Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 27 - Number 1
Publishing Date: março 2022
Editor-in-Chief: Marcelo Lobo Heldwein
Editor Affiliation: Federal University of Santa Catarina
A Full-Bridge Partial-Power Processing Converter for Three-Stage Small Wind Turbine Systems
Anderson José Balbino, Ion Leandro dos Santos, Moises Carlos Tanca Villanueva, Telles Brunelli Lazzarin
6-14
http://dx.doi.org/10.18618/REP.2022.1.0044
English Data

Title: A Full-Bridge Partial-Power Processing Converter for Three-Stage Small Wind Turbine Systems

Keywords: Full-Bridge, Grid-Connected., Partial-Power Processing Converters, Small Wind Turbines

Abstract
In order to process the energy generated by small wind turbines (SWT) in grid-connected systems, three-stage configurations (rectifier, dc-dc converter, and inverter) have been suitable due to low cost of three-phase diode rectifiers, facility to perform the maximum power point tracking in dc-dc converters, and power decoupling between the grid and wind generator. As drawback, the three-stage solutions can present higher losses in relation to two-stage systems due to the additional converter. To reach a better efficiency, partial-power converters (PPC) can be used, in which only a part of the power generated by the SWT is processed by the converter. In this method, topology, power/voltage levels, and the operating range characteristics can impact the power handled by the converter. Since the experimental analysis of PPC applied to SWT systems remains to be investigated in the literature, this paper analyzes the Full-Bridge with Zero-Voltage Switching operating as PPC in SWT systems connected to the single-phase grid. In order to evaluate the performance of the proposed structure, experimental results are verified for a 1.5 kW SWT, in which the FullBridge PPC processes only 70% of the generated power. In relation to the full-power processing, the partial-power processing has reduced the losses in 35.9%.

References

[1] F. Blaabjerg, Y. Yang, D. Yang, X. Wang, “Distributed Power-Generation Systems and Protection”, Proceedings of the IEEE, vol. 105, no. 7, pp. 1311–1331, 2017.
Doi: 10.1109/JPROC.2017.2696878

[2] M. Malinowski, A. Milczarek, Z. G. R. Kot, J. T. Szuster, “Optimized Energy-Conversion Systems for Small Wind Turbines: Renewable energy sources in modern distributed power generation systems”, IEEE Power Electronics Magazine, 2015.
Doi: 10.1109/MPEL.2015.2447631

[3] G. Tibola, “Small Wind Turbine System for Electric Energy Generation with Maximum Power Point Tracking”, M S Thesis, UFSC, Brazil, 2009.

[4] F. Blaabjerg, M. Liserre, K. Ma., “Future on Power Electronics for Wind Turbine Systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 3, pp. 139–152, 2013.
Doi: 10.1109/JESTPE.2013.2275978

[5] D. Zammit, C. S. Staines, A. Micallef, M. Apap., “MPPT with Current Control for a PMSG Small Wind Turbine in a Grid-Connected DC Microgrid”, Wind Energy Exploitation in Urban Environment TurbWind 2017 Green Energy and Technology Springer.

[6] S. Kouro, D. Vinnikov, J. I. Leon, L. G. Franquelo, “Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology”, IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47–61, 2015.
Doi: 10.1109/MIE.2014.2376976

[7] J. W. Zapata, G. C. S. Kouro, H. Renaudineau, T. A. Meynard, “Analysis of Partial Power DC–DC Converters for Two-Stage Photovoltaic Systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 591–603, 2019.
Doi: 10.1109/JESTPE.2018.2842638

[8] K. S. H. Chen, T. H. H. Kim, R. Erickson, D. Maksimovic, “A 98.7% efficient composite converter architecture with application-tailored efficiency characteristic”, IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 101–110, 2016.
Doi: 10.1109/TPEL.2015.2398429

[9] M. Kasper, D. Bortis, J. W. Kolar, “Classification and comparative evaluation of PV panel-integrated DC–DC converter concepts”, IEEE Trans on Power Elec, vol. 29, no. 5, pp. 2511–2526, 2014.
Doi: 10.1109/TPEL.2013.2273399

[10] K. A. Kim, P. S. Shenoy, P. T. Krein, “Converter rating analysis for photovoltaic differential power processing systems”, IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1987–1997, 2015.
Doi: 10.1109/TPEL.2014.2326045

[11] J. R. R. Zientarski, M. L. da S. Martins, J. R. Pinheiro, H. L. Hey, “Series-Connected Partial-Power Converters Applied to PV Systems: A Design Approach Based on Step-Up/Down Voltage Regulation Range”, IEEE Trans on Power Elec, vol. 33, no. 9, pp. 7622–7633, 2018.
Doi: 10.1109/TPEL.2017.2765928

[12] B.-D. Min, J.-P. Lee, J.-H. Kim, T.-J. Kim, D.-W. Yoo, E.-H. Song, “A new topology with high efficiency throughout all load range for photovoltaic PCS”, IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4427–4435, 2009.
Doi: 10.1109/TIE.2008.928098

[13] J. P. Lee, B. D. Min, T. J. Kim, D. W. Yoo, J. Y. Yoo, “A novel topology for photovoltaic DC/DC full-bridge converter with flat efficiency under wide PV module voltage and load range”, IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2655–2663, 2008.
Doi: 10.1109/TIE.2008.924165

[14] M. S. Agamy, M. H.-Todorovic, A. Elasser, S. Chi, R. L. Steigerwald, J. A. Sabate, A. J. McCann, L. Zhang, F. J. Mueller, “An efficient partial power processing DC/DC converter for distributed PV architectures”, IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 674–686, 2014.
Doi: 10.1109/TPEL.2013.2255315

[15] H. Zhou, J. Zhao, , Y. Han, “PV balancers: Concept, architectures, and realization”, IEEE Transactions on Power Electronics,, vol. 30, no. 7, pp. 3479–3487, 2014.
Doi: 10.1109/TPEL.2014.2343615

[16] M. Chen, F. Gao, R. Li, , X. Li, “A dual-input central capacitor DC/DC converter for distributed photovoltaic architectures”, IEEE Trans on Industry Applications, vol. 53, no. 1, pp. 305–318, 2017.
Doi: 10.1109/TIA.2016.2606604

[17] V. M. Iyer, G. G. S. Gulur, S. Bhattacharya, “Extreme Fast Charging Station Architecture for Electric Vehicles with Partial Power Processing”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC).
Doi: 10.1109/APEC.2018.8341082

[18] T. Kanstad, M. B. Lillholm, Z. Zhang, “Highly Efficient EV Battery Charger Using Fractional Charging Concept with SiC Devices”, 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019.
Doi: 10.1109/APEC.2019.8722191

[19] A. J. Balbino, R. G. de Almeida Cacau, T. B. Lazzarin, “Analysis of Partial-Power Processing Converters for Small Wind Turbines Systems”, 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), pp. 1–4, 2019.
Doi: 10.1109/COBEP/SPEC44138.2019.9065410

[20] A. J. Balbino, M. C. Tanca-Villanueva, T. B. Lazzarin, “A Full-Bridge Partial-Power Processing Converter Applied to Small Wind Turbines Systems”, 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 2020.
Doi: 10.1109/ISIE45063.2020.9152275

[21] J. Zhao, K. Yeates, , Y. Han, “Analysis of high efficiency DC/DC converter processing partial input/output power”, IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–8, 2013.
Doi: 10.1109/COMPEL.2013.6626440

[22] J. R. R. Zientarski, M. L. da S. Martins, J. R. Pinheiro, H. L. Hey, “Evaluation of Power Processing in Series-Connected Partial-Power Converters”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 343–351, 2019.
Doi: 10.1109/JESTPE.2018.2869370

[23] Enersud, “Gerar 246 Wind Turbine Technical Manual”, Available in: wwwenersudcombr.

[24] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, “Wind Energy Handbook”, John Wiley and Sons, 2001.

[25] H. Wang, C. Nayar, J. Su, M. Ding, “Control and Interfacing of a Grid-Connected Small-Scale Wind Turbine Generator”, IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 428–434, 2011.
Doi: 10.1109/TEC.2011.2116792

[26] J. F. Gieras, R. J. Wang, M. J. Kamper, “Axial Flux Permanent Magnet Brushless Machines”, Springer, 2005.

[27] J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, B. H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter”, Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition, p. 275–284, 1990.
Doi: 10.1109/APEC.1990.66420

[28] V. Vlatkovic, J. A. Sabaté, R. B. Ridley, F. C. Lee, B. H. Cho, “Small-Signal Analysis of the PhaseShifted PWM Converter”, IEEE Transactions on Power Electronics, vol. 7, no. 1, pp. 128–135, 1992.
Doi: 10.1109/63.124585

[29] E. Koutroulis, K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications”, IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 486–494, 2006.
Doi: 10.1109/TIE.2006.870658

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.