Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 28 - Number 1
Publishing Date: março 2023
Editor-in-Chief: Telles Brunelli Lazzarin
Editor Affiliation: UFSC
CONTROLE PREDITIVO ROBUSTO DE CORRENTE POR ESTADOS FINITOS PARA MOTOR DE INDUÇÃO USANDO ABORDAGEM DEADBEAT NO REFERENCIAL SÍNCRONO
Igor Oliani, Thiago Baldim dos Santos, Rafael B. F. Figueiredo, Daniel Albiero, Ademir Pelizari, Alfeu Joãozinho Sguarezi Filho
28-35
http://dx.doi.org/10.18618/REP.2023.1.0041
Portuguese Data

Palavras Chaves: controle de corrente, Controle indireto orientado por campo Controle preditivo robusto, Deadbeat, Motor de Indução, Variações de parâmetros

Resumo
O controle preditivo baseado em modelo tem ganhado destaque na área de acionamentos de máquinas de indução. Entre as suas principais vantagens estão o alto desempenho, a flexibilidade e a simplicidade de implementação. No entanto, eventuais variações nos parâmetros da planta comprometem o desempenho do controle. Propostas para o aumento da robustez dessa técnica têm sido objeto de pesquisa com diferentes abordagens, como modificações no modelo matemático da planta e projetos de novos observadores de fluxo. Este trabalho propõe um controle preditivo robusto baseado em modelo de corrente, empregando o controle indireto orientado por campo no referencial síncrono. A corrente do estator e o fluxo do rotor são tomados como variáveis de estado e o vetor tensão do estator é tido como a entrada. O seu diferencial com relação à estratégia de controle preditivo por estados finitos clássica está na construção do algoritmo de controle. O vetor tensão é calculado em duas componentes, combinando o controle preditivo clássico com a abordagem deadbeat: uma considera a referência de corrente do estator e a outra considera as perturbações causadas por erros de parâmetros. O desempenho do método de controle foi verificado através da condução de ensaios em bancada de teste experimental ao se analisar o comportamento estacionário e dinâmico do sistema. Os resultados corroboram a eficácia da proposta de controle robusto contra variações paramétricas.

English Data

Title: Robust Finite Control Set Current Control for Induction Motor Using Deadbeat Approach in Synchronous Reference Frame

Keywords: Current control, Deadbeat, Indirect field oriented control, Induction motor, Parameters variations, Robust predictive control

Abstract
Model-based predictive control has gained prominence in induction machine drives. Its main advantages are high performance, flexibility, and simplicity of implementation. However, eventual variations in plant parameters compromise the performance of the control. Proposals to increase the robustness of this technique have been the object of research with different approaches, such as modifications in the mathematical model of the plant and projects of new flow observers. This work proposes a robust predictive control based on a current model, using indirect control field-oriented in the synchronous frame. The stator current and rotor flux are taken as state variables, and the stator voltage vector is taken as the input. Its differential concerning the classic finite control set predictive control strategy lies in the construction of the control algorithm. The voltage vector is calculated in two components by combining the classic predictive control with the deadbeat approach: one considers the stator current reference, and the other considers disturbances caused by parameter errors. The performance of the control method was verified by conducting tests on an experimental test bench when analyzing the stationary and dynamic behavior of the system. The results corroborate the effectiveness of the proposed robust control against parametric variations.

References

[1] G. Buja, M. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors – a survey”, IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 744–757, Ago. 2004.
Doi: 10.1109/TIE.2004.831717

[2] M. P. Kazmierkowski, L. G. Franquelo, J. Rodriguez, M. A. Perez, J. I. Leon, “High-Performance Motor Drives”, IEEE Industrial Electronics Magazine, vol. 5, no. 3, pp. 6–26, Set. 2011.
Doi: 10.1109/MIE.2011.942173

[3] M. Nagataki, K. Kondo, O. Yamazaki, K. Yuki, Y. Nakazawa, “Online Auto-Tuning Method in Field-Orientation-Controlled Induction Motor Driving Inertial Load”, IEEE Open Journal of Industry Applications, vol. 3, pp. 125–140, Jul. 2022.
Doi: 10.1109/OJIA.2022.3189343

[4] K. V, R. Rai, B. Singh, “Sliding Model-Based Predictive Torque Control of Induction Motor for Electric Vehicle”, IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 742–752, Jan.-Fev. 2022.
Doi: 10.1109/TIA.2021.3131973

[5] J. Rodriguez, C. Garcia, A. Mora, S. A. Davari, J. Rodas, D. F. Valencia, M. Elmorshedy, F. Wang, K. Zuo, L. Tarisciotti, F. Flores-Bahamonde, W. Xu, Z. Zhang, Y. Zhang, M. Norambuena, A. Emadi, T. Geyer, R. Kennel, T. Dragicevic, D. A. Khaburi, Z. Zhang, M. Abdelrahem, N. Mijatovic, “Latest Advances of Model Predictive Control in Electrical Drivesx2014; Part II: Applications and Benchmarking With Classical Control Methods”, IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 5047–5061, May 2022.
Doi: 10.1109/TPEL.2021.3121589

[6] J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta, H. Abu-Rub, H. A. Young, C. A. Rojas, “State of the Art of Finite Control Set Model Predictive Control in Power Electronics”, IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 1003–1016, May 2013.
Doi: 10.1109/TII.2012.2221469

[7] S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young, A. Marquez, P. Zanchetta, “Model Predictive Control: A Review of Its Applications in Power Electronics”, IEEE Industrial Electronics Magazine, vol. 8, no. 1, pp. 16–31, Mar. 2014.
Doi: 10.1109/MIE.2013.2290138

[8] A. J. Sguarezi Filho, A. L. de Oliveira, L. L. Rodrigues, E. C. M. Costa, R. V. Jacomini, “A Robust Finite Control Set Applied to the DFIG Power Control”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1692–1698, Dez. 2018.
Doi: 10.1109/JESTPE.2018.2833474

[9] Z. Zhang, Y. Liu, X. Liang, H. Guo, X. Zhuang, “Robust Model Predictive Current Control of PMSM Based on Nonlinear Extended State Observer”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 1, pp. 862–873, Fev. 2022.
Doi: 10.1109/JESTPE.2022.3192064

[10] E. R. C. Duque, A. Lunardi, J. S. Solís-Chaves, T. d. S. Paiva, D. A. Fernandes, A. J. Sguarezi Filho, “Improvement of Robustness of MPC Adding Repetitive Behavior for the DFIG Current Control”, Energies, vol. 15, no. 11, Jun. 2022, URL:https://www.mdpi.com/1996-1073/15/11/4114.
Doi: 10.3390/en15114114

[11] F. Stinga, D. Popescu, “Robust model predictive control of an induction motor”, in 18th International Conference on System Theory, Control and Computing (ICSTCC), pp. 381–386, 2014.
Doi: 10.1109/ICSTCC.2014.6982446

[12] M. Mousavi, S. A. Davari, V. Nekoukar, C. Garcia, L. He, F. Wang, J. Rodriguez, “Predictive Torque Control of Induction Motor Based on a Robust Integral Sliding Mode Observer”, IEEE Transactions on Industrial Electronics, vol. 70, no. 3, pp. 2339–2350, Mar. 2022.
Doi: 10.1109/TIE.2022.3169831

[13] Y. Zhang, X. Wang, B. Zhang, H. Yang, “A Robust Model-Free Predictive Current Control of Induction Motor Drives”, in 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1–5, 2019.
Doi: 10.1109/ICEMS.2019.8921533

[14] X. Wang, Y. Zhang, H. Yang, B. Zhang, J. Rodriguez, C. Garcia, “A Model-Free Predictive Current Control of Induction Motor Based on Current Difference”, in IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), pp. 1038–1042, 2020.
Doi: 10.1109/IPEMC- ECCEAsia48364.2020.9368240

[15] X. Wang, Y. Zhang, H. Yang, B. Zhang, J. Rodriguez, “A Robust Predictive Current Control of Induction Motor Drives”, in IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5136–5140, 2020.
Doi: 10.1109/ECCE44975.2020.9235789

[16] Y. Zhang, X. Wang, H. Yang, B. Zhang, J. Rodriguez, “Robust predictive current control of induction motors based on linear extended state observer”, Chinese Journal of Electrical Engineering, vol. 7, no. 1, pp. 94– 105, Mar. 2021.
Doi: 10.23919/CJEE.2021.000009

[17] J. Wang, F. Wang, G. Wang, S. Li, L. Yu, “Generalized Proportional Integral Observer Based Robust Finite Control Set Predictive Current Control for Induction Motor Systems With Time-Varying Disturbances”, IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4159–4168, Set. 2018.
Doi: 10.1109/TII.2018.2818153

[18] X. Wang, Y. Zhang, H. Yang, “Enhanced Robust Deadbeat Predictive Current Control for Induction Motors”, in IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), pp. 600–604, 2021.
Doi: 10.1109/PRECEDE51386.2021.9680912

[19] R. B. F. Figueiredo, A. Lunardi, A. J. S. Filho, A. Pelizari, “Controle Preditivo Robusto com Conjunto Finito de Estados para Máquinas de Indução”, Revista Eletrônica de Potência, vol. 27, no. 3, pp. 208–215, Set. 2022.
Doi: 10.18618/REP.2022.3.0027

[20] B. Wang, X. Chen, Y. Yu, C. Wang, B. Li, D. Xu, “Robust predictive current control for induction motor in synchronous rotating frame”, in 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), pp. 1–5, 2016.
Doi: 10.1049/cp.2016.0270

[21] L. Yan, F. Wang, J. Rodrıguez, “Luenberger Prediction Model-Based Robust Predictive Current Control of Induction Machine Drives”, in IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), pp. 1006–1010, 2020.
Doi: 10.1109/IPEMC-ECCEAsia48364.2020.9368026

[22] A. Bazanella, R. Reginatto, “Robustness margins for indirect field-oriented control of induction motors”, in Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), vol. 1, pp. 1001–1006 vol.1, 1998.
Doi: 10.1109/CDC.1998.760827

[23] J. Rodriguez, P. Cortes, Predictive control of power converters and electrical drives, vol. 40, John Wiley & Sons, 2012.

[24] A. J. S. Filho, Model Predictive Control for Doubly-Fed Induction Generators and Three-Phase Power Converters, Elsevier, 2022.
Doi: 10.1016/C2020-0-01024-8

[25] Sheng-Ming Yang, Chen-Haur Lee, “A deadbeat current controller for field oriented induction motor drives”, IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 772–778, Set. 2002.
Doi: 10.1109/TPEL.2002.802182

[26] F. Wang, S. Li, X. Mei, W. Xie, J. Rodríguez, R. M. Kennel, “Model-Based Predictive Direct Control Strategies for Electrical Drives: An Experimental Evaluation of PTC and PCC Methods”, IEEE Transactions on Industrial Informatics, vol. 11, no. 3, pp. 671–681, Jun. 2015.
Doi: 10.1109/TII.2015.2423154

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.