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Marcelo Godoy Simões

Lecture #10

Wind Energy and HVDC

Wind energy can be converted to dc, for HVDC 
transmission

Principles of Rotating Electrical Generators

A wire loop rotating across a magnetic field produces a voltage.
When the wire loop changes facing pole, the external circuit must 
be reconnected through brushes that swap the polarity

AC Electrical Generators

Major classes:
Synchronous machines, large power.
Permanent magnet machines, small power.
Induction machines, small to medium power.

Two major parts of machines
Stator, i.e. the STATIONARY part of machine
Rotor, i.e. the ROTATING part of the machine



2

How Field is Produced

In a synchronous generator: DC currents create N-
S poles in the rotor, which drive a rotating 
magnetic field flux through the stationary coils of 
the stator.
In a permanent magnet ac generator: A permanent 
magnet generator is like the synchronous generator 
except that the rotor field is produced by 
permanent magnets on the rotor, rather than 
current in a coil of wire.
In an induction motor: AC currents in the stator 
create a rotating magnetic flux which the internal 
rotor (with N-S poles) constantly chases.

Synchronous Machines

Two-pole round rotor generator and exciter

Generator

Exciter

Synchronous Machines – Cont.

Major components of a round rotor two-pole 
generator 
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Synchronous Machines – Cont.

Two-pole salient pole generator 
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Synchronous Machines – Cont.

Four-pole salient pole generator 
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Synchronous Machines – Cont.

Loading: power is less than angle 90 deg
All generators in the system are connected in parallel
All generators rotates with the  synchronous speed
The load can be increased by increasing the input 
mechanical power by regulating the turbine impute 
power
The speed does not change, the power angle increases
Maximum power angle is 90 degree, beyond that 
operation is unstable

Reactive power regulation => when the excitation is:
Increased, the generator reactive power also 
increases;
Decreased, the generator reactive power also 
decreases

PM AC Generator
No field supply is needed, which reduces 
costs. It also means that there is no I2R 
power loss in the field, which helps to 
increase the efficiency. 
One disadvantage is that the reactive 
power flow can not be controlled if the PM 
generator is connected to the utility 
network. This is of little concern in an 
asynchronous mode, of course.
The magnets can be cast in a cylindrical 
aluminum rotor, which is substantially less 
expensive and more rugged than the wound 
rotor of the conventional generator.
No commutator is required, so the PM 
generator will less expensive than a dc 
generator.
PM generator is of significant interest to 
designers of small asynchronous wind 
turbines.

PM AC Generator

The principles are same as a synchronous machine
The field is impressed by magnets
The machine is optimized for small and medium 
power
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PM AC Generator – Cont.

PM generators require advanced control
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Induction Generators

Large three-phase industrial induction motor

Housing

Motor

Induction Generators – Cont.

Rotor of a large induction motor

Induction Generators – Cont.

The rotating flux induces a voltage 
in the short-circuited bars of the 
rotor.  This voltage drives current 
through the bars.
The induced voltage is proportional 
with the difference of motor and 
synchronous speed. Consequently the 
motor speed is less than the 
synchronous speed
The interaction of the rotating flux 
and the rotor current generates a 
force that drives the motor.
The force is proportional with the 
flux density and the rotor bar 
current
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Induction Generators – Cont.

The rotating flux induces a voltage 
in the short-circuited bars of the 
rotor.  This voltage drives current 
through the bars.
The induced voltage is proportional 
with the difference of motor and 
synchronous speed. Consequently the 
motor speed is less than the 
synchronous speed
The interaction of the rotating flux 
and the rotor current generates a 
force that drives the motor.
The force is proportional with the 
flux density and the rotor bar 
current
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Induction Generator Grid Interconnection

Induction generators can be connected directly or 
through a power converter
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Doubly Fed Induction Generators

Used for large power wind or hydro turbines
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The Induction Generator for
Renewable Sources of Energy

Historical milestones
Steady state representation
Fundamental concepts
Mathematical relationships
Measurement of the generator parameters
Self-excited induction generator (SEIG)
SEIG: mathematical relationships and general 
characteristics
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Historical Milestones

Principles: begun before 1900 (Nikola Tesla);
Disappeared in the 60's shifted out by massive 
generators;
Re-appeared in the 70's with the energy crisis;
It was disseminated in the 80's;
In the 90's became more popular by environmental 
concerns;
In the 2000's, power electronics and digital 
controllers gave a technological boost for large 
asynchronous units.

Advantages of the Induction Generator 

robust and solid rotor;
the machine does not feed large short circuit 
currents and it is free of oscillations;
the rotor construction is suitable for high speeds;
it does not need cares with synchronism;
voltage and frequency are regulated automatically 
by the voltage and frequency of the distribution 
network in the case of parallel operation

Disadvantages of Induction Generators

the power factor is determined by the slip factor 
and it has very little to do with the power factor 
of the load when they have to work in parallel with 
synchronous machines;

the synchronous machines should supply with lagging 
reactive power as much the load as the induction 
generator and, consequently, they should work with 
a power factor higher than the one of the load. 

IG : Exploded View
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Classical Steady State Representation 

Transformer model of the induction generator 
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Fundamental Concepts

ns - nr is the relative 
speed between the 
stator and rotor 
magnetic fields. 
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Fundamental Concepts – Cont.

Equivalent circuit of the rotor
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Fundamental Concepts – Cont.

arms = secondary parameters per phase to primary 
parameters per phase by using the transformation 
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Fundamental Concepts – Cont.

Equivalent circuit per phase of the induction 
generator
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Magnetic Torques of the Induction Generator 
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Magnetic Fields of the Induction Generator 

 

(a) – light loads        (b) – heavy loads 
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Separate Representation Of The Induction Generator 
Copper Losses
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Measurement of the Induction Generator Parameters
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Measurement of the Induction Generator Parameters

Blocked Rotor Test (s = 1)Blocked Rotor Test (s = 1)
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Measurement of the Induction Generator
Parameters – Cont.

No Load Test (s = 0)No Load Test (s = 0)
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IG  Interconnected to the Utility Grid
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The High Efficiency Induction Generator

efficiency more than about 10% for small powers (up to 50 
kW);

high efficiency generators are more suitable to better stand 
the harmful effects of the harmonic generated by non-linear 
loads (power converters) for they have higher thermal margin 
and smaller losses; 

about 2% for higher powers (above 100 kW);

investment return time (payback) for these high efficiency 
generators will be smaller in a inversely proportional way to 
the local tariff values;

payback time: 0.9 to 3 or 4 years for micro power plants. 
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The Doubly Fed Induction Generator
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• speed usually limited to a 2:1 rangespeed usually limited to a 2:1 range

• up to several hundreds of kW ratingsup to several hundreds of kW ratings

The Self Excited Induction Generator

The induction generator needs an external source of 
reactive power from:

the mains network (nr > ns);
a bank of capacitors.

SEIG : Fundamental Concepts
 

PL – Active power to the load 
QL - Reactive power to the load 
QG - Reactive power to the generator 
QE – Excitation reactive power 

QL QG 

QE 

PL 

induction 
generator  

 
three-phase 

load 

Capacitor selfCapacitor self--excited induction generatorexcited induction generator

Parameters of the Induction Machine

operating voltage
rated power
rated frequency of the parameter measurements
power factor of the machine
rotor speed
capacity of acceleration
isolation class
operating temperature
carcass type
ventilation system
service factor
noise
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Parameters of the Load

power factor of the load
starting torque
maximum torque
starting current
generated harmonics
form of connection to the load: directly to the 
distribution network or through converters.
load type:

resistive, inductive or capacitive
constant or variable, passive or active 

evolution of the load along the time.

Performance of the Self-Excited
Induction Generator

self-exciting process:

degree of the iron saturation of the generator caused by the 
choice of the capacitor;
fixed or controlled self-excitation capacitor.

type of primary source:
hydro
wind
biomass/biogas
other combinations.
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Voltage Regulation – Cont.
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Magnetizing Curves and Self-excitation 
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Doxey Simplified Model for the Induction Generator 
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Torque and Speed Characteristics – Cont.
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Torque and Speed Characteristics – Cont.
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Magnetizing Curve
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Influence of Power Factor
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Voltage versus Rotation
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Series Capacitors and Composed Excitation
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Load Following
A generator with a fixed resistive 
load is not an optimum load for a 
wind turbine
Blade pitching mechanism is a 
technically good solution, but rather 
available only for larger turbines. 
One alternative is a variable 
resistance load. One way of varying 
the load resistance seen by the 
generator is to insert a variable 
autotransformer between the 
generator and the load resistors.
The voltage seen by the load can be 
varied from zero to some value 
above the generator voltage in this 
system. The power can therefore be 
adjusted from zero to rated in a 
smooth fashion.

Load Following – Cont.

A microcomputer is required to sense the wind speed, the 
turbine speed, and perhaps the rate of change of turbine 
speed. It would then signal the electrical actuator on the 
autotransformer to change the setting as necessary to 
properly load the turbine. A good control system could 
anticipate changes in turbine power from changes in wind 
speed and keep the load near the optimum value over a wide 
range of wind speeds.
One problem with this concept is that the motor driven three-
phase variable autotransformer probably costs as much as a 
small generator. Another problem would be mechanical 
reliability of the autotransformer sliding contacts. These 
would certainly require regular maintenance.
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Load Following – Cont.

Another way of controlling the load, which eliminates the 
variable autotransformer, is to use a microcomputer to switch 
in additional resistors as the wind speed and turbine speed
The switches can be solid state (triacs) which are easily 
controlled by microcomputer logic levels and which can 
withstand millions of operating cycles. Costs and reliability of
this load control system are within acceptable limits.

Electronic Control by the Load

R
ω

V

Electronic controls may exert their action by the load, and so 
changes in the load may be used to control speed, frequency and 
voltage.
The load represented by a variable resistor could represent the 
energy transferred to the utility grid.
It can also be a battery charger, back pumping of water, 
irrigation, hydrogen production, heating, or fluid tank freezing.

Electronic Control by the Load – Cont.

For essentially additive loads, like resistors, it is possible to 
optimize their rated values to obtain a smoother variation of 
load with a minimum number of resistors by using the 2n rule, 
as depicted below  for current control by discrete modulation 
of load.

One practical example : irrigation, using water pumps with 
different sizes, 1 kW, 2 kW, 4 kW and 8 kW

I1 I2 I3 I4

4R12R1R1 8R1

Req

n2  rule
only for additive

loads

Electronic Control by the Load – Cont.

For additive/subtractive loads like power 
transformers, the optimization may be obtained 
even with a fewer number of elements by using the   
3n rule, for a series connection of the secondary 
windings.

 I4I3 I2 I1 

Req

additive/subtractive loads 
(bias by the primary connection)

n3  rule 
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Electronic Control by the Load – Cont.
Using IGBTs with PWM control

The advantages of this type of control are the good speed/voltage 
regulation within certain ranges, use of a single power 
resistor/IGBT set, ease in modular manufacturing, suitability for ac 
and dc loads through power electronic ac switches and an absence
of switching surges.
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Electronic Control by the Load – Cont.

Electronic control by the load (ECL) for random generation and 
random load 
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