Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 25 - Number 3
Publishing Date: setembro 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
CONTROLE ROBUSTO APLICADO A GERADORES DE RELUTÂNCIA VARIÁVEL CONECTADOS À REDE
Caio Ruviaro Dantas Osório, Filipe Pinarello Scalcon, Gustavo Guilherme Koch, Vinícius Foletto Montagner, Rodrigo Padilha Vieira, Hilton Abílio Gründling
272-282
http://dx.doi.org/10.18618/REP.2020.3.0015
Portuguese Data

Palavras Chaves: Controle Robusto, energia eólica, Filtro LCL, Gerador de relutância variável, Inversor Conectado à Rede

Resumo
Este artigo apresenta como contribuição uma estratégia de controle para geradores de relutância variável conectados à rede por meio de inversor trifásico com filtro LCL, na qual controladores robustos são projetados para garantir estabilidade e desempenho. Um controlador sliding mode é utilizado para regular a tensão do barramento CC, sendo detalhados o procedimento de projeto e a análise de estabilidade com esta técnica. Para o inversor conectado à rede, um controlador de corrente robusto por realimentação de estados é projetado com base em desigualdades matriciais lineares, garantindo correntes de rede com baixo conteúdo harmônico, rejeição de distúrbios e fornecendo um certificado de estabilidade robusta frente a incertezas e variações paramétricas nas impedâncias da rede. Resultados experimentais e de simulação são apresentados, confirmando boa regulação da tensão do barramento CC e correntes injetadas na rede com bons desempenhos transitório e em regime permanente, atendendo aos requisitos de norma pertinente para conexão à rede elétrica.

English Data

Title: ROBUST CONTROL APPLIED TO SWITCHED RELUCTANCE GENERATORS CONNECTED TO THE GRID

Keywords: Grid-Tied Inverter, LCL filter, Robust Control, switched reluctance generator, wind power

Abstract
This paper presents as contribution a control strategy for a grid connected switched reluctance generator by means of a three-phase inverter with an LCL filter, in which robust controllers are designed to ensure stability and performance. A sliding mode controller is used to regulate the DC bus voltage, being detailed the design procedure and the stability analysis with this technique. For the grid connected inverter, a robust state feedback current controller is designed based on linear matrix inequalities, ensuring grid-injected currents with low harmonic content, rejection of disturbances from the grid voltages and providing a certificate of robust stability in the face of uncertainties and parametric variations in the grid impedances. Experimental and simulation results are presented, confirming good regulation of the DC bus voltage and grid-injected currents with good transient and steady state performance, meeting the requirements of the relevant standard for grid connection.

References

[1] D. Abbott, “Keeping the Energy Debate Clean: How Do We Supply the World’s Energy Needs”, Proceedings of the IEEE, vol. 98, no. 1, pp. 42-66, Jan 2010.
Doi: 10.1109/JPROC.2009.2035162

[2] M. A. Mueller, “Design and performance of a 20 kW, 100 rpm, switched reluctance generator for a direct drive wind energy converter”, IEEE International Conference on Electric Machines and Drives, 2005, pp. 56-63, 2005.
Doi: 10.1109/IEMDC.2005.195701

[3] M. I. Mosaad, “Direct power control of SRG-based WECSs using optimised fractional-order PI controller”, IET Electric Power Applications, vol. 14, no. 3, pp. 409-417, 2020.
Doi: 10.1049/iet-epa.2019.0194

[4] Y. Chang, C. Liaw, “Establishment of a Switched-Reluctance Generator-Based Common DC Microgrid System”, IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2512-2527, Set. 2011.
Doi: 10.1109/TPEL.2011.2109013

[5] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications”, IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 781-791, Dez 2005.
Doi: 10.1109/TEC.2005.853733

[6] T.A. d.S. Barros, P. J. d. S. Neto, P. S. N. Filho, A. B. Moreira, E. R. Filho, “An Approach for Switched Reluctance Generator in a Wind Generation System With a Wide Range of Operation Speed”, IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8277-8292, Nov 2017.
Doi: 10.1109/TPEL.2017.2697822

[7] E. Rahmanian, H. Akbari, G. H. Sheisi, “Maximum Power Point Tracking in Grid Connected Wind Plant by Using Intelligent Controller and Switched Reluctance Generator”, IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1313-1320, Jul 2017.
Doi: 10.1109/TSTE.2017.2678679

[8] C. R. D. Osorio, R. P. Vieira, H. A. Gründling, “Sliding mode technique applied to output voltage control of the switched reluctance generator”, IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 2935-2940, Out 2016.
Doi: 10.1109/IECON.2016.7793709

[9] D. A. Torrey, “Switched reluctance generators and their control”, in IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 3-14, Feb 2002.
Doi: 10.1109/41.982243

[10] W. Ding, D. Liang, “A Fast Analytical Model for an Integrated Switched Reluctance Starter/Generator”, IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 948-956, Dez 2010.
Doi: 10.1109/TEC.2010.2052620

[11] T. A. d. S. Barros, P. J. Dos Santos Neto, M. V. De Paula, A. B. Moreira, P. S. Nascimento Filho, E. Ruppert Filho, “Automatic Characterization System of Switched Reluctance Machines and Nonlinear Modeling by Interpolation Using Smoothing Splines”, IEEE Access, vol. 6, pp. 26011-26021, 2018.
Doi: 10.1109/ACCESS.2018.2825607

[12] S. S. Ahmad, G. Narayanan, “Linearized Modeling of Switched Reluctance Motor for Closed-Loop Current Control”, IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3146 -3158, 2016.
Doi: 10.1109/TIA.2016.2550521

[13] M. M. Namazi , S. M. S. Nejad , A. Tabesh, A. Rashidi, M. Liserre, “Passivity-Based Control of Switched Reluctance-Based Wind System Supplying Constant Power Load”, IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9550-9560, 2018.
Doi: 10.1109/TIE.2018.2816008

[14] F. Blaabjerg, R. Teodorescu, M. Liserre, A. Timbus, “Overview of Control and Grid Synchronization for Distributed Power Generation Systems”, in IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398-1409, Out 2006.
Doi: 10.1109/TIE.2006.881997

[15] “IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces”, IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1-138, Abr 2018.
Doi: 10.1109/IEEESTD.2018.8332112

[16] F. Blaabjerg, Z. Chen, S. Kjaer, “Power electronics as efficient interface in dispersed power generation systems”, IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184-1194, Set 2004.
Doi: 10.1109/TPEL.2004.833453

[17] J. Dannehl, M. Liserre, F. Fuchs, “Filter-Based Active Damping of Voltage Source Converters With LCL Filter”, IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp. 3623-3633, Ago 2011.
Doi: 10.1109/TIE.2010.2081952

[18] R. Peña-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, F. W. Fuchs, “Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters”, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2642-2646, Jun 2013.
Doi: 10.1109/TPEL.2012.2222931

[19] C. Olalla, R. Leyva, A. El Aroudi, I. Queinnec, “Robust LQR Control for PWM Converters: An LMI Approach”, IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2548-2558, Jul 2009.
Doi: 10.1109/TIE.2009.2017556

[20] L. A. Maccari, Jr., J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. L. F. Oliveira, V. F. Montagner, “LMI-Based Control for Grid-Connected Converters With LCL Filters Under Uncertain Parameters”, IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3776 -3785, Jul 2014.
Doi: 10.1109/TPEL.2013.2279015

[21] C. R. D. Osorio, G. G. Koch, L. C. Borin, I. Cleveston, V. F. Montagner, “A Robust Quasi-Deadbeat Controller and Relaxations Applied to Grid-Connected Inverters”, Revista Eletrônica de Potência, vol. 23, no. 3, pp. 320-329, 2018.
Doi: 10.18618/REP.2018.3.2787

[22] G. P. Viajante, D. A. Andrade, L. C. Gomes, J. A. S. Jr, V. R. Bernardeli, A. W. F. V. Silveira, M. A. A. Freitas, F. S. Silva, “Estratégia de Conexão do Gerador a Relutância Variável para Injeção de Potência Ativa”, Revista Eletrônica de Potência, vol. 19, no. 2, pp. 121-131, 2014.
Doi: 10.18618/REP.2014.2.121131

[23] G. Viajante, D. Andrade, E. Chaves, V. Bernadelli, C. Queiroz, M. Freitas, J. Santos, L. Gomes, “A grid connection scheme of a switched reluctance generator for active power injection using P-resonant (P-RES) controller”, Electric Power Systems Research, vol. 141, pp. 572-579, 2016.
Doi: 10.1016/j.epsr.2016.08.029

[24] C. R. D. Osorio, F. P. Scalcon, R. P. Vieira, V. F. Montagner, H. A. Gründling, “Robust Control of Switched Reluctance Generator In Connection With a Grid-Tied Inverter”, 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), pp. 1-6, 2019.
Doi: 10.1109/COBEP/SPEC44138.2019.9065551

[25] A. Arifin, A. B. Ibrahim, S. C. Mukhopadhyay, “State of the Art of Switched Reluctance Generator”, Energy and Power Engineering (EPE), vol. 04, no. 06, pp. 447-458, 2012.
Doi: 10.4236/epe.2012.46059

[26] G. P. Viajante, D. A. Andrade, A. W. F. V. Silveira, V. R. Bernardeli, L. C. Coutinho, M. A. A. Freitas, J. L. Domingos, A. Fleury, “Estratégia para Melhoria da Conversão Eletromecânica de Energia do GRV”, Revista Eletrônica de Potência, vol. 16, no. 4, pp. 367-375, 2011.
Doi: 10.18618/REP.20114.367375

[27] E. S. L. Oliveira, M. L. Aguiar, I. N. Silva, “Strategy to Control the Terminal Voltage of a SRG Based on the Excitation Voltage”, IEEE Latin America Transaction, vol. 13, no. 4, pp. 975-981, 2015.
Doi: 10.1109/TLA.2015.7106345

[28] B. Bilgin, J. Jiang, A. Emadi, Switched Reluctance Motor Drives: Fundamentals to Applications, CRC Press, 2019.
Doi: 10.1201/9780203729991

[29] C. Mademlis, I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators”, IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 556-565, 2005.
Doi: 10.1109/TEC.2005.852960

[30] T. A. d. S. Barros, P. S. N. Filho, A. B. Morreira, E. R. Filho, “Algoritmos para otimização do desempenho de geradores a relutância variável aplicados em geração eólica”, Revista Eletrônica de Potência, vol. 21, no. 1, pp. 32-41, 2016.
Doi: 10.18618/REP.2016.1.2572

[31] P. J. d. S. Neto, T. A. d. S. Barros, M. V. de Paula, R. R. de Souza, E. R. Filho, “Design of Computational Experiment for Performance Optimization of a Switched Reluctance Generator in Wind Systems”, IEEE Transactions on Energy Conversion, vol. 33, no. 1, pp. 406-419, Mar 2018.
Doi: 10.1109/TEC.2017.2755590

[32] V. I. Utkin, “Sliding mode control design principles and applications to electric drives”, IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 23-36, Fev 1993.
Doi: 10.1109/41.184818

[33] Y. Z. Liu, Z. Zhou, J. L. Song, B. J. Fan, C. Wang, “Based on sliding mode variable structure of studying control for status switching of switched reluctance starter/generator”, Chinese Automation Congress (CAC), 2015, pp. 934-939, Nov 2015.
Doi: 10.1109/CAC.2015.7382632

[34] H. Kim, J. Son, J. Lee, “A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM”, IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4069-4077, 2011.
Doi: 10.1109/TIE.2010.2098357

[35] C. R. Osorio, G. G. Koch, R. C. Oliveira, V. F. Montagner, “A practical design procedure for robust H2 controllers applied to grid-connected inverters”, Control Engineering Practice, vol. 92, p. 104157, 2019.
Doi: 10.1016/j.conengprac.2019.104157

[36] R. Cardoso, R. F. de Camargo, H. Pinheiro, H. A. Gründling, “Kalman filter based synchronisation methods”, Generation, Transmission & Distribution, IET, vol. 2, no. 4, pp. 542-555, Jul 2008.
Doi: 10.1049/iet-gtd:20070281

[37] B. A. Francis, W. M. Wonham, “The internal model principle of control theory”, Automatica, vol. 12, no. 5, pp. 457-465, Set 1976.
Doi: 10.1016/0005-1098(76)90006-6

[38] K. Ogata, Discrete-time control systems, Prentice Hall, 1995.

[39] J. Daafouz, J. Bernussou, “Parameter dependent Lyapunov functions for discrete time systems with time varying parameter uncertainties”, Systems & Control Letters, vol. 43, no. 5, pp. 355-359, Ago 2001.
Doi: DOI: 10.1016/S0167-6911(01)00118-9

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.