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Abstract – This paper presents the vector speed control 
system using a neural rotor flux observer for a triphasic 
induction machine of 1.1 kW. The neural flux observer is 
composed of two multilayer neural networks of the 
feedfoward type which estimate the angular rotor flux 
speed and the magnetizing current magnitude. The 
neural networks were projected to substitute the observer 
based on the induction machine vector model, which has 
non-linearities and parametric dependences in its 
equations. These characteristics can generate errors in 
the flux estimation. The control system was implemented 
in a 32-bit Digital Signal Processor (DSP) operating at 
150 MHz. The results proved that the system operates 
with smaller energy consumption and higher 
performance when oriented by the neural flux observer.  

Index Terms – Induction machine, DSP, flux estimation, 
neural network, vector control. 

I. INTRODUCTION 

The researches in control and drive strategies for electric 
machines developed in recent years firmed up the induction 
machine as one of the most applied in the industry due to its 
low cost and high performance. 

To control the induction machine, the vector control 
techniques were developed. The main objective of the 
vectorial controllers is making the induction machine to 
operate in high performance in the steady state and in the 
transitory state.  The vector controller approaches the 
induction machine mathematical model to the direct-current 
machine model [1][2]. This approach allows the independent 
operation of the flux and torque controllers.  

In the vector control techniques, it is necessary to choose 
one of three fluxes present in the machine to be used as field 
reference. The three possible fluxes are, respectively, the 
rotor flux, the stator flux and the airgap flux[3]. The choice 
of one of these references must take into consideration the 
desired exactness in the angular estimation and the 
computational demand required from the digital 
microprocessor.  

Amongst the three cited referentials, the rotor flux has a 
reduced model and also supplies a good exactness during the 
estimation, since the stator currents and the rotational speed 
are known.  

The main requirement of the vector techniques is the exact 
knowledge of the machine parameters. However, the 
difficulty on obtaining accurate measurements of these 
parameters may compromise the flux estimation and the 
global control system performance.  

Other problems presented in the use of observers based on 
models with fixed parameters are the nonlinearities present in 
the induction machine’s mathematical model and the 
possibility of these parameters to change by the action of 
external agents such as the temperature and/or by internal 
agents such as the rotor flux saturation[4]. These factors 
prejudice the decoupling between the flux and torque 
vectors.  

To solve these problems with the observers based in the 
inverse models with fixed parameters, many types of robust 
observers have been proposed. One of the most studied 
observer nowadays are the observers based in the neural 
networks[5]. The neural observers use the neural network 
characteristics of learning, non-linear function 
approximation, generalization, fault tolerance, adaptability 
and robustness [6][7]. 

Due to these characteristics, the neural networks come 
being widely applied to estimate the electric machines 
feedback signals [8][9].  

Following this trend, this paper presents the 
implementation in DSP of a vector speed control system for 
three-phase induction machines using a neural rotor flux 
observer and studies its energy consumption to the reference 
speed variations and load changes.  

This study compares the machine behavior under 
orientation of the neural flux observer with the same essays 
applied to the machine oriented by the conventional flux 
observer. 

Thus, the implemented system unites the advantages 
offered by the vector control techniques based on the rotor 
flux referential and the neural networks characteristics 
applied to the rotor flux estimation[10].  
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The control program was developed in ANSI C standard 
language operating at fixed point. Additionally to the vector 
speed control was implemented current control.  

II.  INDUCTION MACHINE MODEL ORIENTED BY 
ROTOR FLUX VECTOR 

The vector induction machine models allow the angular 
position control and the rotational speed control in a similar 
way to the direct-current machine control [1][2].  

Each model is based on a different referential. The 
possible referentials are the rotor flux, the stator flux or still 
the airgap flux. The adopted referential must consider the 
relation between the desired exactness and the computational 
effort applied to the digital system processor.  

Amongst the three cited referentials, the flux rotor 
referential despite of losing a little of exactness, it does not 
compromise the global performance of the system. The 
stator and the airgap referentials are more accurate, but its 
respective models need decoupling equations. This fact 
increases the computational demand to the digital processor 
[3].  

For these reasons, the rotor flux referential was chosen to 
be used in the estimation of the variables related to the rotor. 
This choice simplifies significantly the digital system 
implementation.  

The equations of the rotor flux states are the following:  
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where: 

imR(t) - Magnetizing current. 
iSd(t) - Field Current.  
iSq(t) - Torque Current.  
ρ(t)            - Rotor flux position.   
mM(t) - Electric torque. 
np - Par poles number. 
ωmec(t) - Rotor mechanical speed. 
TR - Rotor time constant. 
RR - Rotor Resistance. 
LR - Rotor inductance. 
Ls. - Stator inductance. 
σ - Leakage factor. 

Although the rotor flux shows a reduced model, this type 
of observer has nonlinear characteristics and depends directly 
of the machine parameters. This dependence generates some 
performance limitations, mainly when these parameters are 
not so well known or they change by the influence of 
external agents as, for example, the temperature or the flux 

saturation[4]. Thus, if some parametric variation occurs, the 
rotor flux estimation will present an error that can influence 
the global system performance.  

To compensate the limitations imposed by the observers 
based on the models with fixed parameters, this work 
proposes a flux neural observer composed of two multilayers 
feedfoward neural networks. These neural networks execute, 
simultaneously, the rotor flux speed estimation and the 
magnetization current estimation which defines, respectively, 
the rotor flux position (after the integration of the flux speed) 
and the rotor flux magnitude. 

III. NEURAL ROTOR FLUX ESTIMATION 

The Artificial Neural Networks(ANNs) had been spread 
out as estimation strategy in control systems for its capacities 
of learning, approaching of nonlinear functions, 
generalization and parallel processing[7][8]. Another 
important characteristic of the ANNs is its robustness to the 
errors in the measurements and variations in the systems 
parameters.  

The learning in the ANNs is obtained from the 
interconnection of elements called neurons. Each neuron 
executes the activation function whose inputs are 
combination of weights calculated by the learning algorithm. 

Amongst the several learning algorithms, the most known 
is  the “backpropagation” algorithm whose objective is to 
minimize error e(t) between the desired model output y(t) to 
be followed and the neural estimated output )(ˆ ty . For the 
learning process the model and the neural network must be 
submitted to the same control law u(t), as shows Figure 1 

  

 
 

Fig. 1.  Training block diagram 
 
The application of the artificial neural networks to 

estimate the induction machine variables allows an 
adaptation to the parametric variations. Analyzing the 
presented vector model in section II, it is observed a strong 
dependence of the parameter TR in the attainment of the 
values of 

dt
td )(ρ and imR(t). 

Thus, using the learning capacity to estimate the rotor flux 
speed and the magnetization current, the control system 
desires to compensate the dependence of the model in 
relationship to the rotor time constant TR .  

To implement the neural rotor flux observer, two 
feedfoward multilayers networks were projected, and they 
were used in the 

dt
td )(ρ  and imR(t) estimation, respectively. 

To simplify the system implementation in DSP, linear 
activation functions were chosen for both networks. These 
functions were used in all networks layers. 
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The two networks implemented are based in the topology 
showed in the Figure 2. 

 
 
 
 
  

 

 

Fig. 2.  General model of the neural observers implemented. 

The network for estimating of the flux rotor speed has six 
neurons in the input layer, six neurons in the hidden layer 
and one neuron in the output layer. Its inputs are the currents 
iSd(t) and iSq(t) and the mechanical speed ωmec(t), together 
with its respective previous values in (t-h), where h is the 
sample period. 

The network to calculate the magnetizing current has a 
similar structure to the network shown previously, and its 
inputs are the iSd(t), iSd (t-h)  and imR(t-h) currents. 

With these two networks operating in a sycronized way, 
the conventional induction machine model can be substituted 
without performance losses.  

III.1. TRAINING PROCESS 

The networks training process was made in off-line mode 
using the neural network toolbox of the MATLAB® 
platform.  

During this process, the vectors generated by the 
simulations with the vector rotor flux model and the nominal 
induction machine parameters were used. 

 The machine parameters were measured in laboratory, 
and its values are, respectively: the nominal speed ωnom = 
1800rpm, the nominal voltage Vnom=220V, the nominal 
current Inom=1A, the stator resistance RS=4.5853Ω, the rotor 
resistance RR=32,0894Ω, the stator and rotor inductance 
LS=LR=459,6mH, the magnetizing inductance LM=278.6mH, 
the par pole number np=2, the inertia moment J=6.06.10-3 
Kg.m2  and the leakage factor σ=0.1. Thus, the nominal 
value of the rotor time constant TR is 0,0143s-1. 

To provide an adaptation of the networks for different 
operating conditions, variations in the following variables 
were applied: Mechanical reference speed, load torque and 
mainly in the TR parameter.  

The values applied to the TR parameter were varied from 0 
percent to 50 percent of the nominal value during a time 
interval of 10 seconds. As the TR parameter influences 
directly in the machine’s transitory state, the variations 
applied during the training coincided with the variations 
applied to the reference speed and with the load torque. 

After the training stage, the projected flux neural observer 
behavior was compared to the same conventional observer 
variables, both submitted to the same variations.  

The Figure 3 shows the speed behaviors generated by the 
model for the training, which is equivalent to the 
conventional observer, and the mechanical speed generated 

by the neural rotor flux observer. In this figure, a good 
approach between the respective behaviors is observed. 
However, the speed response generated by the conventional 
observer is prejudiced by the parameter and load variation, 
while the speed response generated by the neural observer is 
only sensible to the load variation, because the machine was 
simulated without speed control.  

 
 

 
 

Fig. 3. Rotational speeds generated, respectively, by the 
conventional model and by the neural networks of  

dt
td )(ρ̂  and )(ˆ timR

. 

 
 The Figure 4 shows the rotor flux angular speed 

dt
td )(ρ̂  

generated by the neural and conventional observers, 
respectively. In this figure it is observed that both observers 
follow the reference angular speed. However, the neural 
observer is more robust and less oscillatory to the parameter 
variation than the conventional observer. This characteristic 
facilitates the parameter adjustment of the vector speed 
controller. 

 

 
 

Fig. 4. Flux angular speeds generated, respectively, by the 
conventional model and by the neural networks of  

dt
td )(ρ̂  and )(ˆ timR

. 

 

The Figure 5 shows respectively the currents iSd(t), imR(t)  
and iSq(t) generated by the neural and conventional observers. 
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Fig. 5. Vector currents iSd(t), iSq(t) and imR(t) generated, respectively, 
by the conventional model and by the neural networks of  

dt
td )(ρ̂  and 

)(ˆ timR
. 

 
In this figure, the disturbs caused by the parameter and 

load variations are more evident to the conventional 
observer. 

For these reasons, it was possible to apply directly the 
projected neural observers in the speed vector control system 
to substitute the observer based on the inverse induction 
machine model.  

IV. SYSTEM DESCRIPTION 

The vector speed control system using neural flux 
estimation was developed to operate connected to the current 
controllers.  

For the vector speed control implementation, the chosen 
referential is the rotor flux because it presents a reduced 
model and, consequently, the computational effort applied to 
the DSP is minimized[9]. This choice allows the execution of 
other auxiliary tasks such as serial communication with a 
supervisory system hosted in a PC. 

The general speed control system diagram is shown in the 
Figure 6. In this figure is possible to observe that most of the 
system components were implemented into the DSP. 

The system inputs are the phase currents and the rotational 
speed and its outputs are the triphasic reference currents, 
which are applied to the PWM inverter.  

The vector speed control is executed through the 
following PI (Proportional-Integrative) controllers: the speed 
controller, which generates the torque reference mMref, the 
torque controller, which supplies the torque component iSqref 
and the flux controller, which supplies the field component 
iSdref. 

Although this system was developed to a neural network 
application, it allows the implementation of the other 
observers. This modular system characteristic made possible 
a direct comparison with the rotor flux observer based on the 
model presented in section II.  

The used DSP has a 32-bit data bus, clock of 150 MHz 
and allows the communication with a PC computer through 
the parallel and serial RS-232 interfaces. Several ports 
resources are available as 12 Analog/Digital channels and 12 
PWM channels, which drive the inverter that feed the 
induction machine. 

The control program was developed in ANSI C language 
with fixed point arithmetic and its programming was 
executed through the parallel PC interface. 

 
Fig. 6.  Diagram of the vector Speed Control System.  
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V. EXPERIMENTAL RESULTS 

After the general system implementation comparisons 
were made between the system respective performance to the 
conventional flux observer and the neural flux observer. 
These observers execute the rotor flux speed 

dt
td )(ρ  and the 

magnetizing current imR(t). 
The Figure 7 shows the machine mechanical speed 

responses for the system operating with the conventional and 
neural rotor flux observers submitted to different step speed 
references.  

 

 
 
 
Fig. 7.  Comparison between the induction machine mechanical 
speed behaviour using the conventional flux observer and the neural 
flux observer for periodic steps references of 1800 rpm, 900 rpm 
and 1500 rpm.  

 It is possible to observe in this figure that the system 
presents fast and near responses operating with the 
conventional flux observer and with the neural flux observer. 
However, in the descending speed references the machine 
reaches its goal more quickly operating with the neural flux 
observer.  

     
 
Fig. 8.  Electric torques samples operating with the conventional 
and the neural flux observers for periodic steps references of 1800 
rpm, 2200 rpm and 800 rpm.  

 
 The electric torque samples presented in the Figure 8 

shows that the electric torque generated by the system 

operating with the neural flux observer is more efficient than 
the electric torque generated by the system operating with the 
conventional flux observer.  

Using the torque and speed responses, it was possible to 
estimate the energy system demand to both observers. Their 
respective response is showed in the Figure 9. 

           

 
 

 
Fig. 9.  Electric energy system demand operating with the 
conventional and the neural flux observers for periodic steps 
references of 1800 rpm, 900 rpm and 1500 rpm.  

 
These graphs present a smaller energy consumption to the 

system operating with the neural observer. Hence, it can be 
concluded that the neural observer provides a larger 
efficiency for abrupt reference speeds variations. 

The Figures 10 to 12 present the system behavior 
submitted to the mechanical load. In these trials, the 
mechanical load applied to the system oriented by the neural 
flux observer is larger than the load applied to the same 
system guided by the conventional flux observer. 

 

  
 

 
Fig. 10.  Comparison between the induction machine speed 
behaviour using the conventional flux observer and the neural flux 
observer for load application. 

 
The Figure 10 shows that system speed oriented by the 

neural flux observer provides a speed recovery as fast as the 
system running with the conventional observer. However, 
this fast speed recovery generates an increase in the electric 
torque oscillations, as showed in the Figure 11. 
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Fig. 11.  Electric torque behavior with the conventional and the 
neural flux observers during the load application. 

 
Figure 12 proves that, in spite of the oscillations in the 

electric torque with the system oriented by the neural flux 
observer increase, the energy consumption is still lesser than 
the demand required by the system operating with the 
conventional flux observer, for the same time interval.  

 
 

      
 

 
Fig. 12.  Electrical energy system demand operating with the 
conventional and the neural flux observers for load application. 
 

These results demonstrate that the system operating with 
the neural flux observer substitutes efficiently the 
conventional observer based on the inverse model, mainly 
when the applied variations to the machine are abrupt.  

 
VI. CONCLUSIONS 

 
The speed vector control system using neural flux 

estimation presented in this work is one more successful 
application of the vector techniques for induction machines.  

In agreement with the vector techniques, it is necessary to 
choose a flux referential for the system orientation. To 
simplify the digital system implemetation in DSP, it was 
chosen the rotor flux referential. 

After the system implementation in DSP oriented by the 
neural rotor flux observer, it was observed that the system 

presents similar behaviors in the acceleration commands for 
the conventional and neural flux orientation. However, for 
abrupts reductions of the reference speed, the system running 
with the neural observer always presented faster responses. 

Finally, the main result to be observed in all the trials was 
the less consumption of energy for the system operation with 
the neural rotor flux.  

All these results justify the substitution of the 
conventional flux observer, whose main limitations are its 
non linearity and its dependence related to the machine 
parameters.  
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