq] , Uy :[udpwm ”an] s Wy :[lod qu] .
Note that equation (3) is a normalized continuous model
where ug pym and u, p, are the voltages produced by the
inverter represented in the rotating dg frame.
X, (O)=A,x,O+B,u, O+F,w, (), (3)
In order to obtain a discrete-time model, the equation (3) must
be solved from the beginning to the end of a sampling period
T. Fig. 2, shows a block diagram representation of a three-
phase PWM inverter with the discrete control action generated
in the dg frame. It is assumed that the sampling and updating
control laws are equal. Typical waveforms of uy pum and 1y pym
are shown in Fig. 3. It is possible to see, that these voltages
depend on the discrete control actions u (kT) and uy(kT) as
well as the inverter modulation technique. In the next section,
it is derived a discrete average state-space model, which is
often used in the design of the discrete-time controller for the
three-phase PWM inverters.

1II. THREE-PHASE PWM INVERTER DISCRETE
AVERAGE STATE-SPACE MODEL
In order to obtain the discrete average state-space model for the
three-phase  PWM inverter, the following assumptions are
required: (i) the sampling frequency is much higher that the
fundamental frequency; (ii) the ripple over the sampled variables
are negligible or they are sampled at their mean values.
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Fig. 2. — Block diagram representation of three-phase SVM inverter model in rotating dg frame.
Z.OH: zero-order hold, SVM: Space Vector Modulator. T: Sampling Period.
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Fig. 3 — Typical PWM output voltages produced by the three-phase
inverter in the rotating dg frame. From top to bottom iy pym, Uy pum

With (i), 6(kT) is almost constant in a sampling period,
allowing the discrete dg-aff transformation and the
continuous of-dg transformation to be canceled out. The
second assumption is required since uy py, and u, ., are
pulsed voltages, as shown in Fig. 3. As a result the sampled
vector X4,(kT) may be different from their average value in a
sampling period.

If the assumptions made are valid, 4y pum and uy ,um can be
represented by their average value in a sampling period. As a
result a discrete linear time invariant model is obtained by
solving (3) in one sampling period, that is,

T -1
x,, (k+1)T) =" "x,, (kT) + j e TdB u, (KT), (4

or in a compact form,
x,, (k+1)=Gx, (k)y+Hu, (k), (3)

where: G =¢"" andH = Adq'1 [eA""T —I] B, , if the inverse

usKT), [ ppalkT), L(kT),
-1
w6, |/ olus®D) TounMi 1 (kT

TO(kT)

of Ay, exist. The linear parameters used later to comparing,
are defined as: [H, H, H, H,]'=Hu, (kT).

dg

As a result of the above simplifications the block diagram of
Fig. 2 is rendered to the one shown in Fig. 4.

Mk_Tl/4 - udpwm(t)
T

wim | ZOH 1 Vae fugpn)
T

Fig. 4 — Simplified block diagram representation of the three-phase

SVM inverter.
If the assumptions made at the beginning of this section are
violated, a non-linear discrete model should be considered to
describe the relationship between the input and output
variables of three-phase PWM inverter in the rotating frame.
Next section derives this model and later, the range of
validity of the average discrete model SVM inverter (5) is
investigated.

IV.THREE-PHASE SVM INVERTER LARGE-SIGNAL
NON-LINEAR DISCRETE STATE-SPACE MODEL

This section develops a discrete-time large-signal non-linear
model of the SVM three-phase inverter. Lets us consider the
block diagram representation of the SVM three-phase
inverter of Fig. 5. In this block diagram, the discrete rotating
dq to stationary af frame transformation, is defined as:

u, (KT) = u, (kT)cos (0(kT)) - u, (kT)sen (0(kT)),

u, (KT) = u, (KT)sen (O(T)) +u, (KT)cos (O(AT)) .

From the control actions u4(kT) and ug(kT), the duration times
of each non-zero switching vectors can be determined as:

LT ] [u (kT)
L(kT)}T”WM" Lﬁ(m)}’ )

udgwm(t )
dq Ugpwm(l )I

uot(t) > OLB

abc

0tl3 uﬁ(t) -

Te(t)

Fig. 5 - Blocks diagram of the SVM three-phase inverter
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where M;, is the decomposition matrix associated with the
sector 7, for i = 1,...,6. Alternatively, the time durations of
each switching vectors, can be expressed as in (8) and (9).

4 (k1) =T, (m,;, T, (BKT)u,, (KT)) , ®)
L(kT)=T,,,(m,,, T, (OKT)u,, (kT)) )

where m;; and m,; are rows of the M; matrix.

These duration times and their distribution along of a
switching period are shows in Fig. 6, where symmetric
switching sequence along the sector 1, is considered.
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Fig. 6 — Symmetric space vector modulation pattern in abc
coordinates for the sector 1.
By considering the symmetric switching sequence of Fig. 6,
the PWM phase voltage produced by the inverter, can be
expressed as

s, = &, (u, (kT),u, (KT),0(kT),1), (10
Sy = &ai (ud (kT)auq (KT),0(kT),t), (11)
Sy = & (ud (kT)auq (kT),B(kT),t) > (12)

where, g1;, g» € g3 are time-variant and non-linear scalar
functions in stationary abc frame. Therefore, PWM continuous
time inverter output voltages in stationary of frame and in the
rotating dq frame, can be expressed as,

S, .
ua(t) _ ! udpwm(t) _ ua(t)
0] fl] - [t mof1]. o

3i
where, Tqp and T,,(0(¢)), are given in Appendix. Aiming to
obtain a compact representation, the continuous time inverter
output voltages in rotating dg frame can be written in the
following form:

_ udpwm (t) _ _gdi (ud (kT)nuq (kT)ve(kT)ve(t)at)
Y=, 0| 7| g, (D, kDG 000 | Y
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Fig. 7— PWM voltages in rotating dq frame for the sector 1.
The equation (14) can be used to obtain the non-linear
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discrete state-space model of the SVM inverter. This is
accomplish by solving (3) from the beginning to the end of a
sampling interval, that is,

X, (k+DT) =™ "x,, (KT) +

+J'<k*”T oA DT
kT

. . (15)
) qu udq(-,t)dr

where uy,(.,7) is given by (14) and typical waveform of its
entries are showed in Fig. 7. The equation (15) can also be
expressed as,

X, ((k+DT) = Gx,, (AT) +h(-), (16)
where h(+) is a non-linear time-variant vector function, that is,
By (uy (KT),u, (KT),0(AT))
hy (uy (KT),u, (KT),0(AT))
hy (uy (KT),u, (KT),0(kT)) |
hy (uy (KT),u, (KT),0(AT))

Note that (16), reveals that nonlinearities of the discrete state-
space equation of the SVM inverter are on the function that
relate the inputs with the states. It is important to note, that h(-)
depends as well as of ®, T and the initial angle 6, of the
synchronous frame. Since these quantities are considered
constant, they are not shown explicitly in (17).

In order to explore the nonlinear discrete large-signal model,
next section shows the nonlinearities associated to (17), and
how that non-linear function depends on the switching
sequence, sampling instants and filter cut-off frequencies.

V. EXPLORING THE NON-LINEAR DISCRETE
LARGE-SIGNAL MODEL

In order to understand the non-linear behavior of (16), which
results from switching sequence and sampling instant, as well
as the filter corner frequencies, equation (17) can be solved in
each sector of the output voltage space one fundamental
period. The solution of (17) has been obtained for two
sampling frequency ratios my, (m, = f; / fi, where f; is the
sampling frequency and f; is the fundamental frequency).
The switching sequences for this three-phase inverter are
defined in [5] and the sampling instants are shown in Fig. 8.
Furthermore, the discrete control voltages u,(kT) and u,(kT)
are kept constant, and the cut-frequency of the output LC
filter, f;, has been selected as 1.3kHz, and the fundamental
frequency is fi = 60Hz. The sampling frequency and the
switching frequency are equal, as in Fig. 8.

T prm

-

h(u, (KT),u, (KT),0(kT)) = (17)

y

i g, ()T i

T T K

(k—1)T kT (k+ | )T

Fig. 8 — Sampling instants and control law updating.

The non-linear functions #4; together with H; linear parameters
defined in section IIl, are plotted in Fig. 9 and Fig. 10, for f;
equal to 10kHz and 2.5 kHz, respectively. By comparing them
it is possible to conclude that as the filter corner frequencies
approaches the switching frequency, the amplitude of the
alternating components of /() increases. Among them, the 3™



harmonic is the predominant. As a results, 2™ and 4™ harmonics
appears in the stationary abc frame, even with u(kT) and u,(kT)
constants. It has been found out that the relative amplitude of
the u,(kT) and u,(kT), do not affect significantly the amplitudes
of the A(-) functions. In addition, its concluded that for these
switching sequences and sampling instants, the amplitude of the
alternate components depend of the filter cut-off frequencies
but not of the filter parameters, L and C. This is because, for
the selected switching sequences and sampling instants, the
inductor currents are sampled near to their average values in
a sampling period, as shown in Fig. 11(c) and (d). On the
other hand, the voltages are not sampled at their average
values, Fig. 11(a) and (b). As a result, large low frequency
components are present in the stationary abc frame as can be
observedo %n the sampled line-to-line voltages, Fig. 12 (a) and
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depends on the choice of the switching sequence, and
sampling instants as well as the corner frequencies,
demonstrating the sources of these oscillations and of the
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The oscillation is at 180 Hz in figure (c) and (e). On the other hand, (b), (d) and (f), shows similar variables for the second sequence. The
oscillation frequency is of 300 Hz in figure (d) and (f). The filter parameters are L = 250uH, C = 60pF. m;=42, f;=2.5kHz, f.=
1.3kHz. u;=0.7071, u, = 0.
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VI. IMPACT OF THE SAMPLING INSTANTS

In this section are presents two possible solutions to reduce the
amplitudes of the low order harmonics in sampled variables.
With loss of generality, let us consider that in all cases the
filter parameters are, L = 250uH, C = 60uF, f. = 1.3kHz.
Switching frequency is 2.5kHz and the discrete control
actions are, uz = 0.7071, u, = 0.

Method A:

In this method, the sampling and the control law updating
are performed twice in a switching period, as shown in

Fig. 14 that is, the sampling frequency is f; = SkHz.
LT Tpum ! :
| Vit~ DT | L T |
 wak DT ug G+ 1T |
A A A A
(k-1)T  (k-2)T kT (k+1)T  (k+2)T

Fig. 14 — Sampling instants and control law updating. Method A.

The phase voltage v,;, and inductor current i,, are shown in
Fig. 15, where also are shown the three-phase PWM
voltages produced by the inverter. The (*) in Fig. 18(a)
and (b), indicates the instants when the variable is
sampled. Fig. 16(a) shows the sampled output voltage v,,
and Fig. 16(b) the harmonic spectrum of this voltage, and
Fig. 17, the voltages and currents in rotating dgq frame.
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Fig. 15 — Simulation Results. (a) Line-to-line voltage v, and (b)
Inductor current i, PWM phase voltages produced by the inverter.
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Fig. 16 — Simulation Results. (a) Sampled line-to-line voltage v,
(b) Harmonic spectrum presented in the sampled output voltages.
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Fig. 17 — Simulation results. (a) Shows the voltages in rotating dg
frame. (b) Currents in rotating dg frame. The low oscillations are at
360 Hz and the higher are at the half of switching frequency.



Method B:

In this method, the sampling is performed twice in a switching
period, while the control law updating only once, as shown in
Fig. 18. The average of this sampled values are used to
compute the control law. Switching frequency is 2.5kHz, and
sampling frequency, f; = SkHz.
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Fig. 18 — Sampling instants and control law updating. Method B.

The phase voltage v,, and inductor current i,, resulting of this
method, are presented in Fig. 19(a) and (b), where also are
shown the three-phase PWM voltages produced by the
inverter. The (*) in Fig. 19(a) and (b) represents the average of
the two last samples. Fig. 20(a) shows the average
sampled output voltage v,, and Fig. 20 (b) the
harmonic spectrum of this voltage. In addition, Fig. 21,
the voltages and currents in rotating dq frame.
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919

300+ ' ****L*** ‘ R
2000 * .
100F .
OF+ * #

100k + *

Sampled Line Voltage, (V)
+
+

-200F + )

* *

-300F kgt 1

0028 003 0032 0034 0036 0038 004 0042 0044
Time, (s}

1.05 = T

Vah/ Vbase
s o
wn ~
w O

I I
| |

e
)
=N
I
|

ol —— = | I ! !
2 3 4 5 6 7 8 9 10
Harmonics of fi
Fig. 20 — Simulation Results. (a) Average sampled line voltage v,
(b) Harmonic spectrum presented in the sampled output voltages.

AP N PRI e VNN PN WG VIV W W
07 q
08F
3 osf
&
o 04
=]
g
?0 03F
£ 02r
=
>
01f
OWW
0k . . . , . . L
10 20 30 40 50 60 0 80
Samples
(a)
id - ig
08 MWWWW%

Currents in dq, {p.u.)
[=) o f=] [=) f=] f=] =]
D N . T O & I > BN

=}

AV VAV
19 20 30 40 50 &0 70 80
Samples
(b)
Fig. 21 — Simulation results. (a) and (b), shows the voltages and
currents in rotating dgq frame respectively. The oscillation is at the
low frequency of 180 Hz




The Method A requires a computational effort greater than
the Method B. Both methods reduce significantly the low
order harmonic content if compared with the method of Fig.
8, and the harmonic spectrum of the output line voltages of
Method A, Fig. 16, it is enhanced regarding the other ones
two. On the other hand, the variables in rotating dg frame
have high frequencies oscillations at the half sampling
frequency. But is possible to see that the ripple over the
inductor currents is reduced in the Method A, Fig. 15, is
compared with the others two. Furthermore, the
computational effort is reduced in Method B, since the
additional sample does not increase significantly the CPU
overhead and the variables in rotating dg frame appear
without high frequency oscillations. Finally, the method
depicted in Fig. 8 requires a least computational effort being
more to adequate for high switching frequencies, since in
these cases there are small output voltage and current ripples.

VII.IMPROVED DISCRETE MODEL

This section proposes an improved model that allows to
carry out the controllers design using linear time-invariant
systems techniques. Starting from the nonlinear model,
proposed in Section IV, it is possible to obtain a linear
model,

approximated model. This can be obtained
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(c). Average of the function /; and parameters H;.
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computing the A(+) functions (17) for different pairs of
[44(kT),u,(kT)] in one fundamental period, in a such way to
consider all the possible operating points of the three-phase
inverter. Then, a least square approximation of the average
value of the each nonlinear function #Af() over the
fundamental period can be obtained, that is,

hy(e) }71 }_11 = [}711 Ez][”d u, ]T
Iy (+) }72 }_lz :[]'_121 ]/_‘22][%1 u ]T
~| — | where, = = L
NQ) hy hy =[hy,  hy]lu, u,]
h()] b, hy=lhy  hollu, ]

where, the /; are the parameters of a linear model result of
the lower sum of the square errors in one fundamental
period.

In Fig. 22 are shown two linear approximated models, in
this case only for 4, &, functions, and H,, H, parameters,
since the others appear similar. The first one is the average
model obtained in the Section III, and the second is the
described above. These linear models have been obtained for
m, of 168 and 42. For large values of m,, these models
converge, however, for lower values of my, the proposed
least square based model results in a better approximation
since it results in a lower sum of the square errors.
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Fig. 22 — Comparison of the average discrete non-linear large-signal model /,(+) and the average discrete (ZOH) linear model H. (a), (c),
(e), (g), my=168, f, = 10kHz. (b), (d), (f), (h), m;=42, f; = 2.5kHz.

SUMMARY

This paper proposes a large-signal discrete non-linear model
for a voltage-fed space vector modulated three-phase inverter
in rotating dg coordinates. This model consider the ripple
over the variables of the interest as well as takes into account
the impact of the switching sequence, sampling instants and
corner frequencies. It is found out that as the switching
frequency increase with respect to the filter corner
frequency, ZOH average model converges to the average
model obtained from the non-linear time-variant large-signal
model. However, if the assumptions made for the ZOH
average model are violated, an improved discrete nonlinear
model, should be considered to describe the relationship
between the input and outputs of the three-phase space
vector modulated inverter in rotating frame. It has been
found out, that the selection of the appropriate sampling
instant and switching sequence, can be to reduce the low
order harmonics in the sampled variables when the filter
corner frequencies approaches the switching frequency.
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APPENDIX
The matrices A, B and F of the state-space model of LC filter and load in equation (1), are:
o o o -2 L U
3L(1 3L(I 3L(I r 7
) 5 ) 2 b [ T
0 0 o — — — 3L 3L
3L, 3L, 3L, ° . o0 0 0
) . 2 LI 0 0 0
0 0 0o — — = 3L, 3L,
3L, 3L, 3L, ‘ ‘ Lo o
A= | ,B=| 1 2 |, F=|"(¢ (A1)
— 0 0 0 0 0 3L, 3L, 1
¢ 0 -= 0
! 0 0 C
o = 0 0 0 0 0 0 o o -L
| 0o 0 i cJ
0 0 — 0 0 0
L C _
The linear transformations used to transform the three-phase systems to stationary of coordinates, is given by (A2),
1 1
2 2 2
T, = \/: , (A2)
"3, BB
2 2

and the linear transformation that transform the system in the a8 coordinates to the rotating dg frame, is given by (A3).

cos(0(z)) sen(0(2))
T, (1) = . (A3)
—sen(0(¢z)) cos(0(2))
The matrices of state-space equation of the large signal linear model in rotating dg frame are given by
1 | —
0 () E 0 r 0 0 9 - 1 0_
-o 0 0 1 00
A ¢ B ! 0|, F 0 ! (A4)
d = . d =|— , d = -1,
A R R ' c
L, 1 0 0
1 0 T 0 0
0 -—— -0 0 L L] . -
L L” .

where “®” is the desired output frequency.
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