Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 27 - Number 4
Publishing Date: dezembro 2022
Editor-in-Chief: Telles Brunelli Lazzarin
Editor Affiliation: UFSC
ANÁLISE E DESENVOLVIMENTO DE UM CONVERSOR BIDIRECIONAL NÃO ISOLADO BASEADO NO CONVERSOR BOOST/BUCK CC-CC
Fabiano Gonzales Nimitti, António Manuel Santos Spencer Andrade
325-334
http://dx.doi.org/10.18618/REP.2022.4.0006
Portuguese Data

Palavras Chaves: Conversor bidirecional CC-CC, Conversor Boost, Conversor Buck, Conversor não isolado

Resumo
Neste artigo, uma nova topologia não isolada de conversor CC-CC bidirecional baseado no conversor boost/buck clássico é proposta. O conversor proposto pode operar tanto em modo elevador quanto abaixador de tensão e apresenta como principais características: baixo esforço de tensão e corrente nos componentes, simplicidade de operação e diferentes modos de operação, tais como: síncrono e assíncrono. Para garantir um bom desempenho do conversor proposto, a modelagem e controle foi desenvolvida neste artigo. Desta forma, para validar as avaliações teóricas, um protótipo de 1 kW, 144 V/400 V foi desenvolvido em laboratório, alcançando uma eficiência de pico de 94,2 % para 500W.

English Data

Title: ANALYSIS AND DEVELOPMENT OF A NON-ISOLATED BIDIRECTIONAL CONVERTER BASED ON BOOST/BUCK DC-DC CONVERTER

Keywords: Bidirectional dc-dc converter, Boost Converter, Buck converter, Non-isolated converter

Abstract
In this paper, a new non-isolated bidirectional DC-DC converter topology based on classical boost/buck bidirectional DC-DC converter is proposed. The proposed converter can operate in both mode, step-up and stepdown and it presents as main features: low current and voltage stresses on components, simplicity of operation and differents operation modes, such as: synchronous and asynchronous. To ensure a good performance of the proposed converter, the modeling and control of the proposed converter is done in this paper. To validate the theoretical evaluations, a 1kW, 144 V/400 V prototype was developed in the laboratory, achieving a peak of efficiency of 94.2 % for 500W.

References

[1] H. T. Dinh, J. Yun, D. M. Kim, K.-H. Lee, D. Kim, “A Home Energy Management System With Renewable Energy and Energy Storage Utilizing Main Grid and Electricity Selling”, IEEE Access, vol. 8, pp. 49436– 49450, Mar. 2020.
Doi: 10.1109/ACCESS.2020.2979189

[2] L. Liu, H. Li, Y. Xue, W. Liu, “Reactive Power Compensation and Optimization Strategy for GridInteractive Cascaded Photovoltaic Systems”, IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 188–202, June 2015.
Doi: 10.1109/TPEL.2014.2333004.

[3] C. Barros, W. Mota, P. Barros, L. Barros, “MPPT de sistemas de conversão de energia eólica baseados em PMSG usando controle preditivo”, Eletrônica de Potência, vol. 20, no. 4, pp. 364–372, Nov. 2015.
Doi: 10.18618/REP.2015.4.2553.

[4] S. Lima, R. Dias, E. Watanabe, “Direct voltage control in grids with intermittent sources using UPFC”, Eletrônica de Potência, vol. 19, no. 3, pp. 260–267, Agosto 2014.
Doi: 10.18618/REP.2014.3.260267

[5] P. J. d. S. Neto, T. A. d. S. Barros, J. P. C. Silveira, E. R. Filho, J. C. Vasquez, J. M. Guerrero, “Power Management Strategy Based on Virtual Inertia for DC Microgrids”, IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12472–12485, Apr. 2020.
Doi: 10.1109/TPEL.2020.2986283

[6] O. Cornea, G.-D. Andreescu, N. Muntean, D. Hulea, “Bidirectional Power Flow Control in a DC Microgrid Through a Switched-Capacitor Cell Hybrid DC–DC Converter”, IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3012–3022, Dec. 2017.
Doi: 10.1109/TIE.2016.2631527.

[7] S. Li, C. Gu, J. Li, H. Wang, Q. Yang, “Boosting Grid Efficiency and Resiliency by Releasing V2G Potentiality Through a Novel Rolling PredictionDecision Framework and Deep-LSTM Algorithm”, IEEE Systems Journal, vol. 15, no. 2, pp. 2562–2570, Jun. 2021.
Doi: 10.1109/JSYST.2020.3001630.

[8] G. Buja, M. Bertoluzzo, C. Fontana, “Reactive Power Compensation Capabilities of V2G-Enabled Electric Vehicles”, IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9447–9459, Dec. 2017.
Doi: 10.1109/TPEL.2017.2658686.

[9] K. Kaur, A. Dua, A. Jindal, N. Kumar, M. Singh, A. Vinel, “A Novel Resource Reservation Scheme for Mobile PHEVs in V2G Environment Using Game Theoretical Approach”, IEEE Transactions on Vehicular Technology, vol. 64, no. 12, pp. 5653–5666, Sept. 2015.
Doi: 10.1109/TVT.2015.2482462

[10] S. K. Kollimalla, M. K. Mishra, N. L. Narasamma, “Design and Analysis of Novel Control Strategy for Battery and Supercapacitor Storage System”, IEEE Transactions on Sustainable Energy, vol. 5, no. 4, pp. 1137–1144, July 2014.
Doi: 10.1109/TSTE.2014.2336896.

[11] L. H. Meneghetti, E. Laercio Carvalho, E. G. Carati, J. Patric Costa, C. M. Oliveira Stein, Z. Luiz Iensen Nadal, R. Cardoso, “Multifunctional PV Converter for Uninterrupted Power Supply”, in 2019 IEEE PES Innovative Smart Grid Technologies Conference – Latin America (ISGT Latin America), pp. 1–6, 2019.
Doi: 10.1109/ISGT-LA.2019.8895322.

[12] A. Saifullah, A. H. Arofat, M. Rian Fatah, A. Irawan, N. FerdausArio, “Development of transformerless 5 kW bidirectional inverter in PT. Len Industri”, in The 2nd IEEE Conference on Power Engineering and Renewable Energy (ICPERE) 2014, pp. 52–55, 2014.
Doi: 10.1109/ICPERE.2014.7067238.

[13] T.-F. Wu, C.-L. Kuo, K.-H. Sun, Y.-K. Chen, Y.- R. Chang, Y.-D. Lee, “Integration and Operation of a Single-Phase Bidirectional Inverter With Two Buck/Boost MPPTs for DC-Distribution Applications”, IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5098–5106, Feb. 2013.
Doi: 10.1109/TPEL.2013.2245681.

[14] L. Huang, Z. Zhang, M. A. E. Andersen, “Analytical Switching Cycle Modeling of Bidirectional HighVoltage Flyback Converter for Capacitive Load Considering Core Loss Effect”, IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 470–487, Jan. 2016.
Doi: 10.1109/TPEL.2015.2410796.

[15] Y.-E. Wu, Y.-T. Ke, “A Novel Bidirectional Isolated DC-DC Converter With High Voltage Gain and Wide Input Voltage”, IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 322–331, July 2021.
Doi: 18618/REP.2016.4.2640.

[16] E. Souza, G. Waltrich, I. Barbi, “Bidirectional dual active clamping push-pull DC-DC converter”, Eletrônica de Potência, vol. 21, no. 4, pp. 7973–7985, Dezembro 2016.
Doi: 10.1109/TPEL.2020.3045986.

[17] K. Xiangli, S. Li, K. M. Smedley, “Decoupled PWM Plus Phase-Shift Control for a Dual-Half-Bridge Bidirectional DC–DC Converter”, IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 7203–7213, Aug. 2018.
Doi: 10.1109/TPEL.2017.2758398.

[18] R.-S. Yang, L.-K. Chang, H.-C. Chen, “An Isolated Full-Bridge DC–DC Converter With 1-MHz Bidirectional Communication Channel”, IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4407–4413, Sept. 2011.
Doi: 10.1109/TIE.2010.2095397.

[19] B.-K. Lee, J.-P. Kim, S.-G. Kim, J.-Y. Lee, “An Isolated/Bidirectional PWM Resonant Converter for V2G(H) EV On-Board Charger”, IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7741– 7750, Sept. 2017.
Doi: 10.1109/TVT.2017.2678532.

[20] F. G. Nimitti, M. M. da Silva, A. M. Santos Spencer Andrade, “Family of Bidirectional Boost/Buck DC-DC Converter”, in 2021 Brazilian Power Electronics Conference (COBEP), pp. 1–6, 2021.
Doi: 10.1109/COBEP53665.2021.9684095

[21] H. Matsuo, F. Kurokawa, “New Solar Cell Power Supply System Using a Boost Type Bidirectinal DCDC Converter”, IEEE Transactions on Industrial Electronics, vol. IE-31, no. 1, pp. 51–55, Feb. 1984.
Doi: 10.1109/TIE.1984.350020.

[22] J. M. Blanes, R. Gutiérrez, A. Garrigós, J. L. Lizán, J. M. Cuadrado, “Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck–Boost Converter”, IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5940–5948, Dec. 2013.
Doi: 10.1109/TPEL.2013.2255316.

[23] F. G. Nimitti, J. C. Giacomini, A. M. S. S. Andrade, “Dual-Stacked Bidirectional Boost/Buck DC-DC Converter”, IEEE Transactions on Industrial Electronics, pp. 1–10, Sept. 2022.
Doi: 10.1109/TIE.2022.3206756.

[24] P. I. Nogueira, A. Schlingmann, Oliveira, L. Schmitz, D. Martins, R. Coelho, “CONVERSOR CC-CC BUCK-BOOST DIFERENCIAL SIMÉTRICO”, Eletrônica de Potência, vol. 26, no. 2, pp. 136–146, Junho 2021.
Doi: 10.18618/REP.2021.2.0049

[25] R. Mayer, M. B. E. Kattel, Oliveira, S. V. Garcia, “BIDIRECTIONAL DC-DC CONVERTER WITH COUPLED INDUCTOR FOR DC-BUS REGULATION IN MICROGRID APPLICATIONS”, Eletrônica de Potência, vol. 25, no. 3, pp. 241–248, Set. 2020.
Doi: 10.18618/REP.2020.3.0007.

[26] R. D. Middlebrook, S. Cuk, “A general unified approach to modelling switching-converter power stages”, in 1976 IEEE Power Electronics Specialists Conference, pp. 18–34, 1976.
Doi: 10.1109/PESC.1976.7072895.

[27] R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2001.

[28] F. G. Nimitti, A. M. S. S. Andrade, “Bidirectional converter based on boost/buck DC-DC converter for microgrids energy storage systems interface”, International Journal of Circuit Theory and Applications, vol. n/a, no. n/a, Aug. 2022.
Doi: 10.1002/cta.3403.

[29] J. M. Blanes, R. Gutiérrez, A. Garrigós, J. L. Lizán, J. M. Cuadrado, “Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck–Boost Converter”, IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5940–5948, Dec. 2013.
Doi: 10.1109/TPEL.2013.2255316.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.