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Abstract - This paper proposes a comparison
between the Prony’s method and the well-known
Fast Fourier Transform (FFT), for analyzing sig-
nals of power converters. The two techniques have
been applied to synthetic signals. The results show
that Prony is a good alternative when one is deal-
ing with short time windows of analyzed signals
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I. INTRODUCTION

In the last two decades, there has been a great devel-
opment in power electronics. Costs are growing lower
and the number of power electronics devices in indus-
trial plants are increasing rapidly. It is well known that
these devices distort the voltages and currents of utility’s
side. Standards like IEEE 519 [1] are getting more rig-
orous about the limits of voltage and current distortion.
Thus harmonic and inter-harmonic estimation is an issue
of increasing relevancy.

Traditionally, the Fast Fourier Transform has been ap-
plied to estimate the spectrum of currents and voltages of
power systems [2]. Unfortunately, this mathematical tool
has some limitations. There are basic premises in the ap-
plication of DFT [3]. These premisses basically demands
from the data system acquisition a great flexibility and
mass memory. However, it is not an easy task to find out
such acquisition systems.

Parametric modelling is an interesting alternative to
achieve better spectral estimations. Higher resolution is
one key of improvement area [4]. Prony’s method is a
parametric technique for fitting damped sinusoids to the
data. It provides the amplitude, the initial phase, the
damping factor and mainly the frequencies of these sinu-
soids. It is not strictly considered a spectral estimation
technique, but has a close relationship to autoregressive
(AR) spectral estimation. This paper propose a compar-
ison between Prony’s method and FFT to estimate the
frequency content of responses of power converters.

II. FAST FOURIER TRANSFORM

The Discrete Fourier Transform (DFT) is a method to
analyze signals in the frequency domain. It takes into
account the samples y[1], y[2], · · · , y[N ] of the data signal
to generate N complex numbers Y [k], through:

Y [k] =
N∑

i=1

y[i]ejk 2π
N i (1)

The Fast Fourier Transform is nothing more than an effi-
cient way to compute the sum in (1). The direct computa-
tion of (1) leads to a number of operations proportional to
N2. The FFT requires a number proportional to NlogN
computations [5]. Although its high efficiency, misapplica-
tion of the FFT algorithm leads to incorrect results. The
basic premisses to the correct application of FFT are:

1. The signal is stationary.
2. The sampling frequency is equal to the number of

samples multiplied by the fundamental frequency as-
sumed by the algorithm.

3. The sampling frequency is greater than twice the
highest frequency in the signal to be analyzed.

4. Each frequency in the signal is an integer multiple of
the fundamental frequency.

There are three major pitfalls as result of not follow-
ing the premisses above [6]; namely aliasing, leakage and
picket-fence effect. Aliasing can be mitigated by increas-
ing the sampling frequency fs. However, pseudoaliasing
may still occur even if the highest frequency component
is not higher than fs/2. This may be caused by the pres-
ence of a fraction of a cycle of data or by white noise. The
picket-fence is caused by the presence of a frequency that
is not an multiple of 2π

N∆T . The leakage is just a spreading
of energy from one frequency into adjacent ones.

The problems mentioned above can be eliminated if the
signal is truncated so that one considers an integer num-
ber of its cycles. Besides that, the Nyquist theorem must
be obeyed. On the other hand the correct truncation of
the signal demands a previous knowledge of the funda-
mental period of the signal. This means that the correct
application of FFT can only be achieved if one knows the
frequencies contained in the analyzed signal. In the next
section we present the Prony’s method. It can provide the
frequencies in data signal.

III. PRONY’S METHOD

Prony’s method was developed by the French mathe-
matician Baron Gaspard de Prony in 1795. The objec-
tive was to fit exactly p exponential curves to a data
set of 2p points. The modern version was presented by
Hildebrand in 1956 [7]. Let y[1], y[2], · · · , y[N ] be sam-
ples of the signal measured at equally-spaced time instants
∆T, 2∆T, · · · , N∆T . It is required to fit a model of the
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form:

ŷ[k] =
p∑

i=1

[Ai cos(kωi∆t) + Bi sin(kωi∆T )]

=
p∑

i=1

(
cie

jωi∆Tk + c∗i e
−jωi∆Tk

)
,

k = 1, 2, · · · , N, (2)

where the coefficients ci and c∗i are complex conjugates.
Putting zi = ejωi∆t, equation (2) may be written as:

ŷ[k] =
p∑

i=1

(
ciz

k
i + c∗i z

−k
i

)
, k = 1, 2, · · · , N. (3)

The zi are the nonlinear parameters of the model and ci

are the linear parameters. The objective is to find ci and
zi that give y[k]=ŷ[k] for all k. Substituting the samples
of the signal in equation (3) and putting it in matrix form,
we obtain:




z1 z2 · · · zp z−1
1 z−1

2 · · · z−1
p

z2
1 z2

2 · · · z2
p z−2

1 z−2
2 · · · z−2

p
...

...
...

...
...

...
...

...
...

...
...

...
zN
1 zN

2 · · · zN
p z−N

1 z−N
2 · · · z−N

p




.




c1

c2

...
cp

c∗1
c∗2
...
c∗p




=




y[k]
y[2]
...
...

y[N ]




,

(4)
where N ≥ 2p. Equation (4) can be compactly written
as ZC = Y. Note that each zi is complex and of unit
magnitude. They are the roots of a polynomial of degree
2p and therefore, satisfy:

z2p + a1z
2p−1 + · · ·+ ap−1z

p+1 + apz
p+

+ap−1z
p−1 + · · ·+ a1z + 1 = 0.

(5)

The roots of the polynomial occur in complex conjugate
pairs. As a consequence, the coefficients of the polynomial
in equation (5) are symmetric.

Now, let us construct the (1×N) row vector:

A = [1 a1 a2 · · · ap−1 ap ap−1 · · · a1 1 0 0 · · · 0]. (6)

Clearly AZC = AY = 0. Successive row vectors may be
constructed by right-shifting the elements of A and mov-
ing its last element to the first position. Pre-multiplying
Y by each of these row vectors, we obtain:

y[k] + a1y[k + 1] + a2y[k + 2] + · · ·+ apy[k + p]
+ap−1y[k + p + 1] + · · ·+ a2y[k + 2p− 2]
+a1y[k + 2p− 1] + y[k + 2p] = 0
k = 1, 2, · · · , N − 2p, (7)

Solution of these equations provides the coefficients of the
(2p)th degree polynomial and the roots of this polynomial
are the zi. The corresponding frequencies are calculated
from zi = ejωi∆T . Finally, the solution of equations (4) in
the least-square sense yields the linear parameters ci.

In summary, Prony’s method for finding the frequency
spectrum of the signal is:

(i) Assume a suitable value for p and compute the coef-
ficients ai of a polynomial of degree 2p. This step involves
the least-square solution of the system of equations in (7).

(ii) Compute the roots zi of the polynomial and extract
the frequencies from the roots.

(iii) The linear parameters ci are obtained by solving
equations (4) in the least-square sense.

IV. SIMULATIONS AND RESULTS

The simulations in this section have been accomplished
in MATLAB. The first case presents a simulation of a
voltage source converter (VSC) depicted in Fig. 1. The
windowed current signal of phase a and its FFT are shown
in Fig. 2(a) and Fig. 2(b) respectively. It can be noted
that a little bit more than three cycles of the signal were
windowed. It also can be noted that the FFT in Fig.
2(b) presents a great number of spectral rays up to 300
Hz (fifth harmonic) and the biggest one does not happen
at the expected 60 Hz fundamental. The proposed Prony
technique was applied to analyze the same windowed sig-
nal. Its first five estimated frequencies along with their
respective amplitudes and initial phases are shown in ta-
ble 1. From table 1, one can see that there is only two
significative amplitude values related to 60 and 301 Hz, in
other words, the fundamental and fifth harmonics. This
result fits well with the theoretical spectrum of the data
signal, shown in Fig. 3 up to 300 Hz. One should observe
that the amplitude shown in Fig. 3 are half of the ampli-
tudes related to the sinusoids that constitute the signal.
This is due to symmetric property of Fourier transform of
real signals.
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R = 0.44 Ω

L = 11.6 mH

ω = 377 rad/s

C = 0.183 mF

|eab|=|eca|=|ebc|=50 V

Figure 1 Voltage Source Converter

This simple example shows the eficiency of Prony’s
method and that FFT must be used very carefully.

For the second simulation, consider the synthetic wave-
form generated by:

yu(t) = 200 cos(ω1t) + 50 cos(5ω1t) + 70 cos(7ω1t)
+50 cos(19ω1t) + 30 cos(25ω1t) + 30 cos(45ω1t), (8)

where ω1 = 2π40 rads/sec. The Prony method was ap-
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(a) Windowed current signal
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(b) FFT of the windowed signal

Figure 2 Time domain and Fourier representation of phase
a current.

Table 1 Prony parameters

Frequency (Hz) Amplitude Initial phase (degree)
60 9.0999 87.3
301 1.5859 64.0
487 0.0212 85.2
697 0.0042 188.7
1010 0.0494 143.7

plied to 1000 samples of the signal with ∆T = 0.1ms. The
window of the signal is shown in Figure 4. Table 2 shows
the frequency estimation along with their associated mag-
nitudes. We see that the results were quite good. The
FFT of this signal is shown in Figure 5. The result is also
good. But if the frequency of the second component was
216 Hz instead 200 Hz, the FFT would result in an spread
spectral around the true frequency. This signal is shown
in Figure 6 The FFT is shown in Figure 7. On the other
hand, the Prony estimation keeps a good estimation as
shown in Table 3. The estimation can be even better if
the order of the model is augmented to 10. The result is
shown in 4.

The result shown on Table 4 shows that augmenting the
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Figure 3 Theoretical spectrum of phase a current.
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Figure 4 Signal with six components.

Table 2 Prony estimation for frequencies of the signal with
six components-without noise.

Frequency (Hz) 38.7 200.6 279.8 760 1000 1800
Amplitude 196.83 49.51 69.97 49.96 29,98 0,994
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Figure 5 FFT of the signal with six components.

order of the model, we obtain better results. Augment-
ing the order of the model beyond the number of compo-
nents that really exists in the analyzed signal, means that
Prony’s method will estimate spurious frequencies that in
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Figure 6 Signal with six components-one interharmonic.
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Figure 7 FFT of the signal with six components - one
interharmonic.

Table 3 Prony estimation for frequencies of the signal with
six components-without noise and with interharmonic.

Frequency (Hz) 40.80 215.60 280.20 760 1000 1800
Amplitude 196.04 49.83 70.11 50.03 30.01 1.00

Table 4 Prony estimation for frequencies of the signal with
six components-without noise and with interharmonic (or-
der 10).

Frequency (Hz) 40 216 280 760 1000 1800
Amplitude 200 50 70 50 30 1

general are associated with very small amplitudes. These
spurious components can be eliminated from the estima-
tion by a thresholding proceeding.

Prony´s method is known to be very sensitivity to noise.
The next simulation intended to show the effectiveness of
augmenting the order of the model if there is noise in the
signal. Consider the signal described in (8). If we added to
it a white noise (zero mean, unit variance), the Prony es-
timation would degenerate. The Prony estimation for the
six more dominant components is shown in Table 5. They
are all wrong. When the order of the model is augmented
to 30, the results are exact.

Table 5 Prony estimation for frequencies of the signal with
six components-with noise.

Frequency (Hz) 89.2 719.6 1005.9 2426.4 3560.5 4524.6
Amplitude 4.22 0.09 18.06 1.04 0.098 0.87

V. THEORETICAL CONSIDERATIONS ABOUT
PRONY’S METHOD AND FFT

It is worth emphasizing that the Fast Fourier Transform
and the Prony’s method have two distinct goals. The FFT
seeks amplitudes and phases associated to a set of discrete
frequencies previously known. The result shown by FFT
is a graphic and to known the dominant frequencies in
the signal, we are supposed to look for the peaks of this
graphic. Otherwise, the Prony´s method determines di-
rectly the dominant frequencies in the signal.

The two methods are computationally efficient, but the
FFT is faster than Prony’s method because the latter re-
lies on the solution of a polynomial equation. On the other
hand, FFT provides unprecise results if there is no previ-
ous knowledge of the fundamental period of the analyzed
signal.

The results in the previous section allow us to make an
analogy between the FFT and the Prony’s method. The
former one needs a previous knowledged of the frequencies
in the signal, while the latter needs the order. Besides, we
can say that the bigger the size of the window, the better is
the result of FFT. While the bigger is the order of model,
the better is the estimation of Prony.

The problem of the determination of the order of model
is a difficult task. The most usual approach is to use the
the Akaike’s criteria [8]:

AIC[p] = Nln(σ2) + 2p, (9)

where N is the number of samplings and σ2 is the variance
of model error when the order is set in p. As p increase,
the fitness is better, so the variance is reduced. But, at a
certain point, the increase of order does not provoke any
variation in σ2 and the improper increment is penalized
by the second parcel. We must choose p so the criteria
AIC[p] is minimum.

VI. CONCLUSIONS

A comparative study between FFT and Prony’s method
was presented in this paper. The simulations shows that
the Prony method is an efficient tool to estimate the fre-
quencies in the signal. They also shows that FFT must
be used very carefully. Prony’s method is capable to deal
with difficult spectrums with the presence of interharmon-
ics. Nevertheless, the order of the polynomial must be
known a priori.
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