Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência

About
Issues
Early Access
History
Submission
Editorial policy
Guidelines for Publication
Issue: Volume 27 - Number 4
Publishing Date: dezembro 2022
Editor-in-Chief: Telles Brunelli Lazzarin
Editor Affiliation: UFSC
A HIGH-PERFORMANCE PLL OBSERVER FOR SENSORLESS THREE-PHASE INDUCTION MOTOR CONTROL
Emerson Giovani Carati, Felipe Sassi Del Sant, Diego Dias Pinheiro
304-312
http://dx.doi.org/10.18618/REP.2022.4.0019
English Data

Title: A HIGH-PERFORMANCE PLL OBSERVER FOR SENSORLESS THREE-PHASE INDUCTION MOTOR CONTROL

Keywords: Field-oriented control, Induction machine, Phase-Locked Loop, Speed control, Speed Sensorless

Abstract
This paper presents an enhanced estimation algorithm based on the PLL (phase-locked loop) approach, which is used to estimate the rotor speed in induction motors (IM) drives. It can be challenging to obtain an accurate estimate during frequency ramps using existing PLL schemes. Thus, the performance of PLL schemes can be degraded during the acceleration and deceleration operations when applied to motor drives. In addition, the performance of conventional PLL scheme estimation is negatively affected by disturbances, for example, DC offsets. One of the novelties of the proposed speed observer (HPPO - High-Performance PLL Observer) is error normalization, which is based on the currents and a mechanism of variable gain based on the reference speed. The reference speed is also used to build an additional feedforward adjustment action. These modifications improve estimator results during load insertions and at low rates. In order to validate the proposed HPPO algorithm, it is implemented experimentally in a laboratory prototype using a 2.2kW IM. The motor is driven by a three-phase pulse width modulation (PWM) power converter, which is controlled by a DSP TMS320F28069. Numerical analysis and experimental results are carried out to validate the proposed scheme's high performance.

References

[1] J. Holtz, J. Quan, J. Pontt, J. Rodriguez, P. Newman, H. Miranda, “Design of fast and robust current regulators for high-power drives based on complex state variables”, IEEE Transactions on Industry Applications, vol. 40, no. 5, pp. 1388–1397, Sep. 2004
Doi: 10.1109/TIA.2004.834049

[2] H. T. Câmara, H. A. Grundling, “A MMRAC Controller Applied To Encoderless Speed Control Induction Motor Drives”, Revista Eletrônica de Potência, vol. 10, no. 2, pp. 49–56, Nov. 2005
Doi: 10.18618/REP.2005.2.049056

[3] F. Blaschke, “The principle of field orientation as applied to the new transvector closed loop system for rotating field machines”, Siemens Rev, vol. 39, no. 5, pp. 217–220, 1972

[4] J. Holtz, “Pulsewidth modulation for electronic power conversion”, Proceedings of the IEEE, vol. 82, no. 8, pp. 1194–1214, Aug 1994
Doi: 10.1109/5.301684

[5] Z. M. Elbarbary, H. A. Hamed, E. E. El-Kholy, “Comments on âA Performance Investigation of a Four-Switch Three-Phase Inverter-Fed IM Drives at Low Speeds Using Fuzzy Logic and PI Controllers”, IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 8187–8188, Sept. 2018
Doi: 10.1109/TPEL.2017.2743681

[6] I. M. Mehedi, N. Saad, M. A. Magzoub, U. M. Al-Saggaf, A. H. Milyani, “Simulation Analysis and Experimental Evaluation of Improved Field-Oriented Controlled Induction Motors Incorporating Intelligent Controllers”, IEEE Access, pp. 1–1, Feb. 2022
Doi: 10.1109/ACCESS.2022.3150360

[7] T. H. dos Santos, A. Goedtel, S. A. O. da Silva, M. Suetake, “Controle Escalar do Motor de Indução Usando a Técnica Sensorless Neural”, Revista Eletrônica de Potência, vol. 19, no. 1, pp. 24–35, Feb. 2014
Doi: 10.18618/REP.2014.1.024035

[8] X. Fu, S. Li, “A Novel Neural Network Vector Control Technique for Induction Motor Drive”, IEEE Transactions on Energy Conversion, vol. 30, no. 4, pp. 1428–1437, Dec. 2015
Doi: 10.1109/TEC.2015.2436914

[9] Z. Yan, C. Jin, V. Utkin, “Sensorless sliding-mode control of induction motors”, IEEE Transactions on Industrial Electronics, vol. 47, no. 6, pp. 1286–1297, Dec. 2000
Doi: 10.1109/41.887957

[10] C. Lascu, I. Boldea, F. Blaabjerg, “Direct torque control of sensorless induction motor drives: a sliding-mode approach”, IEEE Transactions on Industry Applications, vol. 40, no. 2, pp. 582–590, Mar.-Apr. 2004
Doi: 10.1109/TIA.2004.824441

[11] Z. Zhang, H. Xu, L. Xu, L. Heilman, “Sensorless direct field-oriented control of three-phase induction motors based on “Sliding Mode” for washing-machine drive applications”, IEEE Transactions on Industry Applications, vol. 42, no. 3, pp. 694–701, May-Jun. 2006
Doi: 10.1109/TIA.2006.872919

[12] S. M. Gadoue, D. Giaouris, J. W. Finch, “MRAS Sensorless Vector Control of an Induction Motor Using New Sliding-Mode and Fuzzy-Logic Adaptation Mechanisms”, IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 394–402, Jun. 2010
Doi: 10.1109/TEC.2009.2036445

[13] C. Lascu, F. Blaabjerg, “Super-twisting sliding mode direct torque contol of induction machine drives”, in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp.5116–5122, 2014
Doi: 10.1109/ECCE.2014.6954103

[14] H. Wang, X. Ge, Y.-C. Liu, “Second-Order Sliding-Mode MRAS Observer-Based Sensorless Vector Control of Linear Induction Motor Drives for Medium-Low Speed Maglev Applications”, IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9938–9952, Dec. 2018
Doi: 10.1109/TIE.2018.2818664

[15] M. Zand, M. Azimi Nasab, M. Khoobani, A. Jahangiri, S. Hossein Hosseinian, A. Hossein Kimiai, “Robust Speed Control for Induction Motor Drives Using STSM Control”, in 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1–6, 2021
Doi: 10.1109/PEDSTC52094.2021.9405912

[16] S. K. Kakodia, G. Dynamina, “A Comparative Study of DFOC and IFOC for IM Drive”, in 2020 First IEEE International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), pp. 1–5, 2020
Doi: 10.1109/ICMICA48462.2020.9242909

[17] P. Vas, Sensorless vector and direct torque control, Oxford University Press, 1998

[18] D. D. Pinheiro, C. M. O. Stein, J. P. Costa, R. Cardoso, E. G. Carati, “Comparison of sensorless techniques based on Model Reference Adaptive System for induction motor drives”, in 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1–6, Nov 2015
Doi: 10.1109/COBEP.2015.7420106

[19] J. Holtz, “Sensorless control of induction motor drives”, vol. 90, no. 8, pp. 1359–1394, Aug. 2002

[20] J. Holtz, J. Quan, “Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification”, IEEE Transactions on Industry Applications, vol. 38, no. 4, pp. 1087–1095, July 2002
Doi: 10.1109/TIA.2002.800779

[21] C. Schauder, “Adaptive speed identification for vector control of induction motors without rotational transducers”, IEEE Transactions on Industry Applications, vol. 28, no. 5, pp. 1054–1061, Sep. 1992
Doi: 10.1109/28.158829

[22] L. Ben-Brahim, S. Tadakuma, A. Akdag, “Speed control of induction motor without rotational transducers”, IEEE Transactions on Industry Applications, vol. 35, no. 4, pp. 844–850, July 1999
Doi: 10.1109/28.777193

[23] C. Lascu, I. Boldea, F. Blaabjerg, “A modified direct torque control for induction motor sensorless drive”, IEEE Transactions on Industry Applications, vol. 36, no. 1, pp.122–130, Jan. 2000
Doi: 10.1109/28.821806

[24] H. Kubota, K. Matsuse, T. Nakano, “DSP-based speed adaptive flux observer of induction motor”, IEEE Transactions on Industry Applications, vol. 29, no. 2, pp. 344–348, March 1993
Doi: 10.1109/28.216542

[25] S.-H. Kim, T.-S. Park, J.-Y. Yoo, G.-T. Park, “Speed-sensorless vector control of an induction motor using neural network speed estimation”, IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 609–614, June 2001
Doi: 10.1109/41.925588

[26] V. I. Utkin, “Variable structure systems with sliding modes”, EEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212–22, Apr. 1977
Doi: 10.1109/TAC.1977.1101446

[27] A. Sabanovic, D. B. Izosimov, “Application of Sliding Modes to Induction Motor Control”, IEEE Transactions on Industry Applications, vol. IA-17, no. 1, pp. 41–49, Jan. 1981
Doi: 10.1109/TIA.1981.4503896

[28] V. I. Utkin, J. Guldner, M. Shijun, “Sliding mode control in electromechanical systems”, in IEEE Decision and Control Conference, pp. 4591–4596, 1996

[29] A. D. Gloria, D. Grosso, M. Olivieri, G. Restani, “A novel stability analysis of a PLL for timing recovery in hard disk drives”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 46, no. 8, pp. 1026–1031, Aug.1999
Doi: 10.1109/81.780384

[30] L. Harnefors, H. . Nee, “A general algorithm for speed and position estimation of AC motors”, IEEE Transactions on Industrial Electronics, vol. 47, no. 1, pp. 77–83, Feb. 2000
Doi: 10.1109/41.824128

[31] M. Comanescu, L. Xu, “An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors”, IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 50–56, Feb. 2006
Doi: 10.1109/TIE.2005.862317

[32] M. H. Bierhoff, “A General PLL-Type Algorithm for Speed Sensorless Control of Electrical Drives”, IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9253–9260, Dec. 2017
Doi: 10.1109/TIE.2017.2711568

[33] D. D. Pinheiro, E. G. Carati, F. S. D. Sant, J. P. d. Costa, R. Cardoso, C. M. P. de Stein, “Improved Sliding Mode and PLL Speed Estimators for Sensorless Vector Control of Induction Motors”, in 2018 13th IEEE International Conference on Industry Applications (INDUSCON), pp. 1030–1037, 2018
Doi: 10.1109/INDUSCON.2018.8627293

[34] P. Mishra, C. Lascu, M. M. Bech, B. Rannestad, S. Munk-Neilsen, “Design and Analysis of PLL Speed Estimator for Sensorless Rotor-Flux Oriented Control of Induction Motor Drives”, in 2021 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4743–4747, 2021
Doi: 10.1109/ECCE47101.2021.9595316

[35] D. D. Pinheiro, Analysis and proposition of strategies estimation and speed control for induction motors three-phase, Federal University of Technology – Parana, 2016

[36] P. Krause, O. Wasynczuk, S. D. Sudhoff, S. Pekarek, Analysis of electric machinery and drive systems, vol. 75, John Wiley Sons, 2013

[37] R. Teodorescu, M. Liserre, P. Rodriguez, Grid converters for photovoltaic and wind power systems, vol. 29, John Wiley Sons, Ltd, Dec. 2010
Doi: 10.1002/9780470667057

[38] G. F. Franklin, J. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, ISBN 9780133496598, JPrentice Hall, Jan. 2002

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.