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Abstract – In this paper an alternative method is 
presented based on artificial neural networks for the 
determination of the current harmonic components of 
nonlinear load in single-phase line, whose amplitudes and 
angles of phase present uncertainties in steady state 
response. The nonlinear load is composed by an AC 
controller with variable resistive load. The effectiveness 
of the proposed method and its application in simulated 
single-phase active power filters with selective harmonic 
compensation are verified. Simulation and experimental 
results are presented to validate the proposed approach 
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I. INTRODUCTION 

The growing use of loads producing harmonic currents 
causes the proportional increase of disturbances originated 
by the harmonic distortion in electric systems. The harmonic 
pollution due to the single-phase loads individually has small 
power, but when used in large numbers in electric systems 
can cause significant harmonic distortion problems. This 
pollution is not restricted only in industry, but also it is 
present in home appliances and commerce. Besides, the 
harmonic current flowing through the system causes 
undesirable effects [1,2,3]. 

The problems related to the harmonic distortion can be 
solved by using filters with the objective to cancel the system 
harmonic components. There are two general classes of 
filters for the harmonic distortion correction. The first class is 
based on the use of conventional passive filters, but this one 
can present resonance problems as much with the line feed 
impedance as to the other system loads. Besides, these filters 
are not appropriate to be used in system susceptible to loads 
that present variable harmonic contents. The second class 
consists on active power filters. The active filters have 
showed themselves, nowadays, an effective solution in the 
correction of the harmonic distortion in a versatile way [3-8]. 

Among the several possible configurations to the 
accomplishment of the Active Power Filter (APF), the 
topology denominated Parallel Active Power Filter (PAPF) 
has been the most broadly used nowadays. Its configuration 
is made of a principle voltage source inverter connected in 
parallel with the load (Figure 1). Its work is to inject an 
appropriate current to the Point of Common Coupling (PCC) 
of the system, canceling the harmonic components from the 
drained current of the voltage source [2]. The compensation 
features of a PAPF are defined mainly for the used strategy 
to determine the harmonic content of the load current and to 
generate the reference current of its control system. This 

reference current determination has been done through two 
approaches: the first is named time domain approach [2], and 
the second is frequency domain approach [1,6,7]. In the 
frequency domain, the most used technique nowadays to the 
reference current determination is based on the Discrete 
Fourier Transform (DFT) [6,7,9,10]. 

An alternative and promising tool to DFT is the use of 
Intelligent Systems (IS) in the estimation process of the 
harmonic content of the current signal. Among the several IS 
technique the most used are the Artificial Neural Network 
(ANN) ones [11-16]. In some cases the ANN is able to 
identify the main harmonic components of the Fourier series 
[11]. There is also the possibility to use one or more ANN 
architecture joined to the harmonic compensation system, for 
example, an ADALINE to the harmonic determination and a 
multilayer perceptron to the active filter controller [13]. 

The proposal of this work is to present a method based on 
ANN to determine the six first harmonic components of the 
load current in a single-phase line, which are used to the 
reference current determination of the PAPF to the selective 
compensation. The determination of these harmonic 
components is made by sampling in a half period cycle of the 
voltage source. The on-line ANN is used due to the 
uncertainties of the systems in steady-state, i.e., the circuit 
operations might change depending on the load operating 
condition and parameter variation. 

The single-phase load used in this paper is composed by 
an AC controller feeding three incandescent lamps setting of 
100 W each, performing a regulator of luminous intensity 
(dimmer) [1], showed in Figure 1. The current waveforms 
characteristics of this load can be varying in time. The ANN 
training is done in an off-line form, through previous 
knowledge of the harmonic behavior of the load. After this 
training has been made, the ANN identifies in an on-line way 
each harmonic component starting from the amplitudes of the 
current of the load which are sampled and presented at the 
input of the ANN [1].  

This work is organized in five sections. In Section 2 the 
load features and the studied system aspects are presented. In 
Section 3, it is reported the involved principles with the 
neural approach. In Section 4 the simulation results of the 
active filters are presented. Finally, in Section 5, the paper 
conclusions are described. 

II. HARMONIC CURRENT 

The AC controller showed in Figure 1 represents a 
nonlinear load to the voltage source. This controller is made 
by a TRIAC A, a sinusoidal voltage source {vS(t)}, a firing 
circuit, and a incandescent lamps with a resistive behavior 
(R). The harmonic components amplitudes and phases of this 
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system vary as with the TRIAC firing angle as with the 
resistance behavior of the lamps. 

The nonlinear load voltage vL(t), as a function of the firing 
angle α, can be solved by n-th (n odd) harmonic, i.e.: 
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where: 
V - Voltage source amplitude. 
ω - Fundamental angular frequency. 
The load current representation iL(t) can be taken as 
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The lamps resistances vary with the temperature and, 
consequently, with the RMS (Root Mean Square) voltage, 
which vary with the TRIAC firing angle (α), according to 
(3). The RMS voltage value can also be, approximately, 
calculated by voltage n-th harmonic of output {Vn} by (3). 
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where N is the number of harmonics. The current n-th 
harmonic amplitude component {In} is given by (4). Figure 2 
shows the variation of RMS load current {IRMS}, that can be 
calculated in relation to α, or approximately by (5). 
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The Total Harmonic Distortion (THD) [17] is given by 
(6). Equation (7) presents the harmonic distortion influence 
in the RMS load current. 
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Fig. 1.  System with a PAPF and an AC controller. 

Figure 2 shows the current THD variation as a function of 
the firing angle of the TRIAC A. The six first load current 
harmonic components variation of the system in function to 
the AC controller firing angle is presented in Figure 3. It is 
observable that above 150º all the amplitudes get close to the 
fundamental component value increasing the distortion 
(above 180%, Figure 2), but with smaller impact in the 
system due to their small amplitudes [1]. 

III. HARMONIC DETEMINATION 

The network architecture used in this work has 42 inputs, 
which they receive from the AC controller sampled current 
in a half cycle of line voltage with sampling rate of 5.04 kHz, 
as shown in Figure 4. The first layer (hidden) has five 
neurons, and the second layer has one neuron (output) 
(Figure 5). The activation function of each neuron of the first 
layer is the hyperbolic tangent while activate function of the 
second layer neuron is linear. This architecture repeats for 
each component (1st, 3rd, 5th, 7th, 9th, and 11th). 

 
Fig. 2.  RMS current and THD in function of firing angle. 

 
Fig. 3.  Six first harmonic components amplitudes. 

 
Fig. 4.  Sampling process of load current. 
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Fig. 5 Feedforward neural network architecture. 

The ANN architecture used is the multilayer perceptron 
(MLP) with supervised training. The neural network basic 
element is the artificial neuron [18]. The artificial neuron can 
be modeled by the (8) and (9). 
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where: 

m - Number of input signals of the neuron. 
Xi - i-th input signal of the neuron. 
wi - Associated weight with the i-th signal of input. 
b - Threshold of the neuron. 
vj(k) - j-th response of the neuron at k instant. 
ϕj(.) - j-th activation function of the neuron. 
yj(k) - j-th output signal of the neuron. 
Each artificial neuron is able to compute the input signal 

and its respective output. The activation function used to 
calculate the output signal is typically nonlinear. In this work 
the ANNs process the analogical data and the adjusting 
process of the network weights (wj) associated to the j-th 
output neuron is done by the error signal calculus ej(k) 
(between the desired value dj(k) and the estimated value 
yj(k)) in relation to the k-th iteraction or k-th input vector. 
This error signal is calculated as: 

)()()( kjykjdkje −=
 (10)

Adding all squared errors produced by the network output 
neurons with respect to k-th iteration, we have: 
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For an optimized weight configuration, E(k) is minimized 
regarding the synaptic weight wji. The weights associated 
with the output layer of the network are therefore updated 
using the following relationship:  
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The sinaptic weight wji is connected to the j-th neuron of 
the output layer to i-th neuron of previous layer and η is the 
constant that determines the rate of learning of the 
backpropagation algorithm. The adjustment of the weights 

associated to the hidden layers is made of analogous form; 
the steps for the adjustment are detailed in [18]. 

The training method is based on the Bayesian 
regularization, which is used in ANN supervised trainings, 
using the feedforward algorithm [19]. The approach of 
Gauss-Newton of the Hessian matrix can be implemented by 
the structure of the algorithm of Levenberg-Marquadt, 
reducing the computational effort [19, 20]. 

The algorithm feedforward, applied in the ANN, use a 
nonlinear regression. The main objective of this application 
is to get an algorithm that produces networks with good 
generalization, restricting the size of the weights matrix, 
which works as a component of the Bayesian regularization. 

Figure 8 to Figure 13 illustrate the ANN results using 
experimental input signals. The error stopping criterion is of 
5.10-3. 

The experimental results obtained with the test bench 
(Figure 6) are illustrated in Figure 7. These results, when 
compared with simulated data, are limited to the firing angle 
between 22º and 130º. It occurs due to the constructive 
limited feature of AC controllers. These controllers are 
bought in electronic stores and not mounted in laboratory. 

RNA is able to converge in all of the estimated outputs, 
even though the relative errors in some points were relatively 
high (above 20%, Figure 9 to Figure 13). These errors can 
occurs because of the low quality of the feeding voltage 
supplied by the power transformer (Figure 7), in reason of 
the signal sampling rate of the load current, and due to the 
noise involved with the instrumentation. 

The relative error for each firing angle is acceptable for 
this application, because the Figure 8 to Figure 13 results 
demonstrate that the estimated output can be seeking the 
target output behavior with very close values. In [1] 
simulation results present error (difference between 
estimated value and desired value) below 1%. 

 
Fig. 6.  Test bench of the AC controller circuits. 

 
Fig. 7.  Experimental load current and voltage source (α ≅ 54º). 
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Fig. 8.  1st harmonic content estimation: experimental results. 

 
Fig. 9.  3rd harmonic content estimation: experimental results. 

 
Fig. 10.  5th harmonic content estimation: experimental results. 

 
Fig. 11.  7th harmonic content estimation: experimental results. 

IV. COMPENSATION HARMONIC 

The main simulation results involving the estimated 
harmonic content, the AC controller and the PAPF are 
described in this section. It was used the Matlab/Simulink® 
to simulation of the active power filter [8]. 

Figure 1 shows the simulated system diagram. In this case, 
the PAPF injects a harmonic compensation current, as in 
(13). It is formed by a full bridge PWM inverter in parallel 
with the AC controller. In this way, the compensation current 
contain all the harmonics contents which is desirable to be 
eliminated, but with its phase angles in opposition. 
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The principle of system operation can be understood in the 
diagram showed in Figure 14. From the load current 
harmonic content {iL(t)}, the harmonic compensation current 
{if(t)} is calculated. In time domain the load current is 
measured and sampled; afterwards, the amplitudes sampled 
in half cycle of fundamental are presented to the ANN. With 
the normalized signal the ANN estimates the six first 
harmonic components. From this results on the time domain 
reference current is generated which is used for the system of 
the PAPF controller. Therefore, the feeding source current 
provides the fundamental component and the harmonic that 
are not compensated, i.e., 

)()()( tititi fLS −=  (14)
Figure 15 shows the current source {iS(t)} in the PCC 

before and after the beginning of the PAPF operation 
(beginning in the second cycle of fundamental) and a load 
current {iL(t)}. 

The proposed method also showed itself effective and 
robustness when there is a load change. Figure 16 shows the 
result to a firing angle change, from 90º to 60º in the AC line 
voltage fourth cycle. In the fifth cycle the PAPF starts the 
compensation to the angle of 60º. Figure 17 shows the result 
to the amplitudes change (α = 90º). From the fourth cycle a 
lamp burns. After one cycle starts the compensation to the 
system with two lamps. 

 
Fig. 12.  9th harmonic content estimation: experimental results. 

 
Fig. 13.  11th harmonic content estimation: experimental results. 
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Fig. 14.  Simulation diagram of compensation system. 

 
Fig. 15.  Compensated current (IS) (a) and load current (IL) (b): 

simulation results. 

 
Fig. 16.  Compensated current (IS) (a) and load current (IL) (b): 

simulation results. 

 
Fig. 17.  Compensated current (IS) (a) and load current (IL) (b): 

simulation results. 

Figure 18 illustrates the current compensation to a firing 
angle of 90º. The harmonic power and reactive power are 
simultaneous compensated by PAPF. 

 
Fig. 18.  Compensated current (IS) (a) and load current (IL) (b): 

simulation results. 

V. CONCLUSION 

An alternative method based on artificial neural network 
was presented in this work to estimate the harmonic current 
content of an AC controller. The harmonic content was 
estimated under harmonics variations with AC controller in 
steady-state. 

The proposed method presented low computational effort 
and did not demand on sampled signal with certain amount 
of points for cycle in a certain sampling frequency (witch it 
is the base of the DFT). 

The harmonic content estimation of the AC controller was 
accomplished set up in a tests bench. The results demonstrate 
the ANN can estimate the experimental harmonic behavior of 
the AC controller. 

The method based on ANN has been shown able to 
determine the desirable harmonic content in a half cycle 
source voltage, and it has an acceptable relative error among 
the estimated and the desirable value. Therefore, the 
demands are satisfied in the harmonic determination for a 
PAPF project. 
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