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Abstract – This article has the objective to present a 

brief revision of the techniques more generally used in the 
position sensor elimination in a Switched Reluctance 
Motor. For each speed level, different techniques are 
indicated for a good system operation. A new technique 
of position sensor elimination is presented, based in 
intelligent techniques with neural nets and fuzzy logic. It 
uses only phase voltages and the reference current signals 
to obtain the position estimation. Experimental and 
simulation results are presented showing its good 
performance but also some points that are currently 
being improved.  
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I. INTRODUCTION 
 

The perfect operation of a switched reluctance machine 
depends essentially on the correct excitation of the phases in 
synchronism with the position of the rotor. A resolver or 
encoder can solve totally this necessity. They are capable of 
giving the necessary information of the position for the 
correct application of the pulses. 
In some applications, these sensors are not desirable for 
different reasons: cost, size, weight, inertia and reliability. 
This article presents some strategies of elimination of sensors 
in switched reluctance motors and proposes a new strategy 
using neuro-fuzzy learning. 
The operation of the SRM is based on the variation of the 
flux as a function of the angular position of the rotor. The 
basic equation of phase voltage is given by: 
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Where: n is the total phase numbers, vj is the voltage applied 
in phase j, R is the winding resistance per phase, λ represents 
the flux in the stator and t is the time. 
The dependence of the flux with the position is the key point 
for the operation without sensors. Inevitably, the great 
majority of the existing techniques of sensors elimination are 
based on this basic principle to obtain the position 
information. The typically measured variables are: voltage, 
current, current rising time or current falling time. The 

derived variables are: inductance, flux and EMF. The torque-
speed curve can be divided in 5 regions. 
As shown in Figure 1, below the speed base (smallest speed 
where you can extract the maximum power) the torque 
remains constant. These regions (below the speed base) offer 
flexibility for the current control; allow getting the desired 
performance for the motor. It is important to know that in 
regions 1 and 2, the counter EMF is smaller that the DC bus 
voltage and can be neglected. In these regions, there is 
always a moment, during the commutation sequence, when a 
determined phase is not energized. At this moment, one 
voltage pulse signal is injected in this phase with the 
objective to measure the inductance. Depending on the 
current time fall and its value, the position can be estimated. 
Some limitations to this estimation strategy are the eddy 
current effects in the iron and mutual magnetic linkage 
between the phases. Another restriction is that this strategy 
produces a significant braking torque. 
More recent works present this technique combined with 
observers [1]. Another work proposes a techinique that uses 
an amplitude modulation [2], however it has the disadvantage 
to need an external circuit, which adds cost and complexity to 
the system. 
In [3], a voltage measurement method is presented. The 
operation principle is based on the induced voltage 
measurement in one of the non energized phases. This 
voltage is induced by the current that circulate in the 
energized phase. Depending on the rotor position, this 
voltage varies and so, an electronic circuit captures this 
signal, which is processed by a microcontroller, in order to 
determine the commutation time.  
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Figure 1 - Operation modes in sensorless control. 



In region 3, techniques based on diagnosis signals start to 
have some limitations about acurancy and precision in this 
speed level [4]. Therefore, the use of techniques that work in 
the energized phases became suitable above this speed level.  
The method presented in [5] to estimate the rotor position is 
based on the flux and current measurements. It presents an 
wide operation band in such a way being applicable for low 
speeds and high sppeds. It compares the measured signal with 
the value stored in a look-up table to obtain the position 
value. A drawback is the necessity to inject a current pulse 
diagnosis during the inductance fall period of the phase in 
question. In recent works, we have the use of this look-up 
table represented in a fuzy logic system or neural nets [6].  
When the speed increases, the EMF raises and become 
greater than the DC bus voltage. In this situation, the motor 
must operate in single pulse operation (region 4). In this way, 
the current is limited by EMF and it does not reach the 
desired value. Therefore, the current control is not possible 
and the torque is maintained in the desired value by the turn-
on and turn-off angle control. This region is called “constant 
power region”. The operation in region 5 (very high speeds) 
requires high efficiency time algorithms due to physical 
limitation control to operate it in so high speed. In this 
situation definetely the motor is operating in single-pulse. 
The use of observers in this speed level is rare, only having 
exceptions in the flux estimation in induction motor and 
position estimation in PM motors. 
In [7] is presented a proposal of nonlinear model of the 
reluctance motor. The voltage terminals are considered as 
input, the currents are considered as the output and flux, 
speed and position are the states. A disadvantage is the need 
of a powerful computational equipment. However, with the 
development of faster DSPs, this problem will be surpassed 
easily and with possible low costs. For these cases, the 
acquisition of aligned and unaligned positins using the EMF 
or flux variation is recommended. 
 

II. TRAINING AND OPERATION 
 
As shown in last section, many strategies of elimination of 
position sensor in SRM has been investigated. Currently, the 
use of identification techniques using neural nets [8],[9],[10] 
and fuzzy logic [11] is growing up. They have capacity to 
estimate values from a set of inputs, mapping in a satisfactory 
way an output signal. From the ideas presented in these 
articles and also from the article [12], we developed a new 
strategy to estimate the rotor angular position. It is based on a 
neuro-fuzzy system, with 4 inputs: the voltage in all 3 phases 
and the reference of the control current, and as output, motor 
speed that, after integrated, produces the rotor position. 
The use of the voltage and current measured signals to 
estimate the rotor position is sufficiently common, however 
this methodology always have some restrictions. To 
understand how to model an estimator, we must remember 
the equation that describes the system dynamically. 
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We know that flux is a function of θ and i  
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If we replace: λ in equation (2). The result is indicated by: 
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As seen in the equation (5), we can create a relation between 
the position variation, current, voltage and resistance of the 
machine. There are works that use this technique, presented 
in Figure 2. The inputs are phase voltage and phase current. 
The values of λ are obtained by the integration of the voltage 
and current, as shown in the Figure 2. 
However, due to voltage and current measurement errors, and 
resistance variation associated to temperature variation, the 
error estimation can increase. Another situation that occurs is 
that in extreme points, (aligned position and unaligned 
position) the estimation errors are higher. Particularly, small 
errors in the current measurement and in the flux calculation 
generate an important estimation error for larger angles 
(regarding to the next unaligned zone). With the estimation 
proposed in this work, including the non-linearity of the flux 
inside the estimator prevents these errors. The inputs as 
shown in Figure 3 are: voltage variation at each phase and 
respective reference current. The reason of using voltage 
variation is based on the necessity to include the non-
linearity, related to the flux, inside the estimator. This 
necessity is due to the time dependence existent between the 
voltage and the flux and, consequently, the relation between 
the position and the flux.  
 

Vphase Σ

θEstimator

∫
λ

R

iphase

-

Figure 2 – Conventional estimator 
 
A neuro-fuzzy net training is operated using three voltages 
inputs V(k), and V(k-1), and the current reference iref(k) 
(Figure 3). 
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Figure 3 – Proposed Estimator 

 



  
 
 

It is important to remember that the voltage values have 
discrete values of -150V, 0V and 150 V, as shown in Figure 
4. So, to obtain adequate values of tension for the training, it 
is necessary the use of a low pass filter of second order since 
for the same voltage values, one would get different position 
values. Using this filter we get continuous values of the 
tension allowing the training. Figure 5 presents the voltage 
signal before and after the filtering. 
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Figure 4 – Voltage in phase 1, before (up) and after(down) the filter 
 

Therefore, the Figure 3 is better represented when it is 
included a low pass filter (Butterworth second order filter, 
equation (6)) is included, as Figure 5). 
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Figure 5 – Neuro-fuzzy estimator with filter 

 
Through these measurements, the neuro-fuzzy net is capable 
to estimate the speed, thus facilitating the elimination of the 
position sensor. 
With a representative amount of data for the training, the 
system can generate a correlation between V, I and ω. Figure 
6 (a) shows how the neuro-fuzzy estimator is trained offline 
and later used as an estimator of speed and position (Figure 
6(b)). 
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Figure 6 – (a)Training phase and (b) Operation phase 



III SIMULATED AND EXPERIMENTAL RESULTS 
 

The first step to train the neuro-fuzzy net is generating a 
training data set, initially with a constant value in reference 
current (in case 1,5A). For this current value, the equivalent 
speed is 62 rpm ( 
Figure 8). Initially the estimator was trained for only one 
point of operation. However, when the system was operated 
in closed loop speed control, with the reference speed fixed 
in 62 rpm, imperfections are found in the estimation. These 
are then present in the position curve shown in Figure 7 but 
with no significant magnitude.  
For the experimental results acquisition, a signal conditioner 
based in a voltage sensor (LEM) was developed; the voltage 
filter was generated using operational amplifiers (Figure 10). 
The training data is obtained with 1000 points and the test 
data is 500 distinct points, with a different data set.  
For the reference speed of 100 rpm the acquisition of the 
voltage signals, current and speed was made. Voltage and 
current signals are presented in Figure 9 and Figure 11 
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Figure 7 – Estimated and real position 
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Figure 8 – Estimated and real speed 
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Figure 9 – filtered voltage (all phases) 
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Figure 10 – Filter 
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Figure 11 – Reference current 

 
After the training, we got the following output signal (Figure 
13). 
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Figure 13 – Estimated speed 

 
IV CONCLUSION 

 
Simulated and experimental results demonstrated the 
feasibility to use this technique to eliminate the encoder of 
the SRM. 
The next step, currently being developed, is the estimator 
training for a wide band of speed, to allow the operation for 

all conditions. A difficulty observed until this moment is to 
find a good criteria for finishing the learning and the ideal 
number of membership functions to be used.  
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