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Abstract— The purpose of this paper is to study the ef-
fects of three Flexible AC Transmission Systems (FACTS)
controllers: Static Synchronous Compensator (STAT-
COM), Static Synchronous Series Compensator (SSSC)
and Unified Power Flow Controller (UPFC) on small
signal voltage stability. A system composed by a load
fed by a generator via a loss-less transmission line is
examined. The inclusion of these three FACTS controllers
shows the improvement on voltage stability margin. This
study is based on investigation of the eigenvalues of
the linearized power system model in the framework of
dynamic bifurcation theory. The results presented show
that using this model in conjunction with the P-V curve,
all the basic aspects of the small signal voltage stability
can be easily addressed.

Keywords—FACTS, Saddle-node bifurcation, SSSC,
STATCOM, UPFC, Voltage stability.

I. INTRODUCTION

The voltage stability refers to the ability of a power
system to maintain steady voltages at all buses in the system
after being subjected to a disturbance from a given initial
operating conditions [1]. Since the rapid development of
power electronics has made it possible to design power
electronic equipment of high rating for high voltage systems,
the problem resulting from transmission system may be, at
least partly, improved by use of the equipment namely as
Flexible AC Transmission Systems (FACTS) controllers.

Many analysis methodologies have been proposed to solve
the problem of voltage collapse phenomena and are currently
employed for such issue [2]. Most of these techniques are
based on the identification of system equilibrium points
that are typically referred to as points of voltage collapse.
These points can be mathematically associated to saddle-node
bifurcations points.

Local instability of an operation point is characterized by
three kinds of local stability in algebraic-differential model of
power system: Singularity induced bifurcation (characterized
by infinite eigenvalues crossing the imaginary axis), saddle-
node (characterized by a pure real eigenvalue crossing the
imaginary axis) and Hopf bifurcation (characterized by a par
of pure imaginary eigenvalues crossing the imaginary axis).

The bifurcation theory is used here to analyze the eigen-
values of system on the collapse (or bifurcation) point,

characterizing the instability of the system [3], [4].
This study investigates the effects of three FACTS

controllers, Static Synchronous Compensator (STATCOM),
Static Synchronous Series Compensator (SSSC) and Unified
Power Flow Controller (UPFC), on small signal power sys-
tems voltage stability of a system composed by a load fed
by a generator via a loss-less transmission line. The system
is modelled using the Power System Model (PSM) [5], [6].

II. FACTS CONTROLLERS

The FACTS is a concept based on power-electronic con-
trollers, which enhance the value of transmission networksby
increasing the use of their capacity. The potential benefitsof
FACTS equipment are now widely recognized by the power
systems engineering and T&D communities.

The first group of FACTS controllers, such as Static
Var Compensator (SVC) and Thyristor Controlled Series
Capacitor (TCSC), used thyristor to control the reactor and
capacitor banks, respectively. The second group of FACTS
controllers, such as STATCOM, SSSC and UPFC are based
on Voltage Source Converter (VSC) that employed GTOs to
produce solid- state synchronous voltage sources at funda-
mental frequency [7].

III. POWER SYSTEM MODEL

The analysis of the STATCOM, SSSC and UPFC influence
on the power system voltage stability can be accomplished
for a single generator connected to a dynamic load where the
FACTS controller is installed, as shown in Fig. 1. The study
of impact of these FACTS is made separately.
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Fig. 1. Generator system - Transmission line - Dynamic Load including
FACTS controllers.

The dynamic load model proposed in [8], use a set of equa-
tions to represent the load in Fig. 1. This model consists of
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algebraic and differential equations, which can be expressed
as follows:

ẋp =
1

Tp

[Ps(V ) − xpPt(V )] (1)

ẋq =
1

Tq

[Qs(V ) − xqQt(V )] (2)

where xp and xq are state variables,{Ps(V ), Qs(V )} and
{Pt(V ), Qt(V )} are the the transient and steady-state load
characteristics, respectively.Tp andTq are the time constants
that describe the load response.

A. STATCOM

The STATCOM is a shunt connected FACTS controller
which integrates the SVC technique and the voltage source
conversion. It resembles an ideal rotating synchronous con-
denser operating under no load conditions, generating a
balanced three-phase voltage, with controlled amplitude and
angle. This machine does not have inertia, and its response
velocity is almost instantaneous, and does not affect the
system impedance. Therefore, it can generate and absorb
reactive power. Besides, it can exchange active power with
the system if coupled to an appropriate energy source. [8], [9].
The most important function of the STATCOM is to control
the bus voltage where it is connected. Its functional model is
shown in Fig. 2. We will consider that the STATCOM will
only exchange reactive power with the system, so the supply
energy source can be eliminated [9].

Transmission Line

Coupling
Transformer

Q, I
Vm

VSC

Vdc

DC Voltage
Source

Fig. 2. Circuit for a Static Synchronous Compensator (STATCOM).

The STATCOM may be represented by the following set
of equations [9]:

Qsh = −IsVm (3)

Ish =
Ku

1 + sTsh

(Vmref
− Vm) (4)

The power system can be represented by a set of differen-
tial and algebraic equations, which can be expressed as:

ẋ =f(x, y, µ) (5)

0 =f(x, y, µ) (6)

wherex is a vector of dynamic state variables,y is a vector of
algebraic variables andµ is a parameter, which can be varied
slowly, such as nodal powers . For small signal stability
analysis, we assume the system parameter variation is slow
enough so that the model can be linearized around some
equilibrium point as:

∆ẋ =J1∆x + J2∆y + B∆u (7)

0 =J3∆x + J4∆y (8)

whereJ1, J2, J3 and J4 are Jacobian matrices off and g

related to dynamic state and algebraic variables, respectively,
and B is the perturbation matrix. For the system shown in
Fig. 1, considering only the presence of the STATCOM, the
following state equations can be formulated according to
nodal power balance methodology [5]:
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The coefficientsA andR represent local sensitivity functions
of active and reactive powers, respectively. They are related
to the state and algebraic variables. As can be seen in (9) and
(10), the rotor angle deviation and the rotor speed deviation
are not include in the modelling as state variables since
the system studied represent a problem strictly of voltage
stability.

An important characteristic of this model used is the
maintenance of the structure of the system. The power flow
Jacobian of the system can be derivative ofJ4, as follow
below:

JFC =

[

−A1m
−A2m

− A1c

−R1m
−R2m

− R1c
+ Ish

]

(11)
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If the JacobianJ4 is not singular, so the vector of algebraic
variables can be eliminated. Then the representation of state-
space system can be obtained as:

∆ẋ = A∆x + B∆u (12)

where:

A = J1 − J2J
−1
4 J3 (13)

is the system state matrix.

B. SSSC

The SSSC is a series FACTS controller that is based on
voltage source conversion. It consists of a VSC that converts
a dc voltage into a three-phase ac voltage at fundamental
frequency [7]. The SSSC has the capability to improve
the stability margin of the system making the series line
compensation where it is installed. The output ac voltage
of SSSC can be kept in quadrature with the line current,
making the SSSC exchange only reactive power with the
power system. The behavior of SSSC can be similar to a
controllable series capacitor and a controllable series reactor
where the degree of compensation can be constant and its
output voltage magnitude will depend only of the loading
factor that the SSSC will be submitted [10]. Fig. 3 depicts the
basic circuit of a series connected SSSC with the transmission
line.

Transmission Line

Coupling
Transformer

Q, V

VmVt

VSC

Vdc

DC
Voltage
Source

Fig. 3. Circuit for a Static Synchronous Series Compensator (SSSC).

The SSSC can be described by the following dynamic
equation:

Vs =
1

1 + sTs

V0 (14)

whereV0 is the injected series voltage of SSSC in steady-
state. The active and reactive power flow equations after the
inclusion of the SSSC, can be written as [10]:

Ptm =

[

1 +
1√
u

]

VtVm

X
sin(θt − θm) (15)

Qtm =

[

1 +
1√
u

] [

V 2
t

X
− VtVm

X
cos(θt − θm)

]

(16)

whereu is described below:

u = V 2
t + V 2

m − 2VtVmcos(θt − θm) (17)

The active and reactive power power flow equations in the
opposite sense,Pmt andQmt, are written analogously as the
equations above.

For the SSSC case, the state equations can be obtained as:









∆Ė′
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Like the STATCOM case, the matrixJFC can be derivative
of the Jacobian matrixJ4 and can be expressed as:

JFC =

[

−A1m
−A2m

− A1c

−R1m
−R2m

− R1c

]

(20)

C. UPFC

The UPFC is a power electronic controller which can
be used to control active and reactive power flows in a
transmission line by injection of variable series voltage and
reactive shunt current. Like the others FACTS presented, itis
based on VSC and it was proposed by Gyugyi in 1991 [11].
The UPFC consists of a SSSC and a STATCOM, connected in
such a way that they share a common DC capacitor. The DC
link provides a path to exchange active power between the
converters. The UPFC makes the voltage regulator function
through the shunt converter (STATCOM) and makes the line
series compensation, injecting a series voltage in quadrature
with the line current, where the series converter (SSSC) is
connected. [12]. The schematic of the UPFC is shown in
Fig. 4.

The UPFC can be represented adding the characteristics of
the STATCOM and the SSSC. The dynamic equations of the
UPFC may be described as follows [12]:
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Fig. 4. Circuit for a Unified Power Flow Controller (UPFC).

Vs =
1

1 + sTsh

V0 (21)

Ish =
Ku

1 + sTsh

(Vmref
− Vm) (22)

whereV0 is the injected series voltage of UPFC in steady-
state. The shunt currentIsh has the role of maintenance of
the bus voltage at the level specified, through of injection
of reactive power. The series voltageVs emulates a reactive
series compensation.

For the UPFC case, the following state equations can be
obtained:
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Considering the UPFC, the JacobianJFC in this case is
given by:

JFC =

[

−A1m
−A2m

− A1c

−R1m
−R2m

− R1c
+ Ish

]

(25)

IV. SIMULATIONS AND RESULTS

The system of Figure 1 is simulated over a range of
operating points. The small signal voltage stability assess-
ment is performed by monitoring the critical eigenvalues of
matrix A and the determinants of the JacobiansJ4, JFC as
the system loading is increased. The singularities of these
Jacobians represent the singularity induced and saddle-node
bifurcations, respectively.

The steady-state components (Ps,Qs) and the transient
components (Pt,Qt) are modelled as constant power and
constant impedance, respectively. The results were obtained
considering the load time constant asTp = Tq = 30s.

For the simulations realized were considered a nominal
loading factor (µ = 1.0 p.u.) of 100 + j48.7 MVA. The
parameters of the AVR, transmission line and the FACTS are
given in Appendix A.

A. System without FACTS

Figs. 5 illustrates the critical eigenvalues loci of system
state matrix without FACTS. As can be noted, the critical
eigenvalue crosses the imaginary axis characterizing the
saddle-node bifurcation.
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Fig. 5. Critical Eigenvalues loci.

Fig. 6 shows real eigenvalue loci as loading factor increase
up to 1.042 p.u. The system instability occurs for a loading
factor of 1.036 p.u.

B. System with STATCOM

The analysis of the eigenvalues of the system with STAT-
COM is made analogous as the previously. Fig. 7 shows the
real part of the eigenvalues as the system loading is increased.
In this case, the STATCOM keeps the system stable for a
loading superior than 1.042 p.u.

Figs. 8 and 9 exhibit the determinants of JacobianJ4 and
the JacobianJFC have a tendency to be singular, occurring
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the singularity induced and the saddle-node bifurcations,
respectively.
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Fig. 10 presents the PV curve of load bus where the
STATCOM is installed. For the loading increase up to 1.205
p.u., the STATCOM keeps the bus voltage at the level
specified until the limits of current injection did not have
exceeded.

C. System with SSSC

Fig. 11 presents the real part of critical eigenvalues as the
loading factor varies from 0.1 to 1.266 p.u. The instabilityof
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Fig. 10. P-V Curve.

the system with SSSC occurs for a loading factor at 1.203
p.u.
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Fig. 11. Real Eigenvalues loci.

Fig. 12 illustrates that the system with SSSC have the volt-
age stability margin increased. Although the SSSC does not
have the main function of regulate voltage, it could improve
the bus voltage level through its reactive line compensation
function.

Figs. 13 and 14 depicts the behavior of the determinants
of JacobianJFC and J4. The divergence of power flow of
the system with SSSC occurs for a loading up to 1.266 p.u.
Again, these figures show the occurrence of saddle-node and
singularity-induced bifurcations, respectively.

D. System with UPFC

Fig. 15 shows the real part of the eigenvalues for the
loading up to 1.388 p.u. The saddle-node bifurcation happens
only for the system without FACTS.

The divergence of the power flow, for the system with
UPFC, occurs for the loading up to 1.388 p.u. The deter-
minants of the JacobiansJ4 and JFC show the singularity
induced and saddle-node bifurcations, respectively in Figs.
16 and 17.
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Fig. 15. Real Eigenvalues loci.
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JFC .

Like the others FACTS presented, the UPFC enhance the
voltage stability margin of the system. The Fig. 18 shows the
PV curve ofVm bus.

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Active Power (p.u.)

V
m

 (
p

u
)

Without FACTS 

UPFC

Fig. 18. P-V Curve.

Table I presents the maximum values reached over a range
of operating points until the divergence of the power flow.
All the FACTS have the ability to provide a greater margin
stability for the system studied.

TABLE I

Stability Limits p.u.
without FACTS with SSSC with STATCOM with UPFC

1.036 1.203 1.205 1.388

V. CONCLUSION

This work has examined the effects of the STATCOM,
SSSC and the UPFC on small signal voltage stability. The
voltage stability is evaluated by the analysis of the PV curve
in conjunction with the trajectory of the critical eigenvalues
of the state matrix of the system.

The simulation results presented show that these FACTS
controllers have a good effectiveness to improve the stability
of the system and thus the loadability margin of power
systems.

APPENDIX A

TABLE II

Generator and Transmission line Parameters.
H(s) D Re(p.u.) xd(p.u.) x′

d(p.u.) xq(p.u.)

6.4 0.0 0.0 0.8958 0.1198 0.8645

x′
q(p.u.) T ′

d0
(s) T ′

q0
(s) Ke(p.u.) Te(p.u.) XL(p.u.)

0.1969 6.0 0.535 20 0.2 0.1

TABLE III

STATCOM Parameters.
Ku(p.u.) Tsh(s) Ishmax (p.u.) Ishmin

(p.u.)

100 0.005 0.3 −0.3
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TABLE IV

SSSC Parameters.
Ts(s) Vsmax (p.u.) Vsmin

(p.u.)

0.005 0.2 −0.2

TABLE V

UPFC Parameters.
Ku(p.u.) Tsh(s) Ishmax (p.u.) Ishmin

(p.u.)

100 0.005 0.3 −0.3

Ts(s) Vsmax (p.u.) Vsmin
(p.u.)

0.005 0.2 −0.2

APPENDIX B

Nomenclature

E Generator voltage.
δ Generator rotor angle.
ω Generator rotor speed.
E′

q Transitory voltage quadrature axis component.
E′

d Transitory voltage direct axis component.
EFD Field voltage.
M Inertia constant.
xd Direct axis reactance.
x′

d Transitory direct axis reactance.
xq Quadrature axis reactance.
x′

q Transitory quadrature axis reactance.
T ′

d0 Transitory direct axis time constant.
T ′

q0 Transitory quadrature axis time constant.
Ke AVR static gain.
Te AVR time constant.
X Transmission line reactance.
Vt Bus t voltage.
Vm Bus m voltage.
θt Bus t angle.
θm Bus m angle.
Ku STATCOM or UPFC voltage regulator gain.
Vs SSSC or UPFC voltage.
Ish STATCOM or UPFC current.
Ts SSSC time constant.
Tsh STATCOM or UPFC time constant.
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support.

REFERENCES

[1] I. J. T. F. on Stability Terms and DefinitionsIEEE Trans-
actions on Power Systems, vol. 19, no. 2, pp. 1387–
1401, 2004.

[2] “Voltage stability assessment, procedures and guides,”
IEEE/PES, Special Publication, April 1999.

[3] E. Bompard, E. Carpaneto, G. Chico, and R. Napoli, “A
practical application of bifurcation theory to dynamic
voltage stability,”Electrical Power and Energy System,
1993.

[4] H. Kwatny, R. Fischl, and C. Nwankpa, “Local bifurca-
tion in power systems: theory, computation, and applica-
tion,” Proceedings of the IEEE, vol. 83, pp. 1459–1483,
November 1995.

[5] S. Deckmann and V. da Costa, “A power sensitivity
model for electromechanical oscillation studies,”IEEE
Transaction on Power Systems, vol. 9, pp. 965–971,
May 1994.

[6] D. Alves, L. da Silva, and V. da Costa, “A power sensi-
tivity model including generator damper windings for
electromechanical oscillations studies,”International
Conference on Electric Power Engineering (PowerTech
Budapest,99), p. 73, August/September 1999.

[7] N. G. Hingorani and L. Gyugyi,Understanding FACTS:
Concepts and technology of flexible AC transmission
systems. John Wiley and Sons, 2000.

[8] W. Xu and Y. Mansour, “Voltage stability analysis using
generic dynamic load models,”IEEE Transactions on
Power Systems, vol. 9, pp. 479–493, February 1994.

[9] Q. J. Chun, L., X. Xiarong, and W. Zhonghong, “Rule-
based control for statcom to increase power system
stability,” Proceedings of International Conference on
Power System Technology (POWERCON,98), vol. 1,
pp. 372–376, August 1998.

[10] P. Kumkratug and M. H. Haque, “Improvement of
stability region and damping of a power system by
using sssc,”IEEE Power Engineering Society General
Meeting, vol. 3, pp. 1710–1714, July 2003.

[11] L. Gyugyi, “Unified power-flow control concept for
flexible ac transmission systems,”IEE Proceedings on
Generation, Transmission and Distribution, vol. 139,
pp. 323–331, July 1992.

[12] P. Kumkratug and M. Haque, “Versatile model of a
unified power flow controller in a simple power system,”
IEE Proceedings, vol. 150, pp. 155–161, March 2003.

8th Brazilian Power Electronics Conference - COBEP 2005

70


