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Abstract— This paper addresses the design of a robust con-
troller for voltage fed converters connected to the grid through
a LCL-filter. In this paper the controller design is divided in two
steps. The first one is a robust partial state feedback that damps
the high frequency modes associated with the LCL-filter. The
second step deals with the design of an internal model controller
to provide reference tracking an rejection of the grid voltage
background distortion. Since a state feedback is used, the impact
of the sampling approach on the low frequency components is
carefully investigated. Finally, experimental results are presented
to support the theoretical analysis and to demonstrate the good
performance of the proposed robust discrete controller.

Keywords– LCL Filter, Grid-Connected Inverters, PWM Con-
verters, Robust State Feedback Sampling Strategies .

I. INTRODUCTION

With the recent increase of energy demands in many coun-
tries around the world, and the concerns with the global
warming and greenhouse gases emissions, there is a growing
interest on the use of renewable energies sources. Usually,
these renewable resources, such as photovoltaic (PV) and wind
turbine (WT) systems, have an intermediate voltage DC link
from where an inverter is used to exchange power to the
grid. For example, in the most modern (WT) systems, an
inverter stage is present to avoid the incompatibility of voltage
and/or frequency from the generator and the point of commom
connection (PCC).

A grid connected inverter need a filter to attenuate the
PWM switching harmonics components in the grid-injected
currents. In its simplest form this filter is an series inductor.
Nevertheless, in high power applications, above several kilo-
watts, the dynamic performance and cost the filter inductor
become unacceptable [1]. As a result, in high power and low
switching frequencies converters, the LCL-filter become an
attractive solution. It is demonstrate in [2] that even with small
values of inductance and capacitance, it is still possible obtain
satisfactory harmonic attenuation.

The LCL-filter has a typical lowpass frequency response,
with a resonance peak. Thus, some measure must be taken
to avoid oscillations in the resonance frequency. In addition,
often, the utilization of wind resources requires that the
generation to be located in remote regions, where generally
grids with high power transference capacity are not avail-
able [3]. Under these conditions, several issues such as limited
power transference capability [4], thermal restrictions [5] and

instability of the current controller due to uncertainty of the
grid impedance at the PCC may became a concern. In the
literature, two methods to avoid the LCL-filter resonance are
generally used: active damping and passive damping. The pas-
sive damping consist in a passive device to damp the resonance
peak. It may be comprised of a resistor or another passive
devices configuration [6]. The main restriction of this method
are the additional losses in the passive devices. The active
damp consist in a digital compensator in the current control
loop [7]. However, active damping generally are designed for
a specific grid condition (weak or stiff grid), therefore, when
the grid condition change, the zeros and poles of the active
damping may turn the system unstable.

This paper derives the design constraints relating the sam-
pling frequency to the LCL-filter parameters in order to ensure
the controllability of the discrete dynamic equation even with
grid impedance variations. Then, a robust partial state feedback
is designed to active damp the resonance of the LCL-filter.
The design of the discrete partial state feedback gains is
carried out on the Linear Matrix Inequality (LMI) framework.
This ensures robust pole location for a given set of grid
impedance. In addition, internal model controllers are used to
obtain asymptotic reference tracking and disturbance rejection
in order to reduce the impact of grid background voltage
distortion. Finally, the main issues related with the sampling
of the feedback state variables under the PWM harmonics
are discussed. It is shown that a satisfactory steady state
performance of the close loop control, depends as well as on
an appropriate choice of the sampling strategy.

A numerical example of the robust partial state feedback
approach and a resonant controller are present in section II.
The overall gains to avoid interaction between the high fre-
quency modes in the resonant controllers modes is numerical
developed in Section III. In Section IV the impact of the
sampling strategy in the close loop state feedback control is
analyse. Finally, experimental results to a DSP controlled grid
connected inverter are presented in Section V.

II. SYSTEM DESIGN

The Figure 1 shows the circuit of a three-phase three wire
inverter with a output LCL-filter connected to the grid. In this
paper, the grid impedance will be consider a purely inductive
reactance. This is supported by the fact that WT system are
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Fig. 1. Three-phase inverter with LCL-filter connected to the grid.

Fig. 2. Equivalent αβ circuits.

generally connected in distribution grids, hence, the system
presents less interaction with residential urban area loads and
possibly have no low frequency resonances [7].

To demonstrate the design procedure of the discrete current
controller, the control approach developed in [8] will be
demonstrate. The three phase circuit is transformed into two
single phase decoupled circuits by the well known abc to
αβ transformation. Each of the single phase circuits can be
represented by a linear time-invariant dynamic equation given
by

ẋ(t) = Ax(t) + Bu(t) + Fw(t)

y(t) = Cx(t)
(1)
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and x is state vector selected as
[iL/Ibase vC/Vbase iLout/Ibase] , u is the normalized
inverter output voltage, w is the normalized grid voltage, y is
the normalized boost inductor current. All the states variables
in αβ coordinates are show in Figure 2. Note that the impact
of the DC bus voltage on the loop gain can be eliminated by
dividing the control action u by the DC voltage.

When considering a implementation in a DSP or microcon-
troller, it is convenient to analyse the dynamic behaviour of the
system in the discrete-time domain. The discrete time system
representation with w(t) = 0, is given by

x(k + 1) = Gx(k) + Hu(k)

y(k) = Cx(k)
(2)

where

G = eATs H =

∫ Ts

0

eA(Ts−τ)Bdτ

In addition, (2) can be modified to include the delay present
in the discrete controller implementation, which results

x̄(k + 1) = Ḡx̄(k) + H̄u(k)

y(k) = C̄x̄(k)
(3)

where Ḡ=

[

G H
0 0

]

, H̄ =
[

0 0 0 1
]

, C̄ =
[

C 0
]

. Note that x̄ = [x ud] is the new state vector and
ud the variable that has been included to represent the time
delay of the digital implementation.

Table I shows the filter and setup parameters. The control
objective can be state as to design a partial state feedback
controller to guarantee high frequency stability in a given
range of grid impedances and not interact with the low
frequency current controllers.
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TABLE I

SETUP PARAMETERS IN ABSOLUTE AND P.U. VALUES

Setup parameters

LCL-
filter

Boost inductance L 1.25mH 26.7%Grid side inductance Lout 0.500mH
Filter capacitor C 70µF 6,4%
Maximum grid side inductance Lg 0.500mH Sk=Infinite
Minimum grid side inductance Lg 0.830mH Sk= 20

PWM
inverter

Sampling frequency 6kHz
Switching frequency 6kHz
Type of controller 3th, 5th, 7th
Type of modulation Space Vector

Voltage
Grid voltage 127Vrms
DC inverter voltage 450V
Rated power 6.6kW

Sensors
position

AC voltage sensors on the capacitors
AC current sensors on the converter side

Base
Values

Voltage Base 127Vrms Line
ValuesCurrent Base 30Arms

A. High Frequency Current Controller Design

The first design step is guarantee that the controllability of
the dynamic equation is not lost in the discretization. In [8] is
demonstrate that the controllability is preserve if

fs >
1

π

√

L + Lg

LLgC
. (4)

Once this condition is fulfilled, it is possible to active
damp the oscillatory modes of the LCL-filter with a discrete
controller. Observe that the condition (4) is satisfied for the
parameters presented in Table I.

The Linear Matrix Inequalities (LMI) theory presented in
[9] and applied to grid connected inverters with LCL-filters in
[8], assures robust pole location for systems with parameter
uncertainties.

To apply the LMI theory in the discrete-time equation (3),
a model as a function of the uncertain parameter Lg inside a
define interval ∆Lg is derived as

x̄(k + 1) = Ḡ(α)x̄(k) + H̄u(k) (5)

where α represent the number of equally spaced points in
∆Lg.

The desired partial state feedback gain vector K has been
selected as:

u(k) = Kx̄(k) , where K =
[

k11 k12 0 k14

]

(6)

Note that k13 = 0, therefore it is not necessary to measure
the grid current for the impementation of the control law. Let

Fig. 3. State-feedback diagram.

a circle C centered in d = 0 with radius r = 0.95 inside the
unity radius circle, as the desired region to allocate all poles

TABLE II

MATRIXES SET TO COMPUTE THE LMI CONDITION.

α ¯G(α) H̄ Lg

1

��
.85 −.47 .14 .54
.46 .49 −.46 .14
.36 1.17 .64 .07
0 0 0 0

�����
0
0
0
1

��
500e − 6

2

��
.85 −.48 .15 .54
.47 .55 −.47 .15
.30 .98 .70 .06
0 0 0 0

�� ��
0
0
0
1

��
582e − 6

3

��
.85 −.49 .15 .54
.48 .60 −.47 .15
.26 .85 .70 .05
0 0 0 0

�����
0
0
0
1

��
665e − 6

4

��
.85 −.49 .15 .54
.49 .63 −.49 .15
.22 .75 .78 .04
0 0 0 0

�����
0
0
0
1

��
830e − 6

TABLE III

SET Q OF ALL GAINS THAT SATISFY THE LMI CONDITION.

K Vector K Vector

1 [-1.9 0.8 0 -0.5] 7 [ -1.8 0.9 0 -0.6]

2 [-1.9 0.9 0 -0.6] 8 [ -1.8 0.9 0 -0.5]

3 [ -1.9 0.9 0 -0.5] 9 [ -1.8 0.9 0 -0.4]

4 [ -1.9 1.0 0 -0.6] 10 [ -1.8 1.0 0 -0.6]

5 [ -1.8 0.8 0 -0.6] 11 [ -1.8 1.0 0 -0.5]

6 [ -1.8 0.8 0 -0.5]

of (3) with the state feedback (6). If there exists a symmetric
positive definite matrix P ∈ IR4×4 such that
[

rP (Ḡi + H̄K)′P − dP
P (Ḡi + H̄K) − dP rP

]

> 0,

i = 1, . . . , α
(7)

then the state feedback with gains K guarantee that all the
poles of the dynamic equation (3) are allocated inside the circle
C for any value in ∆Lg .

Table II presents the matrixes Ḡ(α) for the interval ∆Lg

when α = 4.
A compact set S of candidate gains K is defined as

S =
{[

k11 k12 k14

]

∈ IR3 : −1.9 ≤ k11 ≤ −1.7,

0.8 ≤ k12 ≤ 1,−0.5 ≤ k14 ≤ −0.3} .

The interactive test in the LMI condition can be satisfied for
more than one vector gain that belongs to S. By testing the
elements of S, with a increment of 0.1 in each entry, k11, k12

and k14 in each interaction, the possible feedback gains are
given in Table III. The positive definite matrixes P have been
omitted due the space restriction.

B. Low Frequency current controller design

Since the partial state feedback does not provide good
steady-state performance, that is, reference tracking and re-
jection of the grid voltage background distortion, the use of
internal model controller is a good alternative to improve
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the quality of the grid currents [10]. The discrete controller
structure used to mitigate the background harmonic distortion
is given by

Gc(z) =
N(z)

φ(z)
= Z

{

N
∑

i=1

ki

s

s2 + (iω0)2

}

(8)

where i is the compensated harmonic order.
In the discretization of the controller (8), the zero-pole

matched approach is applied for ensure the same frequency
response of the discrete controller is similar to the continuous
controller counterpart. The overall system control loop, with
the internal model controllers and the partial state feedback,
is shown in Figure 4.

Fig. 4. Proposed closed-loop control for the converter with LCLfilter
connected to the grid.

III. GAINS DESIGN

So far, a set of vector gains Q, that provide robust high
frequency stability has been found, as well as a resonant
controller structure has been selected to provide reference
tracking and disturb rejection. The problem now is to select
one vector gain belonging to Q that, even with the inclusion
of the internal model controllers, still provides an acceptable
behaviour for the overall system.

A procedure to verify the angular contribution of the overall
system in each pole of the low frequency controller is de-
scribed in [8]. By computing the departure angle of the root
locus in each resonant pole, for a feedback vector gain K in
Q, is possible verifying if all root locus are pointing towards
inside the unity radius circle. As a result, by finding a vector
gain K that ensures all departure angles of the root locus point
toward inside the unit circle in all grid conditions, it is possible
to ensure the stability of the closed loop poles associated with
the resonant controllers for some gain ki.

An angle margin can be obtained by the difference of
the departure angle of each pole, and the bounds of the
unity radius circle at the considered resonant pole. The angle
margins for weak and stiff grid conditions with the vector
gains given in Table III are showed in Figure 5 for the 7th
harmonic controller. Note that the weak grid condition is more
critical in terms of stability for all values of vector gains of
Q.

Figure 6(a) shows the root locus diagram when K =
[−1.8 0.9 0 − 0.4], the ninth vector of Q. By selecting
ki = 250, gain margin of 2.55 and 1.54 are obtained for stiff
and weak grid respectively. The instability occurs if the gain
ki became greater than ki = 635, note that the angle margin is

Fig. 5. Angle margin to stiff and weak grid condition of each gain of Q of
the 7th resonant controller

27°. Figure 6(b) shows the root locus for weak grid condition
and indicate the maximum gain for guarantee the stability. In
this case the angle margin decrease to 17°. The limit stability
gain is now ki = 385.

Hence, the departure angle analysis define the gains to
guarantee the stability in the high and low frequency modes.
Note that, in weak grid conditions, the high and low frequency
modes may interact with each other. The filter parameters
of Table II have been intentionally set high to demonstrate
this possible interaction, as well as to show that the proposed
control design approach is valid even in this condition.

(a)
(b)

Fig. 6. Root-locus of the designed system, (a) for stiff grid condition and
(b) for weak grid condition.

IV. SAMPLING STRATEGY IMPACT

This section address the issues associate with different
sampling approaches, since the proposed controller imple-
mentation feeds back the sampled state variables which may
be corrupted by the PWM harmonics. There always a loss
of information produced by sampling. However the extend
of this loss depends on the sampling rate as well as in the
sampling instants. If the harmonic spectrum of the sampled
state has components above a half of the sampling frequency,
then the aliasing phenomenon [11], will appear and undesired
low frequencies may be introduced in the LCL-filter states.

To demonstrate the impact of the sampling strategy on
the low frequency harmonics, let us consider the inverter of
Figure 1 with the filter parameters of Table IV. These filter
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TABLE IV

FILTER PARAMETERS

Parameters Value
Nominal current 30ARMS

Nominal Voltage 127ARMS

Capacitance 6.4%
Boost Inductor 20%

Loutmin 7%
Loutmax 15%

parameters are smaller (in pu values) than the consider in
Table I, hence, most significant PWM harmonics appear in
the LCL-filter states and the impact of the sampling strategy
is more evident.

Let assume that the LCL-filter states are sampled with the
strategy described in Figure 7. Note that just one sample and
one control law update are present in each carrier period used
to generate the PWM.

Fig. 7. Sample instant and control law update in function of the virtual
carrier.

The capacitors voltage and the output currents are shown
in Figure 8. It is also indicated by ∗ the instants when the
capacitor voltage is sampled. Since there are harmonics in
the sidebands of the switching frequency due to the PWM,
and in this case in the sideband of the sampling frequency as
well, this harmonics are shifted to the low frequency range in
the sampled voltage. In addition, since the capacitor sampled
voltage is fed back with the gain k12, this in turn results in
undesirable low order harmonics in the inductors currents, as
seen in Figure 8

In order to avoid the aliasing in the sampling process,
one alternative is increase the sampling frequency. Figure 9
shows a sampling strategy that process two samples and two
control law updates in a carrier period. Figure 10 shows
the sampling voltage and the resultant output currents. This
sampling strategy mitigate the aliasing effect by using a
larger sample frequency and sampling the variables in the
beginning and middle of the the carrier period. In this case
high frequency components around the switching frequency
are present in the sampled voltage, and have not been shifted
to the low frequency range. As a result, the quality of the grid
currents have improved significantly as shown in Figure 10.

V. EXPERIMENTAL RESULTS

The experimental results have been carried out using the
setup with the parameters of Table I in a fixed point DSP-
controlled based. This results are reported in order to show the

Output Currents

Capacitor Voltages

Fig. 8. Capacitor voltage and the instants of sampling and resulting current
in Lg .

Fig. 9. Two samples and two control actions in each commutation period.

Fig. 10. Capacitor voltage and the instants of sampling and resulting current
in Lg .

performance of the robust state feedback control. The design
value for the grid side inductance are based in the IEEE 1547
standard, that recommends a minimum short circuit impedance
ratio Sk = 20 to connect a distributed generation in the grid.
The grid impedance are considered Lg = 0, Sk = ∞
for stiff grid condition, otherwise for weak grid condition
Sk = 20. The sampling strategy used in this results are the
one showing in Figure 7. This system become unstable as
predicted analytically when Lg> 925µH. The low bound for
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instability is Lg<250µH. The inductance upper bound value
to ensure stability, in this case, is defined by the departure
angle of the 7th harmonic controller. On the other hand, the
inductance lower bound value is define by the pole allocation.
For the experimental results,the internal model controllers
are introduce in the fundamental, third, fifth and seventh
harmonics with gains equal to ki = 250.

Fig. 11. Boost inductor current transient response to a step change in the
reference. Vert:10A/div, horizontal: 100ms/div

Fig. 12. Boost inductor current wave form and transient response.
Vert:10A/div, horizontal: 10ms/div

Fig. 13. Boost inductor current in the high inductance limit. Vert:20A/div,
horizontal: 10ms/div

Figure 11 shows the transient response due a step applied in
the boost inductor current reference from 5A to 25A. In this

case when Lg=750µH. Figure 12 shows a zoom in the same
current transient. It is possible to see the good quality of the
grid current as well as the fast transient response. Figure 13
shows the grid current for Lg= 1000µH, which is a value
beyond the defined interval ∆Lg. It is possible to see a low
frequency oscillation around the 7th harmonics, which is in
agreement with the theoretical analysis..

VI. CONLUSION

This paper demonstrates that by using a discrete current
controller designed in the LMI framework, it is possible to
provide robust pole allocation using fixed feedback gains for
a given interval of grid inductance without requiring the use
of self-tunning or adaptive approaches. Moreover, is possible
include low frequency controllers and design gains that avoid
instability due the interaction of the high and low frequency
modes. In closed loop digitally controlled PWM converters,
attention should be paid to the sampling strategy. The PWM
harmonics can corrupt the sampled variables, introducing un-
wanted low frequency components by aliasing. This problem
growing in importance when the harmonic content of the
feedback variables increases, however, if the state variables are
sampled at their average values, or the sampling frequency is
made at least twice the switching frequency, the aliasing effect
is mitigated.
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