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Abstract: A didactic comparison of space-vector PWM 
and carrier-based PWM with optimal zero-sequence 
injection, is presented. The optimality of the Space Vector 
PWM regarding current ripple is emphasized. Both 
methods are compared in time domain and space vector 
domain. 

II. THREE-PHASE, THREE-WIRE CONVERTER AND 
ITS MODELING 

 
A three-phase, three-wire (3P3W) converter (Fig. 1(a)) 

can be modeled as a wye connection of three ideal voltage 
sources (Fig. 1(b)), with no external access to the common 
point G1. Each voltage source corresponds to a half bridge 
(HB), two level ( dV± ) converter. 

 
Keywords: Carrier-Based PWM, Education in Power 

Electronics, Optimal Space-Vector PWM, Zero-Sequence 
Injection. 

Fig. 2(a) shows a balanced generic load connected to the 
3P3W converter. Notice that common points G1 and G2 are 
not interconnected. As the HB converter can only present 

dV+  or dV− at its terminals ( v  voltage, Fig. 1b), the 
instantaneous sum of the phase voltages of the 3P3W 
converter is not null (  (1)) and this 
fact apparently imposes difficulties for calculating the line 
currents ,  and i . 
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I.INTRODUCTION 

 
Space-vector PWM (SVPWM) and carrier-based PWM 

(CPWM) are largely used in PWM controlled converters. 
The SVPWM is well known for its low current ripple, ability 
to supply larger output voltages for a given DC link, and 
convenience to be used together with space vector based 
higher level control loops. The CPWM is simple, and is 
easily implemented by the PWM blocks available in the 
dedicated DSPs and micro controllers, requiring no 
additional computational load. Although it is possible to 
obtain exactly the same behavior of a SVPWM, by using the 
CPWM with zero sequence injection at the reference inputs, 
there are still some misunderstandings that make people 
believe that the SVPWM is better than the CPWM. This 
summary describes the CPWM, its spectra, and two 
possibilities of zero sequence references: one that emulates 
SVPWM and other that minimizes a cost function based on 
the RMS value of the current ripple. The optimal behavior of 
the SVPWM regarding current ripple is confirmed. SVPWM 
and CPWM are explained and compared in time domain and 
Space Vector domain, deepening the understanding of both 
methods. 
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Fig. 1: (a) Half-bridge converter with split DC voltage source; (b) 

three-phase, three-wire converter representation of (a) as three ideal 
voltage sources. 

One can define the instantaneous zero-sequence voltage 
 (2) and subtract it from each one of the phase voltages )(0 tv
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Fig. 2: (a) Balanced generic load connected to the 3P3W converter; (b) instantaneous zero-sequence voltage added to the new 

equivalent phase voltages; (c) equivalent circuit of (b). 
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Fig. 2(b) can be redrawn as Fig. 2(c), producing a new 
common point G3. If the load is balanced, it can be proved 
that the voltage between points G2 and G3 is null 
( 0)(32 =tGGv  (4)) and the equivalent phase voltages )(tvcr , 

)(tvcs  and )(tvct

)(0 tv

 impose currents i ,  and  to 
the load. As G1 and G2 are not connected, there is no current 
between them and the instantaneous zero-sequence 

does not impose any current. 

)(tr )(tis )(tit

)(tvcr ,  and , resulting the voltages )(tvcs )(tvct )(tcrv , 
)(tvcs  and )(tvct  (Fig. 2(b)). Notice that the sum of the 

resulting new phase voltages ,  and  is 
zero (3). 
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Fig. 3: Simulated waveforms for a CPWM applied to a 3P3W circuit, showing one PWM cycle (T  S): (a) with arbitrary values of references 
vr ref (t), vs ref (t) and vt ref (t), converter voltages vcr (t), vcs (t) and vct (t), equivalent voltages vcr (t), vcs (t) and vct (t), current ripple ∆ir(t), ∆is(t), 

∆it(t); (b) same signals of (a), adding v0 ref (t),  to the references (references shown as red lines). 
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IV. PWM SPECTRA FOR ONE-PHASE AND THREE-
PHASE CONVERTERS USING CPWM  

III. CARRIER BASED PWM 
 

 Figs. 3(a) and 3(b) show some simulated waveforms for 
one carrier period T , where one considers that the 
references ,  and  variation can be 
neglected (their values can be considered constant during 

). The same triangular carrier was used for the three 
phases. Fig. 3(b) shows the result of summing an arbitrary 
instantaneous zero-sequence voltage reference  
(also constant within T ) to the original references v , 

 and of Fig. 3(a). In both Figs. 3(a) and 
3(b), the sum of ,  and  is null. 
The addition of  modifies the waveforms and the 
local average values of phase voltages ,  and 

, (the local average value of a signal can be defined 
here as its average value measured in a period equal to ). 
By the other side, the local average values of equivalent 
phase voltages 
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)(tvcr , )(tvcs  and )(tvct  do not change. Fig. 
3 shows that the shape of the non-zero parts of their 
waveforms )(tcrv , )(tvcs  and )(tvct  do not change with 

injection, but they only slide along the time axis, 
changing the time intervals corresponding to the states e and 

 (Fig. 3, top). Time intervals corresponding to the states 
and e  do not change. The local average values of currents 

,  and , which depend only on the local 
average values of 
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)(tcrv , )(tvcs  and )(tvct , do not change. 
By the other side, the modification of voltages )t(vcr , )(tvcs  
and )(tctv  waveforms imply in altering the ripple current. 

Fig. 4 shows some PWM spectra, obtained by using 
computer simulation. Fig. 4(a) shows the spectrum of a HB 
converter with CPWM, with the carrier signal synchronized 
to the sinusoidal reference signal. The fundamental 
component appears at the reference frequency  
(harmonic order equal to 1 in Fig. 4(a)) with its amplitude 
proportional to the modulation index (considered here as the 
ratio between V  and the peak value of v ), and the 
harmonics appear concentrated in bands centered on the 
carrier frequency  (harmonic order equal to 30 in Fig. 
4(a)) and its integer multiples. The bands centered at  and 
its odd multiples have lower and upper sideband components 
with same amplitude and displaced by even multiples of the 
reference signal frequency . There are no even harmonics 
of the carrier frequency, but only bands centered around their 
positions, with lower and upper side components displaced 
by odd multiples of the reference signal frequency. These 
results can also be obtained analytically by using Bessel 
functions [1][2][8].  

reff
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Fig. 4(b) shows the spectrum of a 3P3W converter using 
the same carrier for the three HB arms. It was shown [2] that 
the order of the symmetrical components in the 
neighborhood of the frequencies centered at the multiples of 

 ( ), is as given by Fig. 5.  reff refKf
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Fig. 3(b) shows the improvement in the current ripple (at 
the three phases), due to zero-sequence injection. At this 
point one can ask if there is an optimum value of 

which can minimize, for instance, the harmonic 
content of the equivalent phase voltages (and, in 
consequence, of the resulting currents). 

)(0 tv ref  
Fig. 5: Band components generated by a 3P3W converter at the 

neighborhood of the center frequency (K fref ). Z: zero sequence; P: 
positive sequence; N: negative sequence (from [2]).   
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Fig. 4: Simulated PWM spectra: (a) Cv  for an one-phase HB converter; (b)  crv  for a 3P3W converter; (c)    crv  for a 3P3W converter 

with instantaneous zero-sequence )(0 tv injection. Simulation conditions: ..1 upVd = ; ..1 upVref =  (peak value)  

refsS fTf ⋅== 30/1 ; 00 =refV  in spectra (a) and (b). 
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As the 3P3W has a three-wire load, the zero sequence 
components do not create currents at the load. The 30th 
harmonic high amplitude of a HB one-phase converter (Fig. 
4(a)), does not appear in the spectrum of crv  for a 3P3W 
(Fig. 4(b)), because it is a zero sequence component.  

Fig. 4(c) shows the effect of applying an arbitrary zero-
sequence  to the references. As described before, it 
modifies the resulting spectrum but the fundamental 
component is kept constant. 

)(0 tv

 
V. SPACE VECTOR PWM (SVPWM)  

 
An alternative way for the analysis of three phase, three-

wire systems is the use of the Space Vectors [5][7][10][11], 
where three-phase quantities (rst system) are mapped to a 
two dimensional system αβ , using (5a). The inverse 
transform is shown in (5b). 
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The SVPWM consists in generating the reference vector 

CrefV
r

 (corresponding to the reference voltages 
) as a convex combination of the voltage 

vectors generated by the converter 

( e
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). At least three vectors are 

necessary to produce VCref

r
 [10][11]. The best choice is the 

triangular convex region that contains VCref

r
. In Fig.6, for 

example, the choice includes the two active vectors 61 , ee
rr

 
and the null vectors e 70 , e

rr
. If the i-th vector is turned on for 

a time interval ti, CrefV
r

 can be written as a convex 
combination of e 21 ,e
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, 70 , ee
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 (6). 
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As  are null, the vector equation (6) is a set of two 
scalar equations with two unknown variables 21, αα  Thus, 
the coefficients  are easily calculated by solving (6). 
Using (7), the sum ( ) is calculated by (1 1α− ). 
There are several possible choices for the sequence of 
imposed vectors [11]. Fig. 7 illustrates three cases. Fig. 7(a) 
requires two switching cycles per vector sequence 

r
. Fig. 7(b) produces two vector sequences 

or )7e
r

 for two switching cycles, 
resulting in lower switching frequencies. Fig. 7(c) produces 
two vector sequences for three switching cycles, but is the 
option with lower current ripple, and is the sequence adopted 
for the SVPWM [10][11]. It is interesting to notice that this 
is exactly the sequence resulting from the CPWM, for a set 
of references  that is equivalent to Vref_t

r
 

(top of Fig. 3). The only unsolved question refers to the 
values of ‘ ’. Items VI and VII, and [10][11] show that 
imposing ‘ ’ results in the lowest current ripple. 
From Fig. 4 one can notice that this condition is fulfilled if 
the maximum and minimum values of the set 
‘ v ’ have the same absolute value. This 
condition rarely happens for the CPWM, but can be easily 
accomplished by injecting an instantaneous zero sequence 
reference  calculated by (8) [11]. For this condition 
the CPWM presents the same behavior as the SVPWM. 
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Fig. 7: Possible choices for vector sequence. 
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Fig. 8: Behavior of Ix for various values of the zero sequence reference signal v0_ref 

VI. OBTAINING THE OPTIMUM VALUE FOR THE 
ZERO SEQUENCE REFERENCE ( v )  optref __0

 
As shown in item III, the injection of a zero sequence 

signal  to the reference signals ( ) of 
the CPWM does not alter the averaged signal, but only the 
ripple currents [5][7]. A question immediately arises about 
the possibility of choosing an optimal value of  that 
produces minimum current ripple. This problem can be 
treated as an optimization problem, where the cost function 

 is defined as the sum of the squared RMS values of the 
ripple phase currents, according to (10) [7].  
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As (9),  is written as a 

function of  and. . The instantaneous zero 

sequence reference appears explicitly on (10). This 
equation is obtained from the current ripple waveforms of 
Fig. 4, by considering the load as three inductances with 
L=1H, 
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For any given pair ( v , ), the value  that 
minimizes  is obtained by imposing that the partial 
derivative of  (11) is zero. 
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refv _0  is plotted in Fig. 8(a), against the reference 
signals ,  and v , represented here as a Space 

Vector 
ref_

in the αβ  domain (Fig. 6). To improve the 
visualization of the graphics, only the gray colored part of 
the domain (Fig. 6) is used. Fig. 8(b) shows the value of , 
when the  is applied. Fig. 8(c) shows  for the 
original CPWM, without zero sequence injection. Substantial 
reduction of the ripple is achieved in Fig. 8(b) for reference 
signals, whose corresponding Space Vector (

xI

opt xI

refV
r

) is in the 
neighborhood of angles 0o, 60o, 120o, 180o, 240o and 300o of 
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the domain of VCref

r
 (Fig. 6). Small improvement is achieved 

near the angles 30o, 90o, 150o, 210o, 270o and 330º. 
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As explained in item V, the same behavior of the SVPWM 
can be obtained from the CPWM by injecting a zero 
sequence signal v  given by (8). Figs. 8(d) and 8(a) 

shows that  and  have similar shape. The 
same is valid for the value of , for both  and 

 injection (Figs. 8(e), 8(b), 8(c)). These facts show 
that the SVPWM is nearly optimum according to the cost 
function . It is easier to obtain the SVPWM behavior by 
injecting  in a CPWM, than using the traditional 
method discussed in item V and [10][11]. Available 
dedicated DSPs provide good performance CPWM blocks, 
and (8) is easily calculated. The optimum PWM in (11) [7] 
presents no practical interest, because of its numerical 
complexity. Its importance lies on providing another way to 
show the optimal behavior of the SVPWM.  
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Some authors [4][6] showed the benefits of injecting third 
harmonic signals to the CPWM, presenting the optimum 
values for their amplitude and phase angle. It is clear now 
that these methods are somewhat limited, being restricted to 
sinusoidal, balanced set of references. 
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VII. CURRENT RIPPLE TRAJECTORY [9] VII. CURRENT RIPPLE TRAJECTORY [9] 

  
When generating a given reference vector VWhen generating a given reference vector VCrefCref
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, if the 

converter imposes the vector ie
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, the derivative of the ripple 
current vector due to ie
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 is given by 
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Fig.9: (a) converter voltage vectors and derivatives of the line 
current; (b) Locus of the current ripple vector 

Simulation results for a set of sinusoidal, balanced PWM 
reference waveforms are shown in figure 10 for one period of 
the reference signals. The vector of the ripple current in the 
dq frame attached to VCref

r
 is shown for the original CPWM 

(Fig. 10(a)) and for the SVPWM (Fig. 10(b)). The 
improvement in the d axis is in the SVPWM. 

 
VIII CONCLUSION 

 
This paper joins information related to the comparison of 

the CPWM, SVPWM, CPWM with optimal zero sequence 
injection and CPWM with a zero sequence that emulates the 
SPWM behavior, with the purpose of deepening the 
understanding of CPWM and SVPWM strategies. It is 
emphasized that, in spite of their different origins, the 
SVPWM and CPWM emulating a SVPWM present exactly 
the same voltage and current waveforms. Optimum zero 
sequence reference is evaluated for the CPWM, showing that 
the SVPWM is a near optimum strategy considering the 
current ripple. 
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