Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 27 - Number 1
Publishing Date: março 2022
Editor-in-Chief: Marcelo Lobo Heldwein
Editor Affiliation: Federal University of Santa Catarina
A SEPIC-BUCK TOPOLOGY FOR REMOTELY PILOTED AIRCRAFT SYSTEMS BATTERY CHARGER
Rafael Henrique Eckstein, Eduardo Valmir de Souza, Maikel Fernando Menke, Telles Brunelli Lazzarin
38-46
http://dx.doi.org/10.18618/REP.2022.1.0039
English Data

Title: A SEPIC-BUCK TOPOLOGY FOR REMOTELY PILOTED AIRCRAFT SYSTEMS BATTERY CHARGER

Keywords: Battery Charger, dc-dc Buck converter, Drone, RPAS, SEPIC PFC rectifier

Abstract
The use of remotely piloted aircraft systems (RPAS) is already a reality in applications such as geographic mapping, surveillance, digital marketing, delivery, agriculture, infrastructure inspection, and others. Most of these aircraft are purely electric, being the only source of energy, packs of ion-lithium or lithium polymer batteries. These battery packs are conceived by the association of a different number of cells, usually ranging from three cells (3S) to twelve cells (12S). However, universal battery chargers for this range are not consolidated yet due to the recent emergence of the use of RPAS for different applications. To overcome this drawback, this paper introduces a topology to charge a wide range of low voltage battery packs (3S-12S) for RPAS. The circuit is composed of two power converters, one of them is a DCM SEPIC PFC rectifi er and another is a dc-dc Buck converter. The system is design for 400 W of rated power and the proposed solution is suggested to charge battery packs from 3S to 12S.

References

[1] P. Daponte, L. D. Vito, G. Mazzilli, F. Picariello, S. Rapuano, M. Riccio, “Metrology for drone and drone for metrology: Measurement systems on small civilian drones”, in Proc. of 2nd IEEE Int. Workshop on Metrology for Aerospace (MetroAeroSpace), vol. 1, pp. 306–311, 2015.
Doi: 10.1109/MetroAeroSpace.2015.7180673

[2] E. Jr, C. Daughtry, C. Walthall, J. III, W. Dulaney, “Agricultural Remote Sensing using Radio-Controlled Model Aircraft”, pp. 197–205, 01 2003
Doi: 10.2134/asaspecpub66.c15

[3] M. N. Boukoberine, Z. Zhou, M. Benbouzid, “Power Supply Architectures for Drones – A Review”, in IECON 2019 – 45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 5826–5831, 2019
Doi: 10.1109/IECON.2019.8927702

[4] C. Kyrkou, S. Timotheou, P. Kolios, T. Theocharides, C. Panayiotou, “Drones: Augmenting Our Quality of Life”, IEEE Potentials, vol. 38, no. 1, pp. 30–36, 2019
Doi: 10.1109/MPOT.2018.2850386

[5] M. K. Furrutter, J. Meyer, “Small fuel cell powering an unmanned aerial vehicle”, in AFRICON 2009, pp. 1–6, 2009
Doi: 10.1109/AFRCON.2009.5308096

[6] C. G. Saracin, I. Dragos, A. I. Chirila, “Powering aerial surveillance drones”, in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 237–240, 2017
Doi: 10.1109/ATEE.2017.7905185.

[7] T. Donateo, A. Ficarella, L. Spedicato, A. Arista, M. Ferraro, “A new approach to calculating endurance in electric fl ight and comparing fuel cells and batteries”, Applied Energy, vol. 187, pp. 807–819, 02 2017
Doi: 10.1016/j.apenergy.2016.11.100.

[8] F.-c. Yang, C.-c. Chen, J.-j. Chen, Y.-s. Hwang, W.-t. Lee, “Hysteresis-Current-Controlled Buck Converter Suitable for Li-Ion Battery Charger”, in 2006 International Conference on Communications, Circuits and Systems, vol. 4, pp. 2723–2726, 2006
Doi: 10.1109/ICCCAS.2006.285232.

[9] Y. Ye, C. Chen, J. Jin, L. He, “Li-ion battery management chip for multi-cell battery pack”, in APCCAS 2008 – 2008 IEEE Asia Pacifi c Conference on Circuits and Systems, pp. 534–537, 2008
Doi: 10.1109/APCCAS.2008.4746078.

[10] S. Bhide, T. Shim, “Development of improved Li-ion battery model incorporating thermal and rate factor effects”, in 2009 IEEE Vehicle Power and Propulsion Conference, pp. 544–550, 2009
Doi: 10.1109/VPPC.2009.5289800.

[11] M. Chen, G. A. Rincon-Mora, “Accurate, Compact, and Power-Effi cient Li-Ion Battery Charger Circuit”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1180–1184, 2006
Doi: 10.1109/TCSII.2006.883220.

[12] L.-R. Dung, C.-E. Chen, H.-F. Yuan, “A robust, intelligent CC-CV fast charger for aging lithium batteries”, in 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 268–273, 2016
Doi: 10.1109/ISIE.2016.7744901.

[13] Z. Li, H. Wang, “Comparative analysis of high step-down ratio isolated DC/DC topologies in PEV applications”, in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1329–1335, 2016
Doi: 10.1109/APEC.2016.7468040.

[14] D. Wei, F. Darie, H. Wang, “Neighborhood-level collaborative fair charging scheme for electric vehicles”, in ISGT 2014, pp. 1–5, 2014
Doi: 10.1109/ISGT.2014.6816424.

[15] C.-S. Lee, J.-B. Jeong, B.-H. Lee, J. Hur, “Study on 1.5 kW battery chargers for neighborhood electric vehicles”, in 2011 IEEE Vehicle Power and Propulsion Conference, pp. 1–4, 2011
Doi: 10.1109/VPPC.2011.6043129.

[16] M. M. U. Alam, W. Eberle, F. Musavi, “A hybrid resonant bridgeless AC-DC power factor correction converter for off-road and neighborhood electric vehicle battery charging”, in 2014 IEEE Applied Power Electronics Conference and Exposition – APEC 2014, pp. 1641–1647, 2014
Doi: 10.1109/APEC.2014.6803526.

[17] C. Jung, “Power Up with 800-V Systems: The benefi ts of upgrading voltage power for battery-electric passenger vehicles”, IEEE Electrifi cation Magazine, vol. 5, no. 1, pp. 53–58, 2017
Doi: 10.1109/MELE.2016.2644560.

[18] C.-Y. Hung, J.-C. Wu, Y.-L. Chen, H.-L. Jou, “A grid-connected battery charger with power factor correction”, in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 1446–1452, 2016
Doi: 10.1109/ICIEA.2016.7603813.

[19] C.-Y. Oh, D.-H. Kim, D.-G. Woo, W.-Y. Sung, Y.- S. Kim, B.-K. Lee, “A High-Effi cient Nonisolated Single-Stage On-Board Battery Charger for Electric Vehicles”, IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5746–5757, 2013
Doi: 10.1109/TPEL.2013.2252200.

[20] G. Tibola, Isolated three-phase high power factor rectifi er based on the SEPIC converter operating in discontinuous conduction mode, Ph.D. thesis, Federal University of Santa Catarina, Florianopolis, Brazil, 2013.

[21] H. Suryoatmojo, “Design Li-Po Battery Charger with Buck Converter under Partially CC-CV Method”, in 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 101–106, 2020
Doi: 10.1109/ISITIA49792.2020.9163754.

[22] M. S. Sunita, B. S. Rakshitha, K. Sankirthana, S. Tantry, “A high effi ciency, fast response buck converter for low voltage applications”, in 2019 IEEE Asia Pacifi c Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp. 13–16, 2019
Doi: 10.1109/PrimeAsia47521.2019.8950697.

[23] E. H. Ismail, “Bridgeless SEPIC Rectifi er With Unity Power Factor and Reduced Conduction Losses”, IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1147–1157, 2009
Doi: 10.1109/TIE.2008.2007552.

[24] D. Simonetti, J. Sebastian, J. Uceda, “The discontinuous conduction mode Sepic and Cuk power factor preregulators: analysis and design”, IEEE Transactions on Industrial Electronics, vol. 44, no. 5, pp. 630–637, 1997
Doi: 10.1109/41.633459.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.