Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 23 - Number 4
Publishing Date: dezembro 2018
Editor-in-Chief: Marcello Mezaroba
Editor Affiliation: Universidade do Estado de Santa Catarina
MPPT algorithm based on PV cell temperature, using open circuit voltage measurement, combined with PV cell cooling
Nuno Miguel Martins Da Rocha, Lucas Lapolli Brighenti, Júlio César Passos, Denizar Cruz Martins
477 - 486
http://dx.doi.org/10.18618/REP.2018.4.2804
English Data

Title: MPPT algorithm based on PV cell temperature, using open circuit voltage measurement, combined with PV cell cooling

Keywords: MPP, MPPT, photovoltaic, Photovoltaic Cell Cooling, Photovoltaic Cell Temperature

Abstract

As an increase of Photovoltaic (PV) cell temperature originates a negative effect, the application of a PV cell cooling system allows a performance improvement. Therefore, the present work aims to investigate the performance of a PV module transformed into a Photovoltaic/Thermal (PV/T) module, producing electrical and thermal energy simultaneously, while concurrently establishing a cooling system for the PV cells. The PV conversion efficiency is affected by modifications of the operation conditions particularly the ones concerning PV cell temperature and radiation due to the displacement of the system Maximum Power Point (MPP). In the present work the Maximum Power Point Tracking (MPPT) is performed using an algorithm based exclusively on PV cell temperature information with the particularity that the temperature measurements are perform without the use of any temperature sensors. The studied system performance is compared to a conventional PV using the same MPPT algorithm. The results show that the cooling system associated to the MPPT temperature based algorithm provides a bigger energy output leading to higher economic savings. In addition, it can help simplifying the MPPT algorithm by allowing the use of slower dynamic.

References

[1] N. M. da Rocha, R. F. Coelho, J. C. Passos, and D. C. Martins, Suggestion of associating a PV MPPT algorithm based on temperature control with a PV cooling system, in 3rd Renewable Power Generation Conference (RPG 2014), pp. 1–6, 2014, http://dx.doi.org/10.1049/CP.2014.0890.
[2] J. J. Michael, I. S, and R. Goic, Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide, Renewable and Sustainable Energy Reviews, vol. 51, pp. 62–88, Nov. 2015, http://dx.doi.org/10.1016/J.RSER.2015.06.022.
[3] S. Nižeti, A. M. Papadopoulos, and E. Giama, Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques, Energy Conversion and Management, vol. 149, pp. 334–354, Oct. 2017, http://dx.doi.org/10.1016/J.ENCONMAN.2017.07.022.
[4] S. Nižeti, E. Giama, and A. M. Papadopoulos, Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques, Energy Conversion and Management, vol. 155, pp. 301–323, Jan. 2018, http://dx.doi.org/10.1016/J.ENCONMAN.2017.10.071.
[5] M. A. G. de Brito, L. Galotto, L. P. Sampaio, G. de Azevedo e Melo, and C. A. Canesin, Evaluation of the Main MPPT Techniques for Photovoltaic Applications, IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1156–1167, Mar. 2013, http://dx.doi.org/10.1109/TIE.2012.2198036.
[6] G. M. S. Azevedo, M. C. Cavalcanti, K. C. Oliveira, F. A. S. Neves, and Z. D. Lins, Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems, J. Sol. Energy Eng., vol. 131, no. 3, pp. 031006–031006, Jun. 2009, http://dx.doi.org/10.1115/1.3142827.
[7] J. Lopez-Seguel, S. I. J. Seleme, P. Donoso-Garcia, L. F. Morais, P. Cortizo, and M. S. Mendes, Comparison of MPPT approaches in autonomous photovoltaic energy supply system using DSP, in IEEE International Conference on Industrial Technology (ICIT), pp. 1149–1154, 2010, http://dx.doi.org/10.1109/ICIT.2010.5472594.
[8] M. A. G. de Brito, L. P. Sampaio, G. A. e Melo, and C. A. Canesin, Contribuição ao Estudo dos Principais Algoritmos de Extração da Máxima Potência dos Painéis Fotovoltaicos, Eletrônica de Potência, vol. 17, no. 3, pp. 592–600, Aug. 2012, http://dx.doi.org/10.18618/REP.2012.3.592600.
[9] P. de A. J. Sobreira, F. L. Tofoli, H. A. C. Braga, P. G. Barbosa, and A. A. Ferreira, Analysis of Mppt Techniques Applied to the DCM Multiphase Boost Converter for the Mitigation of Partial Shading in Pv Arrays, Eletrônica de Potência, vol. 18, no. 4, pp. 1138–1148, Nov. 2013, http://dx.doi.org/10.18618/REP.2013.4.11381148.
[10] R. Francisco and D. Cruz, An Optimized Maximum Power Point Tracking Method Based on PV Surface Temperature Measurement, in Sustainable Energy – Recent Studies, Ed. InTech, 2012, http://dx.doi.org/10.5772/51167.
[11] R. F. Coelho, F. M. Concer, and D. C. Martins, A MPPT approach based on temperature measurements applied in PV systems, in 9th IEEE/IAS International Conference on Industry Applications (INDUSCON), pp. 1–6, 2010, http://dx.doi.org/10.1109/ICSET.2010.5684440
[12] D. C. Martins, C. L. Weber, and R. Demonti, Photovoltaic power processing with high efficiency using maximum power ratio technique, in IEEE 28th Annual Conference of the Industrial Electronics Society, vol. 2, pp. 1079–1082, 2002, http://dx.doi.org/10.1109/IECON.2002.1185422.
[13] M. M. Casaro and D. C. Martins, Application of the Three-phase Series Resonant Converter in a Dual-Stage Inverter Operating without Specific Sensor to Perform the MPPT, in 33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 1650–1655, 2007, http://dx.doi.org/10.1109/IECON.2007.4459947.
[14] D. L. S. Solano, Sistema de Supervisão e Controle de Geração Solar Fotovoltaica para Aplicação em Microrredes Inteligentes, Master Thesis, Federal University of Santa Catarina, Florianopolis, Brazil, 2016.
[15] W. G. J. van Helden, R. J. C. van Zolingen, and H. A. Zondag, PV thermal systems: PV panels supplying renewable electricity and heat, Progress in Photovoltaics: Research and Applications, vol. 12, no. 6, pp. 415–426, Sep. 2004, http://dx.doi.org/10.1002/PIP.559.
[16] Z. Peng, M. R. Herfatmanesh, and Y. Liu, Cooled solar PV panels for output energy efficiency optimisation, Energy Conversion and Management, vol. 150, pp. 949–955, Oct. 2017, http://dx.doi.org/10.1016/J.ENCONMAN.2017.07.007.
[17] K. Moradi, M. Ali Ebadian, and C.-X. Lin, A review of PV/T technologies: Effects of control parameters, International Journal of Heat and Mass Transfer, vol. 64, pp. 483–500, Sep. 2013, http://dx.doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.04.044.
[18] A. Makki, S. Omer, and H. Sabir, Advancements in hybrid photovoltaic systems for enhanced solar cells performance, Renewable and Sustainable Energy Reviews, vol. 41, pp. 658–684, Jan. 2015, http://dx.doi.org/10.1016/J.RSER.2014.08.069.
[19] M. A. Hasan and K. Sumathy, Photovoltaic thermal module concepts and their performance analysis: A review, Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1845–1859, Sep. 2010, http://dx.doi.org/10.1016/J.RSER.2010.03.011.
[20] A. S. Joshi, I. Dincer, and B. V. Reddy, Performance analysis of photovoltaic systems: A review, Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1884–1897, Oct. 2009, http://dx.doi.org/10.1016/J.RSER.2009.01.009.
[21] X. Zhang, X. Zhao, S. Smith, J. Xu, and X. Yu, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies, Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 599–617, Jan. 2012, http://dx.doi.org/10.1016/J.RSER.2011.08.026.
[22] K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, Enhancing the performance of photovoltaic panels by water cooling, Ain Shams Engineering Journal, vol. 4, no. 4, pp. 869–877, Dec. 2013, http://dx.doi.org/10.1016/J.ASEJ.2013.03.005.
[23] R. K. Jardan, I. Nagy, A. Cid-Pastor, R. Leyva, A. El Aroudi, and L. Martinez-Salamero, Combined Photovoltaic / Thermal Energy System for Stand-alone Operation, pp. 2403–2408, 2007, http://dx.doi.org/10.1109/ISIE.2007.4374983.
[24] H. Bahaidarah, A. Subhan, P. Gandhidasan, and S. Rehman, Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions, Energy, vol. 59, pp. 445–453, Sep. 2013, http://dx.doi.org/10.1016/J.ENERGY.2013.07.050.
[25] A. A. B. Baloch, H. M. S. Bahaidarah, P. Gandhidasan, and F. A. Al-Sulaiman, Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling, Energy Conversion and Management, vol. 103, pp. 14–27, Oct. 2015, http://dx.doi.org/10.1016/J.ENCONMAN.2015.06.018.
[26] B. M. Ziapour, V. Palideh, and A. Mohammadnia, Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells, Energy Conversion and Management, vol. 86, pp. 587–594, Oct. 2014, http://dx.doi.org/10.1016/J.ENCONMAN.2014.06.019.
[27] A. Tiwari and M. S. Sodha, Performance evaluation of solar PV/T system: An experimental validation, Solar Energy, vol. 80, no. 7, pp. 751–759, Jul. 2006, http://dx.doi.org/10.1016/J.SOLENER.2005.07.006.
[28] G. Evola and L. Marletta, Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector, Solar Energy, vol. 107, pp. 12–25, Sep. 2014, http://dx.doi.org/10.1016/J.SOLENER.2014.05.041.
[29] C. A. Matias, L. M. Santos, A. J. Alves, and W. P. Calixto, Increasing photovoltaic panel power through water cooling technique, Transactions on Environment and Electrical Engineering, vol. 2, no. 1, Feb. 2017, http://dx.doi.org/10.1016/J.SOLENER.2014.05.041.
[30] CELESC – Centrais Elétricas de Santa Catarina, 2018 [Online]. Available: http://www.celesc.com.br.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.