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Abstract – The short circuit current level of

interconnected power systems is constantly increasing.

One of the solutions for this problem is the use of fault

current limiters (FCL). Among different types of FCL,

the resistive superconducting FCL (RSFCL) is one of the

most promising technologies. In this work, the

electromagnetic behavior and the power dissipation of a

RSFCL is modeled. The results of this study are

necessary for the design of reliable RSFCL. Analytical

and numerical results are compared to ensure the

correctness of the developed algorithm. With some

modifications on the proposed algorithm, the influence of

magnetic field and temperature variations are also

modeled.

Keywords – Fault current limiter, Superconductivity,

Bean model.

I. INTRODUCTION

With growing power systems and the introduction of new

sources of energy and interconnections, the fault current

levels increase. This increase demands the upgrade of

protective circuit breakers, an expensive solution. As

alternative, fault current limiters (FCL) can be employed [1].

Some types of FCL use power electronics.

A FCL must ideally:

- be invisible to the power system in normal conditions;

- limit short circuit currents to values that circuit breakers can

open safely;

- present fast transition to the limiting state [2];

- present fast recovering after a fault [3];

- have low dissipation, high reliability, low maintenance and

high capacity density.

High temperature superconductors (HTS) have these

target characteristics. Among different types of

superconductor FCL, the resistive superconducting fault

current limiter (RSFCL) is promising.

One of the most important issues in RSFCL design is the

power dissipation in order to establish the refrigeration

needs. RSFCL works at temperatures below 100 K.

In this work, the electromagnetic behavior and the power

dissipation of a long superconductor cylinder is deduced

analytically using the Bean model [4]. The electromagnetic

behavior is also determined numerically and the results are

compared with the analytical ones, ensuring that the

proposed algorithm is correct. With some modifications on

the algorithm, the influence of magnetic field and

temperature variations, which can not be obtained

analytically, can also be modeled.

II. ELECTROMAGNETIC BEHAVIOR

The Bean model, used in this work in the analytical and

first numerical simulation, is one of the simplest models that

describe the superconductor behavior. There are two main

premises in this model:

- every electromagnetic variation starts from outside to inside

the superconductor [5],

- the current is not homogeneously distributed over the cross

section of the superconductor, with no current flowing in

some sectors and a constant current density in the rest [6].

A. Analytical Results

The analytical calculation for a long superconductor

cylinder transporting the sinusoidal current i(t)=Imaxsin(ωt)
was studied using cylindrical coordinates (Fig. 1).

This study is segmented in the following time intervals:

0<t< T/4, T/4<t<3T/4, 3T/4<t<5T/4, where T=2π/ω is the
period of the supply current.

Fig.1.  Superconductor cylinder transporting a sinusoidal current

in the z direction. The cylinder, with R radius, is centered at z axis.

1) Interval (0<t<T/4) – This interval will study the

establishment of the current and represents the transient

period. Defining IC the value of complete current penetration,

it follows:
2

RJI CC π=
(1)

For an instantaneous value i(t), the current penetrates until

a radius c(t) given by (2).
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The analytical solution for a solid cylinder is the same as

for a tube with radius greater than the maximal penetration.

Using Amperè law, the magnetic field can be obtained and

it has the same direction of the unitary vector uθ. The

solution is presented in (3).
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The current variation implies in the magnetic field

variation and, consequently, an electric field will appear in

the superconductor. This electric field can be obtained from

Faraday’s law. This field has the same direction of the

current density and its value is present in (4).
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A graphical representation of the electromagnetic

variables is present in Fig.2.

Fig.2.  Distribution of the current density J, magnetic field B and

electric field E, in a superconductor cylinder transporting a

sinusoidal current i(t) (0<t<T/4).

Multiplying (4) by the constant current density JC and

integrating it in the cylinder volume, the power dissipation

per unit of length P(t) can be obtained. For the sinusoidal

current with angular frequency ω, the power loss per unit
length is given by (5),
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and its mean value is given by (6).
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Figure 3 shows the power dissipation and its mean value

for a sinusoidal current with effective value 50 A and 60 Hz,

flowing in a superconductor cylinder with 3.6 mm radius and

current density of 400 A/cm
2
.

Fig.3.  Power dissipation and its mean value for a sinusoidal

current with effective value 50 A and 60 Hz, flowing in a

superconductor cylinder with 3.6 mm radius and current density of

400 A/cm2 (0<t<T/4).

2) Interval (T/4<t<3T/4). – With the decrease of the

current value, a negative current density will appear at the

outmost part of the cylinder as shown in Fig.4.

In this situation, the variation of the current density will

occur up to a radius c(t), now defined by (7).
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There is no change in the magnetic field value for a radius

smaller than c(t) and, consequently, no electric field and

power dissipation.

Defining rS as the radius that the current will penetrate at

its peak value, the magnetic field is now defined by (8).
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Fig.4.  Distribution of the current density J, magnetic field B and

electric field E, in a superconductor cylinder transporting a

sinusoidal current i(t) (T/4<t<3T/4).
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Substituting (7) in (4), multiplying it by the constant

current density -JC and integrating it in the cylinder volume,

the power dissipation per unit of length P(t) can be obtained.

For the sinusoidal current with angular frequency of ω, the
power loss linear density is defined by (9).
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The mean value of (9) is also defined by (6). Fig. 5 shows

the power dissipation and its mean value for the same

parameters used in Fig. 3.

Note that although the different power shapes presented in

Figs. 3 and 5, they have the same mean value.

3) Interval (3T/4<t<5T/4) – The analytical calculation of

power dissipation in this interval is analogous to that

presented in the previous one. In fact, the steady state has

been reached. Then, this deduction will be suppressed.

Fig.5.  Power dissipation and its mean value for a sinusoidal current

with effective value of 50 A and 60 Hz frequency, flowing in a

superconductor cylinder with 3.6 mm radius and current density of

400 A/cm2 (T/4<t<3T/4).

B. Numerical Simulation

A numerical solution is done to allow a better

visualization of the electromagnetic behavior of the

superconductor tube and ensure that the algorithm developed

is correct. After this verification, the algorithm, with some

modifications, can be used to model the influence of

magnetic field and temperature variations.

For the numerical simulation, the cylinder is divided into

cylindrical concentric skins. All electromagnetic variables

are constants in each one. Figure 6 represents this division of

the cylinder.

Fig.6.  Division in skins of a superconductor cylinder for numerical

simulation.

The algorithm developed is divided in these steps:

1- Input of simulation parameters;

2- Instantaneous current calculation;

3- Calculation of outmost magnetic field;

4- Application of current density at the analyzed skin;

5- Calculation of magnetic field with Amperè law,

discounting the current flowing outside the analyzed

skin;

6- Verification if with the current density application

(step 4) the instantaneous current is reached. If the

condition is true, go to step 7. If condition is false,

jump to the inner adjoining skin and go back to step

4;

7- Electric field and power loss calculation. Increment

the time value, until the final time defined is reached;

8- Graphics drawing.
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The results of numerical simulation are graphically

presented from Fig.7 to Fig.11.

Fig.7.  Current density for a sinusoidal current with effective value

50 A and 60 Hz, flowing in a superconductor cylinder with 3.6 mm

radius and current density of 400 A/cm2, simulation time 5T/4. The

applied current multiplied by a constant as reference is inserted at

the inner radius presented.

Fig.8.  Magnetic field for the same parameters presented in Fig.7.

Fig.9.  Electric field for the same parameters presented in Fig.7.

Fig.10. Power loss for the same parameters presented in Fig.7.

It can be seen in Fig.11 that the steady state is reached at

T/4. As the results obtained with the numerical method (Fig.

11) agree with the analytical ones (Figs. 3 and 5) the

algorithm developed can be considered validated.

Fig.11.  Total power loss for the same parameters presented in

Fig.7.

C. Magnetic Field Influence

To model the influence of the magnetic field in the

behavior of the superconductor tube the Kim model [7] is

applied at the fourth step of the algorithm.

Instead of using a constant value of current density, the

value used is presented in (10).
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B
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According to equation (10), the current density decreases

with the growing of the magnetic field. This effect can be

observed in Fig.12 and Fig. 13.

Using the same parameters presented in Fig. 7 and α
estimated with experimental data from [8], the power loss

obtained is 4.74 % greater then that one obtained without

considering the magnetic field influence.
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Fig.12.  Magnetic field for the same parameters presented in Fig.7

and α = 200.

Fig.13.  Current density the same parameters presented in Fig.7 and

α = 200 (to stand out that where the magnetic field is greater, the
current density decreases).

D. Temperature Influence

The dependence of the current density and the temperature

can be fitted by the linear function (11) [9].

( )TTCC TKJTJ 21 .)77()( αα +=
(11)

In the seventh step of the algorithm, the energy dissipated

∆E by the superconductor is the product of the power loss by
the step time of the simulation. Considering the

superconductor in an adiabatic system, the temperature

variation ∆T is defined by (12)

TC

E
T

∆
=∆

(12)

where CT is the thermal capacity of the system.

Defining an initial temperature and using the current

density obtained by (11) at the fourth step of the algorithm

with the temperature calculated with (12), the influence of

the temperature is modeled. The maximum temperature of

the system is limited at the nitrogen liquid vaporization.

Using the same parameters of Fig. 7, initial temperature of

20 K and α1T and α2T estimated with experimental data from

[8], the temperature variation and power dissipation are

presented in Fig. 14 and Fig. 15.

Fig.14.  Temperature variation of the superconductor system,

limited in 77 K.

Fig.15.  Total power loss and its mean value. The superconductor is

more efficient in lowers temperatures.

III. CONCLUSION

The calculation of the loss dissipation of a RSFCL is

essential in its design. Knowing this value, the limiter

efficiency is determined and also the refrigeration equipment

can be dimensioned.

With some changes in the algorithm, the influence of

temperature or magnetic field in the current density can be

implemented. This influence can not be analytically deduced

and must be considered in the design of the limiter.

In this paper, a long cylinder was considered. To design a

real RSFCL, a multiphysical numerical simulation (as the
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finite element method) is indicated to determine the optimal

geometry.
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