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Abstract – This paper analyzes the stability limits of a 
digital predictive current controller of a multi-loop 
control scheme. In particular, a current control technique 
based on deadbeat response with one sampling period 
delay for a PWM inverter is modeled and the effects of 
filter parameters mismatches on stability and robustness 
of the system under control are analyzed. Simulation 
results are presented and the algorithm is digitally 
implemented in a Digital Signal Processor (DSP) in order 
to verify the validity and drawbacks of the proposed 
approach.  

 
Keywords - Deadbeat control, pulse width modulation 

converters, stability analysis.  

I. INTRODUCTION 

The use of microcontrollers and digital signal processors 
(DSPs) has been increasing in industrial applications, since 
these devices are designed for efficiently optimize real time 
digital signal processing with low computation times and low 
power consumption [1],[2]. As a consequence, digital control 
techniques have become a powerful tool, especially for 
PWM converters [1],[10]. 

Among different digital control strategies, predictive 
controllers with deadbeat response represent more and more 
an attractive option for practical implementations [5], [6], 
[9]. As most digital controllers, they have good performance 
in power converters applications if a reasonable model of the 
system under control is available. The main advantage of 
deadbeat response controllers is that they are designed for 
operation with fixed switching frequency and to have zero 
tracking error after a defined number of sampling periods. A 
simple design, implementation and fast dynamic response 
complement their main characteristics. The drawbacks are 
essentially sensitivity to parameter mismatches and to noise 
and the inherent delay due to computation and inverter 
actuation time [2],[3],[4].  

In recent implementations [7],[8], this inherent delay is 
reduced to one sampling period by executing control and 
sampling routines twice in a modulation period. Another 
approach is presented in [6],[9], where the current controller 
is designed with a two-sampling period delay and the 
sampling period is equal to the modulation period. This paper 
presents a deadbeat current control strategy for a simplified 
converter model, in which a one sampling period delay is 
considered in the control law and the sampling period is 
equal to the modulation period. The control technique was 
developed considering a multi-loop configuration for the 
PWM inverter of a Dynamic Voltage Restorer (DVR) [11]. 

A stability analysis of the current loop is made by 
mapping the closed-loop poles in discrete-time domain and 
investigating the effect of filter parameters mismatches and 
DC link voltage limitation. The control algorithm is verified 
by means of simulation and is implemented on the DSP 
controller of a reduced-scale single-phase power converter to 
evaluate the controller performance and to extend the 
stability analysis of [5], [6], [7] and [9], which are the main 
contributions of this paper.  

II. SYSTEM MODELING 

A. Inverter Modeling  
The power converter is represented by an averaged model 

(fig.1), in which the inverter averaged voltage vC(k) is a 
controlled voltage source with a zero-order hold (ZOH) 
sampling of the PWM reference voltage vREF(t). Indeed, this 
averaged model is effective only if the sampling frequency is 
much higher than the natural frequencies of the controlled 
system [6]. 

The output filter is a LC-type whose second-order 
dynamics is neglected in order to simplify the analysis. Thus, 
a first order model which takes into account only the 
inductive filter is considered. This assumption is correct only 
if the sampling frequency is much higher than the resonance 
frequency of the output filter, i.e., the inductor impedance is 
much higher than the capacitor impedance in the control 
frequency. Consequently, the output averaged voltage v(k) is 
independent from the injected inverter current [5], [6], [9]. 
As this represents a model mismatch that may affect the 
dynamic response, a well known solution in these cases is to 
slightly oversize the capacitor filter to obtain desired 
responses [6]. 

 
Fig.1 – Averaged model of the converter 

For the purpose of stability analysis, the resistance of the 
inductor filter is neglected, since it represents a damping 
factor. Also, according to [8], digital predictive controllers 
are not sensitive to this parameter mismatch, but may 
become unstable when the inductance varies only ± 7%. The 
single-phase converter model can be derived from the 
inductor voltage drop: 
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2) Real case- In practical implementations, there is an 

inherent delay due to computation time which is included in 
the control law as a multiple number of the sampling period. 
In the same way, in sampled carrier-based PWM modulators, 
the minimum actuation delay is equal to one modulation 
period. In the proposed controller, the sampling period is 
equal to the modulation period and the minimum delay 
adopted for the current loop is one sampling period. 

where iL(t) is the inductor averaged current. Discretizing (1) 
with sampling period ∆ and using a trapezoidal 
approximation for the inverter voltage integral, the inverter 
dynamic equation is given by: 

 ( ) ( ) ( ) ( ) ⇒+⋅+=+ ∫
+

dttv
L
1kv

L
ki1ki

1k

k

t

t
cLL

∆  

 ( ) ( ) ( ) ( ) ( )[ ]
2

1kvkv
L

kv
L

ki1ki cLL
++

⋅+⋅+=+⇒
∆∆  (2)    ( )

B.  Control Algorithm 
 

The multi-loop configuration in the control system block 
diagram of fig. 2 is particularly interesting for DVRs, since it 
provides overcurrent protection in the current loop [9]. The 
external voltage loop is responsible for output voltage 
compensation algorithm and load disturbances cancelation. 
Thus, in the current loop, there are two control cases that will 
be next described. 

Fig.2 – Control system block diagram 

1) Ideal case - The adopted deadbeat control technique 
consists in making the phase current error equal to zero by 
the end of the following modulation period (fig.3). In the 
ideal case, there is no delay in the control law, that is: 

 ( ) ( ) ( ) ( )[ kvkv
L

kiki crefLL −⋅ ]∆
+=+1  (3) 

To achieve deadbeat response, the inverter voltage vcref (k) 
calculated in the algorithm must be imposed and the 
reference current becomes: 
 ( ) (kiki refL )=+1  (4) 

 
Fig.3 – Deadbeat Control - timing diagram 

Substituting (4) into (3) and now considering one 
sampling period delay: 

 ( ) ( ) ([ kvkv
L
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∆

+= 1 )] (5) 

As the inverter averaged voltage reference at sampling 
time (k+1) is unknown, equation (5) shall be based on 
previous samples of control variables in order to make the 
control system causal: 

 ( ) ( ) ( )[ ] ( 111 −+
∆
⋅−−−= kvLkikikv Lrefcref )  (6) 

In other words, at instant k∆ the inductor averaged current 
iL (k) and output averaged voltage v(k) are sampled and the 
averaged voltage vcref (k+1) to be synthesized by the inverter 
is calculated by (6). This voltage reference, which makes the 
current error equal to zero at instant ( k+1)∆ , can be seen in 
fig.3. From the point of view of stability analysis due to 
inductor filter mismatches, (6) is better expressed as: 

 ( ) ( ) ( )[ ] ( 111 −+
∆
⋅
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where α is a constant that models inductor filter mismatches. 

III. STABILITY ANALYSIS 

In real systems the actual inductance is slightly different 
from the modeled one, in which consists the stability analysis 
performed in this paper. Substituting (7) into (2): 
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The term of (8) which involves output voltage samplings 
at instants (k-2)∆ ,(k-1)∆ , k∆ , may be interpreted as 
disturbances in the current loop equation. If the sampling 
frequency is high, these disturbance terms may be neglected, 
since the output voltages are almost constant during two 
sampling periods. Applying the z-transform to (8) without 
disturbances terms, the closed loop poles of the resultant 
discrete transfer function are: 

  14
22

1
2,1 −±= αjz  (9) 

In fact, the initial aim of the adopted control strategy was 
to obtain a deadbeat response of the predictive controller, but 
equation (9) shows that the response is not exactly deadbeat 
since the poles are not in the origin. If deadbeat response has 
to be assured, the algorithm must be modified according to 
[7],[8] or [6],[9] to achieve one or two sampling periods 
delay, respectively.  

Figure 4 shows the closed loop poles on z-plane 
for 20 ≤≤α . As it is well known, a control system is 
considered stable if the poles magnitudes in the z-plane are 
less than unity (within the circle in fig.4). According to (9), 
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for α >1 the system is unstable, for α <1 it becomes stable 
and if α = 1, the system is critically stable (oscillatory), since 

12,1 == αz . 

 
Fig.4 – Closed loop poles for 20 ≤≤α  

The relationship between the damped dω and sampling 
frequency sω is: 
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Figure 5 plots the normalized oscillation frequency of 
equation (10) for 0 10≤≤α . When the modeled inductance 
is equal to the real inductance (α = 1), the relationship 
between the damped and sampling frequency is 

61sd =ωω . As α tends to infinity, 25.0sd →ωω  and for 
25.0≤α , the low-order oscillation frequency is not present. 

The performance of the current controller with respect to α  
will be discussed in section V. 

 
Fig.5 – Normalized frequency )sd( ωω  for 0 5≤≤α  

In the previous presented derivation all control variables 
are measured and sampled. In fact, the output averaged 
voltage v(k) can be estimated and one sensor may be 
eliminated. However, as stated in [5],[6],[7],[8], the stability 
limit is augmented when the actual control variable is used 
instead of the estimated (predicted) one. In [7], the maximum 
mismatch of the modeled inductance before the control 
system becomes unstable is 50% for measured values and 
10% for estimated values. In [6], these values are 100% and 

20%, respectively.  Moreover, if the predictor is improved by 
adopting high order interpolations, the computation time 
increase and the poles may become more oscillatory[8]. In 
the case of the proposed approach, a stability analysis of this 
current controller with estimated variables is not justifiable, 
since the system is critically unstable without the inclusion of 
predictors. 

IV. SIMULATION RESULTS  

The system described in fig.1 has been simulated in 
PSIMCAD v.5.0.1 and MATLAB with the parameters of 
table I, for a low inductive load. 

Figures 6 shows the simulation of equation (8) as a 
discrete time model applying ZOH sampling of the control 
variables. The disturbance terms are sampled from a 60Hz 
sinusoidal voltage source. Fig. 6 shows the inductor current 
and its reference for α = 1. In order to obtain the harmonic 
content of the inductor current, a Fast Fourier Transform 
(FFT) algorithm with Hamming windowing was made and 
the result is presented in Fig 6 (bottom), where the amplitude 
is in percent of the fundamental component. As can be 
observed, the inherent 6sω  low-order frequency oscillation 
(eq.10) is present with approximately 20% of peak value.  

TABLE I 
Current controller simulation parameters 

Switching (sampling) frequency 10kHz 
DC-Link Voltage 25V 
Output filter inductance 12mH 
Output filter capacitance 4.4µF 
Load parameters RL=25Ω, LL=12mH 
Sinusoidal reference current, 60Hz  0.74A (peak) 

 
Fig.6 – α  = 1. Reference current (top blue) and inductor current 

(top red), simulated. Inductor current spectrum (bottom), 
fundamental not shown 
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Figure 7 (top) shows that for a normally acceptable filter 
inductance variation of only 5% (α = 1.05), the system 
becomes unstable, which clearly means that the controller is 
highly sensitive to mismatches, as expected. In fig.7 (bottom) 
the same simulation is performed, but the inverter is now 
simulated as a voltage-controlled voltage source and the 
PWM-block is modeled as a comparator whose inputs are the 
inverter voltage reference and a 10kHz centered triangular-
voltage source. In reality, as the output of a physical system 
is always bounded, the controlled system becomes critically 
stable due to DC-link voltage limitation effect in equation (8) 
and the stability limit is higher than expected from equations 
(8) and (9). 

V. EXPERIMENTAL RESULTS 

The control algorithm has been tested in a reduced-scale 
inverter for the simulation parameters of table I in a 16-bit 
fixed point ADSP-21992 Analog Devices Digital Signal 
Processor. The inverter pulses are generated by a sampled 
symmetrical PWM and the synchronization of sampling 
control variables is assured by the DSP. Fig. 8 (top) shows 
the inductor current and its sinusoidal reference for α = 1 and 
the inductor current spectrum (bottom). The low-order 
frequency (fs/6) amplitude, when compared to simulation 
results, is attenuated due to the presence of resistances that 
were not included in the model, as discussed in section II.A. 

 
Fig.7 – α  = 1.05 . Inductor current (top) applying equation (8), 
simulated. Reference current (bottom blue) and inductor current 

(bottom red), DC-Link voltage limitation, simulated. 

For α = 2.0 (fig. 9), the system is not unstable, as stated 
before. However, the inductor current ripple increases and 
the tracking response of the controller gets worse, what can 
be confirmed by comparing figures 8 and 9. Figure 10 shows 
the response of the controller for α = 0.5. The system is not 
unstable, but the tracking response is affected. 

 

 
Fig.8 – α  = 1. Reference current (top blue) and inductor current 

(top red), measured. Inductor current spectrum (bottom), 
fundamental not shown. 

 
Fig.9 – α  = 2. Reference current (top blue) and inductor current 

(top red), measured. Inductor current spectrum (bottom), 
fundamental not shown.  
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Fig.10 – α = 0.5. Reference current (top blue) and inductor current 

(top red), measured. Inductor current spectrum (bottom), 
fundamental not shown. 

As can be seen in figs. 8, 9 and 10, in practice α could be 
increased indefinitely and the system would still have low-
order oscillations, but would not be unstable, due to DC link 
voltage limitation. However, as α  increases, the inductor 
current ripple and the tracking error increase, affecting the 
controller performance. Moreover, in order to avoid 
permanent damages to hardware devices, acceptable current 
ripple values must be considered. These two constraints will 
represent a practical limit for α.. In cases where a low-order 
oscillation frequency is unacceptable, the proposed controller 
is not recommended. 

VI. CONCLUSION 

This paper has presented a current control technique based 
on a simplified first-order model of the inverter and a 
predictive strategy with one sampling period delay and one 
control actuation per sampling period. The effects of the 
converter DC link voltage physical limitation and of the filter 
parameters mismatches on stability and robustness of the 
system under control were analyzed, simulated and 
experimentally verified on a reduced-scale implementation. 
The derivation of the stability analysis, which is in general 
ommited in the references, was detailed. The control system 
response is not exactly deadbeat as initially considered and 
as a consequence low-order harmonics are present in the 
inductor current. Finally, it was shown that if the model 
includes the DC-link voltage limitation, the stability limit of 
the system increases, but the controller performance is 

degenerated, especially if the filter inductance mismatch is 
high. 
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