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Abstract – Wind turbines are widespread around the
globe, and the number of wind farms connected to the
grid is continually increasing. The Doubly-Fed Induction
Generator (DFIG) plays an important role, since it is one
of the most used configurations for wind power generation.
DFIG-based wind plants, however, are very sensitive
to grid disturbances, specially to voltage sags, as these
machines have their stator circuit directly connected to the
grid. Voltage sags can result in oscillations in active power,
torque and DC link voltage, as well as damage the machine
and the back-to-back converter due to high currents that
arise in such type of contingency. This work proposes a
control strategy applied to the rotor-side converter (RSC)
of the DFIG, in order to protect the machine and the
back-to-back converter during voltage sags. The aim of
the control strategy is to reduce the machine currents
and also to remove the oscillating active power caused by
unbalanced voltage sags.
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NOMENCLATURE

Variables
i, I Instantaneous and rms current.
v,V Instantaneous and rms voltage.
L Inductance.
p Instantaneous active power.
q Instantaneous reactive power.
R Resistence.
ω Angular frequency.
θ Angle.
ψ Flux.
Subscripts
Xd,q Direct and quadrature reference axis.
Xr Rotor.
Xs Stator.
Xm Magnetization.
Xsag Sag.
X0 Zero sequence.
Superscripts
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X+,− Positive and negative sequence.
X∗ Reference value.
X̄ Average value.
X̃ Oscillating value.
�X Vector.

I. INTRODUCTION

Doubly fed induction generator (DFIG) based wind
turbines are widespread in wind farms around the world.
Its reduced size converter requirement makes them more
cost effective compared to other variable speed systems [1],
[2], however, it has the disadvantage of being extremely
sensitive to grid voltage disturbances as the stator circuit
is directly connected to the grid [3]–[5]. From these
disturbances, voltage sags are specially harmful to DFIGs,
and, it is important to highlight that the majority of
them are unbalanced, with single-phase voltage sags alone
being responsible for 75% of all sag occurrences [6]–[8].
Asymmetric voltage sags cause unbalanced currents, resulting
in torque pulsations and oscillations in the DFIG active
and reactive power [9]–[14]. These scenarios increase the
mechanical stress and DC link voltage oscillations. Whenever
a voltage sag occurs, the stator magnetic flux might comprise
positive, negative and zero sequence components which can
cause rotor overvoltages, and rotor and stator overcurrents
[2], [4], [15], [16]. Therefore, it is necessary to develop a
control strategy to protect the machine and the converters
from the destructive currents that emerge in the occurrence of
voltage sags.

In the literature it is possible to find several strategies used
to solve this problem. [17]–[32].

One well-known strategy is the use of a crowbar circuit,
where resistors are connected to the rotor windings in order
to damp the rotor magnetic flux [17]–[19], [27]. Although
such circuit limits short-circuit currents, it does not allow
the rotor-side converter (RSC) to control machine active and
reactive power. This limitation encouraged researchers to seek
crowbarless configurations, such as the ones controlling the
RSC [20]–[26], [28]–[30], [32].

Dantas in [8] and Karimi in [31] present techniques for fast
fault detection. These methods are useful for the proposed
compensation system to act accurately, however, alone, they
are not tools to bypass the problems caused by the voltage sag.

This paper explores a control strategy applied to the RSC
by controlling the reactive and active power thorugh the Field
Oriented Control (FOC) technique. The goal is to suppress
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from the destructive currents that emerge in the occurrence of
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In the literature it is possible to find several strategies used
to solve this problem. [17]–[32].

One well-known strategy is the use of a crowbar circuit,
where resistors are connected to the rotor windings in order
to damp the rotor magnetic flux [17]–[19], [27]. Although
such circuit limits short-circuit currents, it does not allow
the rotor-side converter (RSC) to control machine active and
reactive power. This limitation encouraged researchers to seek
crowbarless configurations, such as the ones controlling the
RSC [20]–[26], [28]–[30], [32].

Dantas in [8] and Karimi in [31] present techniques for fast
fault detection. These methods are useful for the proposed
compensation system to act accurately, however, alone, they
are not tools to bypass the problems caused by the voltage sag.

This paper explores a control strategy applied to the RSC
by controlling the reactive and active power thorugh the Field
Oriented Control (FOC) technique. The goal is to suppress

oscillations in the active power and reduce the high currents
emerging from voltage sags, thus protecting the DFIG.

This work is presented as follows: Section II shows the
classical DFIG modeling with control applied to the RSC and
reactive and active power as control references. In Section
III, the equations for the DFIG operation under voltage sag
are derived and, in Section IV, the calculations of the current
references to cancel out the oscillations of the active power are
displayed. Section V presents the proposed control strategy
and, lastly, Section VI presents experimental results.

II. DFIG: CLASSIC VECTOR CONTROL STRATEGY
APPLIED TO THE ROTOR-SIDE CONVERTER

The stator active and reactive power can be controlled by
the RSC using field-oriented control (FOC) in the dq reference
frame (positive components rotate clockwise, negative rotate
counterclockwise). In this strategy, the d-axis is aligned with
the stator flux vector, as shown in [5]. Neglecting the stator
winding resistance, and considering the stator voltage vector
leading the magnetic flux by 90◦, result ψsd = |�ψs| and ψsq =
0. Thus:

isd =
ψsd

Ls
− Lm

Ls
ird , (1)

and

isq =−Lm

Ls
irq. (2)

Knowing that ψs = vsq/ωs, the stator active and reactive
power, according to [33], are given by:

ps =
3
2
(vsdisd + vsqisq) (3)

and
qs =

3
2
(vsqisd − vsdisq), (4)

becoming

ps =−3
2

Lm

Ls
vsqirq, (5)

and

qs =
3
2

Lm

Ls
(

v2
sq

ωsLm
− vsqird). (6)

III. DFIG UNDER UNBALANCED VOLTAGE

In three-phase systems the instantaneous active and
reactive power can be decomposed in average and oscillating
components, as stated by p-q theory [33]. Ignoring the
harmonics dependent components, they can be written as:

p̄ = 3V+I+cos(θv+−θi+)+3V−I−cos(θv−−θi−),

q̄ = 3V+I+sen(θv+−θi+)−3V−I−sen(θv−−θi−),

p̃ =−3V+I−cos(2ωt +θv++θi−)

−3V−I+cos(2ωt +θv−+θi+), (7)
q̃ =−3V+I−sen(2ωt +θv++θi−)

+3V−I+sen(2ωt +θv−+θi+),

p0 = 3V0I0cos(θv0 −θi0)−3V0I0cos(2ωt +θv0 +θi0).

Taking into consideration a three-phase unbalanced system
with only three conductors, as in the case of the DFIG under
unbalanced voltage sag, the zero-sequence current component
is not present, thus the instantaneous zero-phase sequence
power is equal to zero (p0 = 0). The average instantaneous
active and reactive powers ( p̄, q̄) come from the interaction
between voltages and currents of same sequence, whereas
oscillating components ( p̃, q̃) are originated from interaction
between voltages and currents of different sequences.

ps + jqs =
3
2
(v+sdqe jωt + v−sdqe− jωt)(i+sdqe jωt + i−sdqe− jωt)∗.

(8)
The instantaneous active and reactive power can be

obtained by manipulating (8). Furthermore, the oscillating
components are represented by two parts, the first one as a
function of a cosine (Pc2 and Qc2) and the second one as a
function of a sine (Ps2 and Qs2), both oscillating at twice the
grid frequency:

p = p̄+Pc2cos(2ωt)+Ps2sen(2ωt), (9)

and
q = q̄+Qc2cos(2ωt)+Qs2sen(2ωt). (10)

The coefficients are given by:

p̄ =
3
2
(v+sdi+sd + v+sqi+sq + v−sdi−sd + v−sqi−sq),

Pc2 =
3
2
(v+sdi−sd + v+sqi−sq + v−sdi+sd + v−sqi+sq),

Ps2 =
3
2
(v−sqi+sd − v−sdi+sq − v+sqi−sd + v+sdi−sq), (11)

q̄ =
3
2
(v+sqi+sd − v+sdi+sq + v−sqi−sd − v−sdi−sq),

Qc2 =
3
2
(v+sqi−sd − v+sdi−sq + v−sqi+sd − v−sdi+sq),

Qs2 =
3
2
(v+sdi−sd + v+sqi−sq − v−sdi+sd − v−sqi+sq) ·

The positive and negative sequences of the current
and voltage are obtained from the Double Second-Order
Generalized Integrator-Frequency Locked Loop (DSOGI-
FLL) structure. This technique is well established in [34].

For both positive and negative synchronous reference
frame, by aligning the d-axis with the stator flux vector,
one has v+sd = 0 and v−sd = 0. Isolating the average
instantaneous active power, and, the component of the
oscillating instantaneous active power that is function of a
cosine, results in the following matrix expression:

2
3

[
p̄

Pc2

]
=

[
v+sq v−sq
v−sq v+sq

][
i+sq
i−sq

]
. (12)

Similarly, isolating the average instantaneous reactive
power and the component of the oscillating instantaneous
active power which is function of a sine results in:

2
3

[
q̄

Ps2

]
=

[
v+sq v−sq
v−sq −v+sq

][
i+sd
i−sd

]
. (13)
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After algebraic manipulations the stator currents, in the
positive and negative synchronous reference frame, can be
expressed as:

i+sq =
2

3∆
(p̄.v+sq −Pc2.v−sq), (14)

i−sq =
2

3∆
(Pc2.v+sq − p̄.v−sq),

and

i+sd =
2

3δ
(q̄.v+sq +Ps2.v−sq), (15)

i−sd =
2

3δ
(q̄.v−sq −Ps2.v+sq) ·

Furthermore ∆ = (v+sq)
2 − (v−sq)

2 and δ = (v+sq)
2 +(v−sq)

2.
It is important to highlight that for the scenario where the

positive sequence of the stator voltage on the quadrature axis
(v+sq) is equal to the negative sequence (v−sq), that is, when ∆ =
0, there will be a singularity. However, this case will occur
only in a two-phase voltage interruption (e.g. va = 1p.u. and
vb = vc = 0p.u.), which is not addressed in this work, since it is
on voltage sags. Furthermore, during voltage sags the positive
sequence will most often have the largest modulus (v+sq)

2 >

(v+sq)
2.

Lastly, if the power values presented in (14) and (15) are
known, the stator currents can be determined.

IV. OBTAINING THE REFERENCE CURRENTS FOR
THE DFIG OPERATION UNDER ASYMMETRIC

VOLTAGE SAGS

An asymmetric voltage sag causes unbalanced voltages at
the point of common coupling (PCC). Therefore, the equations
described in section III. are valid for this conditions.

The control strategy proposed in this article seeks to
eliminate the oscillations in the active power and to protect the
DFIG using as reference the active and reactive powers, which
are chosen so as to attenuate the effect of the high currents in
the stator and rotor due to the voltage sag.

A. Reference Stator Currents
From (14) and (15) the following reference stator currents

are found:

i+sq
∗

=
2

3∆
(p̄sag.v+sq), (16)

i−sq
∗

=
2

3∆
(−p̄sag.v−sq),

and

i+sd
∗

=
2

3δ
(q̄sag.v+sq), (17)

i−sd
∗

=
2

3δ
(q̄sag.v−sq) ·

Where p̄sag and q̄sag are the setpoints of the average
instantaneous active and reactive power.

B. Reference Rotor Currents
From (1) and (2), one can find the following reference

currents for the RSC:

i+rd
∗ =

ψ+
sd −Lsi+sd

∗

Lm
,

i−rd
∗ =

ψ−
sd −Lsi−sd

∗

Lm
, (18)

i+rq
∗ =

−Lsi+sq
∗

Lm
,

i−rq
∗ =

−Lsi−sd
∗

Lm
.

Where the positive and negative sequence components of the
magnetic flux can be estimated by:

ψ+
sq =

v+sd
ωs

,

ψ+
sd =

v+sq

ωs
, (19)

ψ−
sq = −

v−sd
ωs

,

ψ−
sd = −

v−sq

ωs
.

The reference rotor currents, in the synchronous reference
frame, are now determined through the reference current
positive and negative components:

i∗rd = i+rd
∗+ i−rd

∗ (20)

i∗rq = i+rq
∗+ i−rq

∗ (21)

V. CONTROL STRATEGY

A. Rotor Current Loop Model
In the rotor current loop the dominant poles were canceled

in order to determine the controller gains [35], both in the
quadrature and direct axis. The RSC switching frequency is
equal to fch = 10 kHz, and the converter transfer function can
be modeled as a constant time delay TRSC, which is determined
by:

TRSC =
2
fch

. (22)

According to the adopted criterion, the controller gains are:

Kii =
Rr

2TRSC
, (23)

and
Kpi =

KiiσLr
Rr

. (24)

Where σ = 1− L2
m

LrLs
. Figure 1 shows the q-axis rotor current
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Fig. 1. Quadrature axis rotor current loop model.

B. Changing The Control Strategy From The Classic To The
Proposed One
During balanced voltage the classic vector control was

employed. The power control loops generate the reference
currents to the current loops. After voltage sag detection, the
control strategy shifts from the classic to the proposed control
(see Figure 2). The algorithm presented in [8] was used to
detect the voltage sags and to send the digital signal, named
vsd, that was applied to change the control strategies in the
high moments.
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Fig. 2. Block diagram of the classic and proposed controls.

VI. EXPERIMENTAL RESULTS

In order to validate the proposed control strategy an
experimental setup was assembled, where the DFIG was
subject to voltage sags. A three-phase induction motor
(TIM) driven by an inverter emulated the wind, and a
three-phase rectifier was employed instead of the grid side
converter (GSC). As consequence, the DFIG operated only
in subsynchronous mode. Figure 3 details the system
configuration, Table I and Table II show the DFIG and TIM
parameters, respectively. Figure 4 exposes the experimental
setup.

Following the requirements stated by IEEE Std 1159-2009,
asymmetric voltage sags were manually imposed through a 10
kVA three-phase variable autotransformer connected between

the grid and the DFIG. Two scenarios were considered for the
validation; one-phase and two-phase voltage sag.

Voltage Sag

Fig. 3. Experimental setup representation.

TABLE I
DFIG Parameters

Parameters Values
Rated Power 6kW/8kVA

Rated Voltage 380V
Frequency 60Hz

Stator Resistence 0.5417 Ω
Rotor Resistence 0.5815 Ω

Stator Leakage Inductance 5.00 mH
Rotor Leakage Inductance 6.5 mH
Magnetizing inductance 115.13 mH

TABLE II
TIM Parameters

Parameters Values
Rated Power 10 hp

Rated Voltage 220/380/440V
Frequency 60Hz

Rated Current 25.1/ 14.9/12.9 A
Rotacional Speed 1750 rpm

Service Factor 1.15

DFIG

Three-phase 
Induction motor

dSPACE Motor 
drive

Acquisition 
boards 

DC Link RSC

Three-phase 
Rectifier 

Grid

Desktop

10kVA 3-phase 
autotransformer

Connection 
panel

Fig. 4. Experimental setup.

A. Single-Phase Voltage Sag
Initially in steady state, the generator injects 2000 W

active power and 0 var reactive power into the grid. Figure
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Fig. 5. System response for single-phase voltage sag

5.a shows the DFIG currents in phase A at this operation
point. The total harmonic distortion of the rotor and stator
currents are 6.89% and 10.05%, respectively. The constructive
characteristics of the machine bring about these distorted
currents. Afterwards, a 0.66 p.u. single-phase voltage sag was
forced on phase A, as illustrated in Figure 5.b, which shows
the digital signal detecting the sag as well as the normalized
aggregate voltage on phase A, previously defined in [8] as
V+

aαβAgg =
√

v+aα(t)2 + v+aβ (t)
2.

The single-phase voltage sag generated positive, negative
and zero sequence voltage components. Since the system
considered has only three conductors, there is no interest in
the zero sequence components. Figure 5.c depicts the residual
voltages, and Figure 5.d and 5.e depict respectively the
positive and negative voltage components on the synchronous
reference frame. As the stator magnetic flux is aligned with the
d-axis, v+sd = 0. Disregarding small oscillations on the negative
sequence component in the beginning and in the end of the sag,
v−sd = 0.

At the beginning of the voltage sag current oscillations
are presented, as can be seen in Figure 5.f. This is more

perceptible in the rotor current plot (Figure 5.g). As can be
seen in both plots, the currents experience an increase and,
after the proposed control strategy takes place, their amplitude
become restricted and oscillations are eliminated.

When the DFIG injects 2000 W and 0 var into the grid, the
rotor currents in the synchronous reference frame have average
values of Ird = 6.8 A and Irq = 3 A (see Figures 5.h and 5.i).
The reference values for the current loops are given by the

Fig. 6. Stator and rotor currents Fast-Fourier Transform.
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5.a shows the DFIG currents in phase A at this operation
point. The total harmonic distortion of the rotor and stator
currents are 6.89% and 10.05%, respectively. The constructive
characteristics of the machine bring about these distorted
currents. Afterwards, a 0.66 p.u. single-phase voltage sag was
forced on phase A, as illustrated in Figure 5.b, which shows
the digital signal detecting the sag as well as the normalized
aggregate voltage on phase A, previously defined in [8] as
V+

aαβAgg =
√

v+aα(t)2 + v+aβ (t)
2.

The single-phase voltage sag generated positive, negative
and zero sequence voltage components. Since the system
considered has only three conductors, there is no interest in
the zero sequence components. Figure 5.c depicts the residual
voltages, and Figure 5.d and 5.e depict respectively the
positive and negative voltage components on the synchronous
reference frame. As the stator magnetic flux is aligned with the
d-axis, v+sd = 0. Disregarding small oscillations on the negative
sequence component in the beginning and in the end of the sag,
v−sd = 0.

At the beginning of the voltage sag current oscillations
are presented, as can be seen in Figure 5.f. This is more

perceptible in the rotor current plot (Figure 5.g). As can be
seen in both plots, the currents experience an increase and,
after the proposed control strategy takes place, their amplitude
become restricted and oscillations are eliminated.

When the DFIG injects 2000 W and 0 var into the grid, the
rotor currents in the synchronous reference frame have average
values of Ird = 6.8 A and Irq = 3 A (see Figures 5.h and 5.i).
The reference values for the current loops are given by the
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0.84 0.88 0.92 0.96 1.0−400

−200

0

200

400

Time (s)

Va (V)
Vb (V)
Vc (V)

(a) Residual voltages during two-phase voltage
sag.

0 0.4 0.8 1.2 1.6−15
−10
−5

0
5

10
15

Time (s)

Ira(A)

(b) Rotor current in phase A.

0 0.4 0.8 1.2 1.6−2

0

2

4

6

Time (s)

I+
sd(A)

I+
sq(A)

(c) DFIG stator currents in the positive
synchronous reference frame.

0 0.4 0.8 1.2 1.6−2

0

2

4

Time (s)

I −
sd (A)

I −
sq (A)

(d) DFIG stator currents in the negative
synchronous reference frame.

0 0.4 0.8 1.2 1.6−400

−300

−200

−100

0

Time (s)

V −
sq

V+
sq

(e) Stator voltages in the quadrature axis.

0 0.4 0.8 1.2 1.6−2.5
−2

−1.5
−1

−0.5
0

0.5

Time (s)

Ps (kW)

Qs (kvar)

(f) Instantaneous active and reactive power during
the two-phase voltage sag.

Fig. 7. System response for two-phase voltage sag.

power loop outputs. However, these references are given by
the proposed control strategy when the voltage sag is detected.
The power setpoints p∗ = p̄sag = −350 W and q∗ = q̄sag =
−750 var were adopted for this experiment to reduce the high
currents caused by voltage sag.

Although there is reactive power injection in the sag event,
the rotor d-axis current decreases. The stator currents, shown
in Figure 5.k, are a better evidence of the power injection.

From (11), one can write:

p̄ = v+sqi+sq + v−sqi−sq, (25)

and also
q̄ = v+sqi+sd + v−sqi−sd . (26)

Figure 5.l indicates the stator instantaneous active and
reactive power, at which it is clearly seen that the oscillating
components in the instantaneous active power caused by the
unbalanced voltages are eliminated (Ps2 = Pc2 = 0).

As the grid side converter (GSC) is not present, the DC
link voltage increases. This increase is due to the change in
the active power reference from −2000 W to −350 W when
the single-phase voltage sag happens. However, the proposed
strategy does not allow DC link voltage oscillations. The
variation of ∆Ps = 1650 W in the inject active power forces
the DC link capacitor to accumulate the exceeding energy. The
DC link voltage augmented from 305 V to 315 V.

B. Two-Phase Voltage Sag
The variable autotransformer configurations were changed

in order to impose voltage sag in phases A and B. Figure 7.a
shows the residual voltages for this conditions. In this two-
phase voltage sag experiment, the reference values for inject
active and reactive power were p̄sag = −500 W and q̄sag =
−500 var.

The rotor currents on phases A and B present high
oscillations at the beginning of the sag, caused by the voltage
unbalance, eventually disappearing after the action of the
proposed control strategy. Figure 7.b exposes the current on
phase A.

Analyzing the rotor currents in the synchronous reference
frame, it can be observed that, for the positive sequence, the
direct axis compensator of the current loop is slower and
has more oscillations than the one in the quadrature axis.
For the negative sequence, the compensator has even more
oscillations, however the quadrature axis is slower, as shown
in Figures 7.c and 7.d.

From (25) and (26), it is important to highlight the stator
voltages in the quadrature axis waveforms (see Figure 7.e),
since the stator average instantaneous active and reactive
power are determined by them.

The experimental results obtained show that, despite initial
oscillations, the instantaneous power, after the transient state,
are very close to the references p̄sag and q̄sag, as shown in
Figure 7.f.

VII. CONCLUSIONS

Whenever subject to unbalanced voltage sags, the DFIG
presents high currents and oscillations in active power and DC
link voltage. This unexpected stress can damage the machine
as well as the back-to-back converter. After reviewing the
literature with respect to the DFIG under unbalanced grid
conditions and asymmetric voltage sags, this paper proposed a
control strategy, which is applied to the rotor-side converter,
that aims to eliminate active power oscillating components
and to reduce the machine currents, helping the DFIG to
withstand adverse conditions and stay connected to the grid
without damaging any component. The power setpoints,
during voltage sags, are changed to the values stipulated by
the proposed control strategy. The strategy was experimentally
validated for single and two voltage sags.

It was observed that the DFIG rotor currents was distorted
after the grid connection. This undesired behavior was
attributed to the machine characteristics. The distortions
were reflected to the grid stator currents, and therefore, were
presented as oscillations in the active and reactive power.
The proposed control strategy was shown to be efficient
in eliminating oscillations in the active power caused by
asymmetric voltage sags, as well as the reduction of the current
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values in the stator and rotor, protecting the DFIG. Moreover,
the power setpoint values assigned during voltage sags were
successfully met. All voltage sags used in the experiments
followed the IEEE Std 1159-2009.
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