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Abstract – This paper addresses the main issues 
associated with the analysis and design of discrete 
controllers for static converters. Aliasing and the 
limitations of digitally adjusted PWM are first discussed. 
Then, a procedure to obtain discrete dynamic models of 
static converters is detailed and a review of the classical 
discrete analysis and design methods is presented. 
Finally, three examples are developed to demonstrate the 
potential of discrete controllers for power electronics 
applications.1 
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I. INTRODUCTION 

Discrete controllers for static converters have recently 
received a growing attention from the academia as well as 
from the industry. This is attributed to fact that discrete 
controllers have a number of potential advantages over the 
analog counter parts. Among them are: low sensitivity to 
parameters variations; (ii) reduced number of passives 
components; (iii) possibility of implementation of advanced 
control, protection and calibration algorithms; (iv) flexibility 
and programmability. In addition, DSP controllers and 
microcontroller manufactures are making available high 
performance low cost processors with peripherals suitable for 
controlling static converters, which include analog-to-digital 
converters with multiples channels, encoders and PWM 
generators. The trend toward discrete controllers has even 
reached the Switching Mode Power Supplies (SMPS) 
segment where the analog controllers IC are been considered 
to be replaced by integrated digital controllers [23]. In this 
context, this paper reviews the main points to be considered 
in the design of discrete controllers for power electronics 
applications. It begins by addressing the aliasing in static 
converters resulted from the sampling of PWM harmonics 
and then points some limitations of digitally adjusted PWM. 
A procedure for the derivation of dynamic discrete models is 
presented and a review on the classical discrete design 
methods is presented. Finally, three examples are developed 
to illustrate how discrete controllers are becoming strong 
candidates to substitute the old analog counterparts. 

II. SAMPLING AND ALIASING IN STATIC 
CONVERTERS 

This section addresses the sampling approaches as 
well as the main issues associated with the aliasing and 
aliasing mitigation in static converters applications. Fig.1 
shows a continuous variable and its sampled version.   

                                                           
 
 

 
Fig. 1. Continuous and sampled signals. Top: f(t). Bottom: f*(t) 

 
A sampled variable can be expressed as: 
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following Fourier series representation: 
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There always a loss of information produced by sampling. 

However the extend of this loss depends on the sampling rate 
as well as in the sampling instants, since in static converters 
applications usually the sampling and the switching 
frequency are equal or related by an integer number. Let us 
illustrate the impact of the PWM harmonics on the sampled 
variables from the digitally controlled voltage fed full-bridge 
converter of Fig. 2. 

 
Fig. 2.  Full-Bridge PWM converter. 

 
It is considered that sampling frequency and the converter 

switching frequency are equal and the inductor and the 



capacitor voltage are sampled at the zero and the peak of the 
triangular carrier used to generate the PWM signals. If the 
modulating signal is selected to result in half the dc bus 
voltage at the output the capacitor voltage can be expressed 
as: 

( ) cos( ) and 
2

( ) sin( )
2

cc
c h s

cc
L h s

Vv t V t

Vi t I t
R

≈ + ω

≈ + ω

                                    (3) 

where Vh and Ih are the amplitude of the e high frequency 
components of the output voltage and inductor current 
resulted from the PWM. By substituting (3) into (1) the 
sampled voltage and current can be found as: 
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From this example it is evident that the dc component of the 
sampled voltage has been corrupted since the high frequency 
component has been shifted to a constant due to the 
sampling. This phenomenon is known in the signal 
processing field as aliasing. However, the dc component of 
sampled current has been preserved after sampling. This is 
due to the fact that the current high frequency components 
cross zero at the sampling instants. 

   

Fig. 3. Main waveforms of full-bridge converter dc-dc converter. 
 
 

Undesired low frequency components due to 
aliasing can also be present in the sampled currents and  
voltages of sinusoidal PWM converters. To illustrate this, let 
us consider again the digitally controlled voltage fed full-
bridge converter of Fig. 2, where the modulating signal now 
has been selected to produce a sinusoidal PWM pattern as 
shown in Fig. 4. In this case the PWM harmonics appears in 
the side bands of the switching frequency. After the sampling 
the harmonics in the side bands around the switching 
frequency of the voltage are shifted and appear as low 
frequency components corrupting the amplitude of the 
fundamental and introducing an undesired third harmonic in 
the sampled voltage as seen by comparing Fig. 5 and 6. 

 

Fig. 4. Main waveforms of full-bridge converter dc-ac converter. 

 
Fig. 5.  Spectra harmonic of the continuous variables Vcc = 400V, 

L=3mH, C=5µF,R=20Ω, vref=311sin(2π50t). 

 
Fig. 6 Spectra harmonic of the sampled variables  Vcc = 400V, 

L=3mH, C=5µF,R=20Ω, vref=311sin(2π50t). 
 



In order to mitigate the undesired effects of aliasing one 
of the following measures can be taken:  

(i) To use analog anti-aliasing low-pass filter before 
the sampling. This approach attenuates the high 
frequency content mitigating in this way its impact 
on the sampled variables low frequency range. 
These filters introduce additional dynamics in the 
loop and unusually a trade-off between closed loop 
bandwidth or stability margins and anti-aliasing 
performance should be considered. 

(ii) To increase the sampling frequency and attenuate 
the PWM harmonics using digital filters. This 
approach usually requires a faster analog-to-digital 
converter as well as increases the computational 
burden for the implementation when compared with 
the analog anti-aliasing filter approach, but the 
reward is the improvement of the stability margins 
and the transient response. In [1] the PWM 
harmonics in a multi-sampling digitally controlled 
dc-dc converter are reduced using a repetitive 
controller. By making the sampling frequency N 
times the switching frequency it possible to reject 
the switching harmonics up to N/2 order for N even 
and (N-1)/2 for N odd. On the other hand, in [2] the 
average value of the state variables of three-phase 
PWM converter has been used for the 
implementation of a state feed-back controller. It is 
demonstrated in [3] that the low frequency 
components on the averaged sampled state variables 
are significantly reduced. 

 
 

III. DIGITALLY ADJUSTED PULSE-WIDTH 
MODULATION DPWM 

Unusually, an analog implementation of PWM is obtained 
by comparing a continuous modulating signal with a saw-
tooth or triangular. Therefore, in an analog implementation 
there is virtually an infinity number of pulse widths that can 
be generated, in other words, there is no inherent limit on the 
possible pulse widths generated.  Digitally adjusted PWM 
are usually implemented as peripheral of DSP and 
microcontrollers requiring a minimum of CPU burden. The 
three main blocks of a DPWM implementation are: (i) the 
time base counter; (ii) the compare logic unity; and (iii) the 
output unity that can include trip and dead-band actions. The 
switching frequency of the PWM is defined by the period of 
the time base counter which in turn depends on the counter 
clock frequency and counting mode, that is up-down or up 
mode. The compare unity continually compares the time base 
counter value with the content of the compare registers.  
Whenever there is a match between these values an event is 
generated. Then, the DPWM signals are generated from these 
events. Finally, the output unity can introduce dead-time in 
the DPWM signals that is usually required in voltage fed 
converters. Fig. 7 shows the main signals present in a 
DPWM implementation. 

 
Fig. 7.  DPWM main signals. 

 
The resolution of DPWM of Fig. 7 can be defined as: 
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and in the case that the time base counter is set to operate in 
the up-mode of counting the DPWM resolution becomes: 
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where fck is the time-base counter clock frequency and fsw is 
the resulting DPWM switching frequency.  For medium and 
high power converters that operate at low switching 
frequencies to limit the switching losses, there are available 
off-the-shelf microcontrollers and DSP controllers with high 
resolution DPWM. In this case a DPWM resolution greater 
than 10 bits are often achieved and the quantization effects of 
the DPWM usually are not a concern. On the other hand, to 
extend the benefits of digital control for switching mode 
power supply  some obstacles must be overcome. Among 
them is the resolution of the DPWM. In SMPS the switching 
frequency is high to reduce the volume and size of the 
transformers and filters as well as to provide the desired 
transient response.  As a result of the high switching 
frequency the resolution of the DPWM can be significantly 
reduced. Furthermore, since DPWM is part of the feedback 
loop, undesired steady-state limit cycles may arise. The 
minimum number of bits needed to avoid limit cycles due to 
the DPWM quantization resolution depends on the converter 
topology, the output voltage, as well as on the ADC 
resolution.  Let us considerer a digitally controlled buck 
where the ADC input voltage range is from zero to converter 
input dc bus voltage. Then, if the DPWM resolution is less 
than the ADC resolution, it is possible that there will be no 
DPWM width that will produce an output voltage that maps 
into the ADC bin corresponding to the reference voltage. In 
this case the controller will oscillate causing an alternation 
between DPWM widths in an attempt to produce at the 
output the reference voltage. This alternation between 
DPWM widths are undesired since its frequency is difficult 
to predict and may result in additional EMI produced by the 
converter.  Fig. 8 shows a block diagram of a digitally 
controller SMPS. 
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Fig. 8. Block diagram of digitally controlled buck converter. 

 
As an example, let us consider that the closed loop 

digitally controller buck converter of Fig. 8 produces 1.5 V 
from a 5V dc bus operating with a switching and sampling 
frequency of 1MHz. It is assume that quantization effects of 
the digital compensator computation can be neglected, that 
is, sufficiently long words are used to compute the duty ratio. 
In addition, the ADC quantization resolution is assumed to 
be 8 bits. By using a 9 bits resolution DPWM the output 
voltage is as shown at the top of Fig. 9. However, if a 6 bits 
resolution DPWM is used, a steady-state limit-cycle can be 
observed at the output as seen in the waveform at the bottom 
of Fig. 9. 

 
Fig. 9. Buck output voltage. ADC resolution Radc=8 bits.  

Top: DPWM with Rpwm=9 bits Bottom: DPWM with Rpwm =6 bit. 
 
The first step toward eliminating limit cycles in 

digitally controlled SMPS is to ensure that the quantization 
voltage interval of the DPWM is finer than one of the ADC. 
If due technical or cost limitations the DPWM resolution 
could not be increased one of the following approaches can 
be used: (i) digital dither [4] (ii) sigma-delta modulation [5]. 

IV.  DISCRETE TIME CONVERTER MODELING 

Static converters are usually followed by low pass 
filters or by a plant with low pass characteristics. As a result, 
the high frequency harmonics associated with the PWM are 
significantly attenuated. In this context the control action 
produced by a discrete controller is usually transferred to the 
output of the converter assuring that the average value over 
the switching period is preserved by a PWM or Space Vector 
Modulation SVM. Let us considerer a voltage fed converter 
and assume that filter and load can be modeled by a 
continuous linear time invariant state space equation of the 
form: 

FwBuAxx ++=                                 (7) 
where x is the state vector, u is a vector that gathers the 
converter output voltages and w is a disturbance input vector. 
A, B and F are matrices the appropriated dimensions. The 
solution of this linear state space equation (7) can be 
expressed as: 
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Usually in a discrete controller for static converters the 
control action is updated at regular intervals of time, 
synchronized with the switching frequency. In addition, since 
the PWM ensures that the desired average value over the 
switching period, and as the high frequency components are 
attenuated by the filter, it is reasonable to develop an average 
model for the purpose of the discrete controller design. To 
derive such a model the above equation will be solved along 
a sampling period, T, where the converter output voltage 
vector, u, and the disturbance vector, w, are assumed to be 
constant equal to their average values in the sampling 
interval. As a result, the above equation can be written as: 
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Due to the low pass characteristic of the filters found in static 
converters, often the output variables can just be expressed as 
a function of the state, as a result the following discrete state 
space equation describes the average dynamic behavior of 
converter in the discrete time domain. 
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where the G, H and F are matrices given by: 
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It is desirable that the qualitative properties, of such as the 
controllability, of the continuous equation (7) be preserved 
after the discretization. The next theorem gives the necessary 
and sufficient condition to preserve the controllably after 
sampling for SISO systems. 

Theorem 1 
Assume that a SISO dynamic equation (7) is 
controllable. The necessary and sufficient condition for 
the discrete-time dynamic equation (8) to be controllable 
is that Im[λi(A)-λj(A)] ≠2πδ/T  for δ = ±1,±2,… 
whenever Re[λi(A)-λj(A)] = 0. 
 

The proof of this theorem is found in [6]. 
If the input-output dynamic description of the 

converter is required for the analysis or the design, then it 
can be easily found by taking z-transform of the discrete state 
space equation above and expressing the output y as a 
function of the input u and the disturbance w that is: 
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Note that Gu and Gw are matrix transfer functions whose 
elements are rational functions of the complex variable z. 

Once the discrete dynamic has been derived the next 
step is the analysis and the design. 



V. DISCRETE TIME CONVERTER CONTROL DESIGN 

A. Controller Architectures and Steady State Performance 
The control law implementations shown Fig. 10 are 

generally suitable to solve power electronics control 
problems.  In Fig. 10a the feedforward controller Gf(z) alone 
can not provide robust reference tracking, however it has 
been found that it can improve the transient response due to 
reference changes.  In Fig.10b the transfer function Gcp(z) 
can represent, for instance, an estimate state feedback that is  
introduced to stabilize or to allocate the poles of the  plant.   
The controller Gc(z) can be selected to provide the desired 
steady-state performance while ensuring the stability of the 
overall system.  The internal model principle [11] gives us 
some guide lines for the selection of Gc(z). The internal 
model principle for SISO discrete systems can be 
summarized by the next theorem [10].  
Theorem 2: 

Let us consider the feedback system of Fig.10a where 
the plant is completely characterized by the strict proper 
transfer function Gp(z)=N(z)/D(z). Let φ(z) be the least 
common denominator of the unstable poles of the 
reference r and the disturbances w. If none of the roots 
of φ(z) is zero of Gp(z), then there exist a compensator 
Gc(z) with a proper transfer function such that the 
feedback system of Fig. 10a is stable and it can achieve 
asymptotic tracking and disturbance rejection. 
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Fig. 10. Controller Architectures. 
 
The usual form of the controller is Gc(z)=N(z)/φ(z), 

however some implementations standout in power 
electronics applications. For instance, the repetitive 
controller [12],[2] does not require a significant effort for its 
implementation and has low sensitivity to quantization 
errors. As a result, it has been used in many power 
electronics applications [13-15].  The most popular repetitive 
controllers are given in rows one, two and three of Table I. 
The conventional PI controller is shown in row four of Table 
I. Finally, the proportional resonant controller [16] is given 

in the row 5 of Table I. The proportional resonant controller 
has recently been considered for many power electronics 
applications where it is desired to track a sinusoidal 
references or where it is desired to reject a disturbances of 
known frequencies. 
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        N is number of samples in the fundamental period. 
 

Once the controller architecture is defined the next 
step is the controller parameters design.  

B. Root-Locus Method 
 

If the discrete transfer-function of the converter has 
been derived then the discrete controller design can be 
carried out using the root-locus approach. It is important to 
note that the rules for the construction of root loci of the z-
transfer functions are identical to those of continuous 
systems. The conditions for absolute and relative stabilities 
for the discrete systems on the z-plane are conformal to those 
for the continuous-data systems on the s plane.  Let us 
consider a SISO closed loop system with a proper open loop 
transfer function ( )( )

( )
KN zGH z
D z

=  where N(z) and D(z) are 

coprime. The closed loop system characteristic equation is: 
( ) ( ) 0D z KN z+ =  or  ( ) 1

( )
KN z
D z

= −                   (10) 

Note that the stability and the modes of the closed loop 
system are defined by the roots of the characteristic equation.  
Let us assume that K is positive, then all points in the z plane 
that satisfy the angle condition 

( )arg( ) (2 1)   for 0, 1, 2,...
( )

N z k k
D z

= − + π = ± ±            (11) 

are root of the characteristic equation for some gain K. The 
root loci departure with K=0 from the roots of D(z) and 
arrive at the roots of N(z) or tend asymptotically to infinity as 
K → ∞ .  In order to ensure the stability of the closed loop 
system the roots of the characteristic equation must be inside 
the unit circle in the z-plane. In addition, a set of constant 
damping factor lines, that are logarithmic spirals, and natural 



frequencies are drawn within the unit z-plane to help to 
characterize the modes of the closed loop system. As an 
illustrative example, let us consider the discrete controlled 
voltage fed grid connected PWM converter with LCL filter 
described in [9]. The open loop transfer function in this case 
can be expressed as: 
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where 1( ) ( ( ))pG z C zI G HK H−= − −  which represents the 
transfer-function of LCL filter with a partial state feedback 

and 
2 2

( )
( ) ( )i i

KN z sK
z s

⎧ ⎫
= Ζ ⎨ ⎬φ + ω⎩ ⎭

∑   is an internal model 

controller to achieve reference tracking and disturbance 
rejection. From the Root Loci of Fig. 11 it is possible to see 
how the high and low frequency poles of the closed loop 
system changes with the internal mode controller gain, K. 

 
Fig. 11.   Root-Loci of a discrete controlled grid connected VSC 

with LCL filter with an internal mode controller with complex poles 
at first, third, fifth and seventh harmonics. 

 
In this case, the root locus method is an invaluable tool to 
develop intuition on the impact of the internal model 
controller gain on the closed loop modes. 

C. Frequency Response Methods 
Frequency response methods, such as Bode Plot, 

Nichols Chart and Nyquist Stability Criterion can be used for 
the analysis and design of discrete controller for static 
converters. It is important to keep in mind that when 
performing frequency response tests the aliasing should be 
avoided. Let us assume that discrete transfer-function GH(z) 
is given, then a straightforward way to obtain the bode 
magnitude and phase angle plots are by computing the 
magnitude and phase of GH(z) with j Tz e ω=  where ω  
sweeps over the interest frequency range. The Nyquist 
stability criterion for discrete systems is similar to the one for 
continuous systems, and it is also derived according with the 

principle of the argument of the complex-variables theory. 
For the Nyquist path of Fig. 12 , if the open loop transfer-
function GH(z) is stable except for the poles on the unity 
circle, which usually is the case in static converters 
applications, then the number of zeros of the characteristic 
equation outside the unity circle, that is, the number of closed 
loop unstable poles, is equal to the number of times the point 
(-1,j0) of GH(z) plane is encircled by the Nyquist plot of the  
GH(z) corresponding to the path of  Fig.12.  
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Re z 

Im z 

R→∞  

R=1  

Fig. 12. Nyquist path that encloses the exterior of the unit circle. 
 

Let us consider again the discrete controlled voltage fed 
grid connected PWM converter with LCL filter described in 
[9]. The open-loop frequency response with a gain K=100 is 
shown in Fig. 13. It is important to mention that the gain and 
phase margins can be easily obtained from the Nyquist plot 
as shown in Fig.14. Another important point to be 
mentioned, is that, in these frequency plots a damping-ratio 
has been introduced in the complex poles of the internal 
mode controller, that is ζ=0.01. This brings a number of 
benefits that are: (i) it increases the robustness of the 
systems; (ii) reduces the dynamic range of the variables in 
the implementation, (iii) it simplifies the Nyquist path by 
avoiding the use of semicircular detours about the poles on 
the unit circle. However, the damping-ratio should be kept as 
small as possible otherwise the steady state performance in 
terms of reference tracking and disturbance rejection can be 
compromised. 

 

Fig. 13. Open loop frequency response discrete controlled VSC 
with LCL filter [9]. K=100. 



 

 

 
Fig. 14. Top: Nyquist plot for the frequency response discrete 

controlled VSC with LCL filter [9]. Bottom: Zoom of  the Nyquist 
plot at the top. 

VI. EXAMPLES OF DISCRETE CONTROL OF STATIC 
CONVERTERS 

This section presents three examples of discrete 
controllers for static converters. 

A. Interleaved PFC Converter 
In [17] a discrete controller for three-level boost 

power factor corrector rectifier has been proposed, Fig 15. 

 

L 

S1 

S2 
C2 

C1 

D2 

D1 

vin 

iL 
v1

v2

Switching 
Logic 

vgS2 vgS1

vv11  
vv22 

vin

u 

Current Loop 
Controller 

iL 

DSP controller 

Voltage Loop 
Controller vvoorreeff

22

iref 

vgS1

vgS2

ucc 

 
Fig. 15 Three-level boost PFC. 

 

In continuous conduction mode the three-level boost 
converter has four stages of operation. A control mechanism 
to balance the capacitor voltages is proposed and a discrete 
model for the boost inductor current has been derived, that is: 
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Since most DSP controllers and microcontrollers have 
multiplication in their instruction sets, it has been proposed 
the following linearization law: 
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As a result, the boost inductor current can be expressed by 
the following LTI equation: 

)()()1( kukiki LLL +=+ .                      (15) 
From this point a number of control laws could be used. 
There the authors selected to design the controller in the state 
space framework. A servo controller with estimated state 
feedback has been adopted, see Fig. 16. Among the 
motivation to use such approach are: (i) the gains of the 
controller are obtained using a systematic procedure, that is 
DLQR and, (ii) the implementation delay has been 
compensated by using and predictive state observer. 
Experimental results demonstrate the good performance and 
feasibility of the proposed discrete controller. 
 

 

 
 
 
 
 
 
 
 

Observador de estados preditivo

                              Planta   iref 

–
1−z  

k1 
– 

uL(k)
 1−z

iL

 1−z

 )1(ˆ +ki

ke 

k2 

-

 1−z  
v(k+1)

 )(ˆ ki  

 
Fig. 16. Block Diagram of a discrete controller for three-level 

boost power factor corrector rectifier. 

B. Single-Phase Inverter 
In [18] it is proposed a model reference controller 

combined with a repetitive controller for single phase UPS, 
Fig. 17.  The model reference controller modifies the 
structure of the plant so that the closed-loop transfer function 
becomes equal to a chosen reference model transfer function, 
whereas the repetitive control action minimizes periodic 
distortions caused by non-linear load, Fig. 18. An interesting 
feature of this combination is that the design parameters of 
the model reference controller can be tuned a priori from 
simulation of the discrete RMRAC using a modified least-
squares adaptation algorithm. The stability analysis reveled 
that the converter is stable for a large range of load and filter 
parameters. Experimental result of Fig. 19 illustrates the 
good performance of the system even under heavy non-linear 
load. 



 
 

Fig. 17 : Digitally controlled voltage-source PWM inverter. 

 

 
Fig. 18 : (a) Block diagram the model reference 

controller. (b) Block diagram MRC plus RP controller. 
 

  
Fig. 19: Output voltage vc(t) (50 V/div) and load current i(t) (10 

A/div) fora rectifier-RC load. Time scale: 2 ms/div. 

C. Three-Phase UPS with Output Transformer 
In [19] a down-sampled discrete-time internal-

model-based controller in the synchronous reference frame 
with a reduced number of poles has been proposed for three-
phase inverters with output transformer used in double-
conversion uninterruptible power supply, Fig. 20. There, it 
was demonstrated that the use of a down-sampled rate and 
fewer poles in the internal model results in a number of 
benefits, among which are the following: (i) improvement of 
the transient response; (ii) increase of the stability margin of 
the closed-loop system; (iii) a straightforward 
implementation in fixed-point digital signal processor and 
microcontroller implementation as well as a reduction of the 
required memory space; and (iv) a simple solution for the 

saturation of the output transformer. As a result, it was 
possible to obtain output voltages with reduced total 
harmonic distortion while ensuring good transient 
performance for both linear and nonlinear loads. 

 
Fig. 20. Discrete Controlled Three-phase PWM inverter, ∆Y 

transformer, filter, and load. 
Fig. 21 shows the block diagrams the multi-rate controller.  
By selecting a smaller sampling frequency of the internal 
model controller it has been possible to increase the phase 
margin as shown in Fig. 22. Finally, Fig 23 demonstrates the 
good performance of the multi-rate controller even under 
heavy three phase non-linear load. 

 

 
Fig. 21.  Block Diagrams of the discrete-time voltage controller in 

synchronous frame for axis “d.” z = eTs and zim = eTim s. 

 
Fig. 22 Nyquist plot of G(zim) = Gim(zim)GMF(zim). N = 42, and Tim = 

396.82 µs. 

 
Fig. 23.  Experimental result. Load:Three-phase uncontrolled 

rectifier at 10 kVA. Output phase-to-neutral voltages van, vbn, and 
vcn , and load current ia. THD = 0.8%. Voltage scale: 50 V/div. 

Current scale:20 A/div. 



VII. COMMENTS 

In this paper the main issues associated with the 
analysis and design of discrete controllers for power 
electronics converters have been addressed. It is important to 
note that some popular discrete controllers often found power 
electronics applications have not been mentioned due to the 
space restriction.  Among them is the dead-beat controller 
[20-22]. Although deadbeat controllers provide minimal time 
responses and they are simple to implement one should keep 
in mind that their performance and stability are strongly 
depend on the knowledge of the systems parameters. On the 
other side of the controller approach spectrum are the self-
tuning and adaptive controllers that usually requires a 
significant computational burden for their implementations 
but they make it possible to ensure stability and performance 
even in the presence of the unavoidable uncertainties 
associated with a real implementation. As the DSP 
controllers and microcontrollers manufactures improve the 
performance of the their processors, as well as reduce their 
prices, the power electronics applications can benefit from 
the use of these advanced control methods. 
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