Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 26 - Number 1
Publishing Date: março 2021
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: Federal University of Ceara
CONTROLE ROBUSTO POR MEIO DE LMIs APLICADO A MOTORES SÍNCRONOS DE ÍMÃS PERMANENTES COM PARÂMETROS INCERTOS
Gustavo Guilherme Koch, Caio Ruviaro Dantas Osório, Filipe Pinarello Scalcon, Thieli Smidt Gabbi, Ricardo Coração de Leão Fontoura de Oliveira, Vinícius Foletto Montagner
115-124
http://dx.doi.org/10.18618/REP.2021.1.0066
Portuguese Data

Palavras Chaves: Controle Robusto, Desigualdades Matriciais Lineares, Incertezas paramétricas

Resumo
Este artigo trata do projeto e da validação experimental de controladores robustos aplicados à regulação de velocidade de motores síncronos de ímãs permanentes. O motor é descrito por um modelo politópico, considerando que os parâmetros elétricos e mecânicos podem variar dentro de intervalos limitados. As equações dinâmicas do motor para as correntes id, iq e para a velocidade wm são discretizadas incluindo o atraso de implementação digital e uma ação integral sobre o erro de rastreamento da referência. Desigualdades matriciais lineares são utilizadas para obter rapidamente, de forma offline, ganhos de controle por realimentação de estados para as duas malhas de controle de corrente e para a malha de velocidade, em uma estratégia de projeto que só demanda do projetista a escolha de dois parâmetros, limitados entre zero e um, que estabelecem uma região para alocação dos polos de malha fechada. Resultados experimentais para um motor comercial de 11 kW ilustram um bom rastreamento de correntes e uma boa regulação de velocidade. Estudos comparativos mostram desempenho dinâmico superior ao de controladores PIs da literatura, sem demandar aumento no número de sensores, permitindo também a redução do acoplamento cruzado entre os eixos direto e em quadratura.

English Data

Title: Robust Control by Means of LMIs Applied to Permanent Magnet Synchronous Motors with Uncertain Parameters

Keywords: Linear Matrix Inequalities, Permanent Magnet Synchronous Motor, Robust Control, Uncertain Parameter

Abstract
This article deals with the design and experimental validation of robust controllers applied to the speed regulation of permanent magnet synchronous motors. The motor is described by a polytopic model, considering that the electrical and mechanical parameters can vary within limited intervals. The dynamic motor equations for the id and iq currents as well as for the speed wm are discretized including the digital implementation delay and an integral action on the reference tracking error. Linear matrix inequalities are used offline to quickly obtain state feedback control gains, for the two current control loops and for the speed loop, in a design strategy that only requires the designer to choose two parameters, limited between zero and one, that establish a region for closed-loop pole location. Experimental results for an 11 kW commercial motor illustrate good current tracking and speed regulation. Comparative studies show a dynamic performance superior to that of PI controllers in literature, without requiring an increased number of sensors, also allowing the reduction of the cross coupling effects between the direct and quadrature axes.

References

[1] R. Krishnan, Electric motor drives: modeling, analysis, and control, Prentice Hall, 2001.

[2] A. Huynh, M.-F. Hsieh, “Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles”, Energies, vol. 11, p. 1385, May 2018.
Doi: 10.3390/en11061385

[3] J. Hang, M. Xia, S. Ding, Y. Li, L. Sun and Q. Wang, “Research on Vector Control Strategy of Surface-Mounted Permanent Magnet Synchronous Machine Drive System With High-Resistance Connection”, IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 2023-2033, Feb. 2020.
Doi: 10.1109/TPEL.2019.2918683

[4] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator”, IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 920-926, July-Aug. 1994.
Doi: 10.1109/28.297908

[5] T. M. Jahns, G. B. Kliman and T. W. Neumann, “Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives,” in IEEE Transactions on Industry Applications, vol. IA-22, no. 4, pp. 738-747, July 1986.
Doi: 10.1109/TIA.1986.4504786

[6] T. Tarczewski and L. M. Grzesiak, “Constrained State Feedback Speed Control of PMSM Based on Model Predictive Approach”, IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3867-3875, June 2016.
Doi: 10.1109/TIE.2015.2497302

[7] F. Mendoza-Mondragón, V. M. Hernández-Guzmán and J. Rodríguez-Reséndiz, “Robust Speed Control of Permanent Magnet Synchronous Motors Using Two-Degrees-of-Freedom Control”, IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6099-6108, Aug. 2018.
Doi: 10.1109/TIE.2017.2786203

[8] J. Liu, H. Li and Y. Deng, “Torque Ripple Minimization of PMSM Based on Robust ILC Via Adaptive Sliding Mode Control”, IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3655-3671, April 2018.
Doi: 10.1109/TPEL.2017.2711098

[9] A. Apte, V. A. Joshi, H. Mehta and R. Walambe, “Disturbance-Observer-Based Sensorless Control of PMSM Using Integral State Feedback Controller”, IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6082-6090, June 2020.
Doi: 10.1109/TPEL.2019.2949921

[10] L. C. Borin, C. R. D. Osório, G. G. Koch, T. S. Gabbi, R. C. L. F. de Oliveira, V. F. Montagner, “Robust Control Design Procedure based on Particle Swarm Optimization and Kharitonov’s Theorem with an applications for PMSMs”, Revista Eletrônica De Potência – SOBRAEP, vol. 25, no.2, pp. 219-229, Junho 2020.
Doi: 10.18618/REP.2020.2.0008

[11] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia, PA, 1994.

[12] P. Gahinet, A. Nemirovskii, A. J. Laub, M. Chilali, LMI Control Toolbox User’s Guide, The Math Works Inc., Natick, MA, 1995.

[13] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, vol. 11–12, pp. 625–653, 1999.

[14] C. Olalla, R. Leyva, A. El Aroudi and I. Queinnec, “Robust LQR Control for PWM Converters: An LMI Approach”, IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2548-2558, July 2009.
Doi: 10.1109/TIE.2009.2017556

[15] L. A. Maccari, J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. L. F. Oliveira and V. F. Montagner, “LMI-Based Control for Grid-Connected Converters With LCL Filters Under Uncertain Parameters”, IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3776-3785, July 2014.
Doi: 10.1109/TPEL.2013.2279015

[16] G. G. Koch, L. A. Maccari, R. C. L. F. Oliveira and V. F. Montagner, “Robust $\mathcal {H}_{\infty }$ State Feedback Controllers Based on Linear Matrix Inequalities Applied to Grid-Connected Converters”, IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6021-6031, Aug. 2019.
Doi: 10.1109/TIE.2018.2870406

[17] C. R. D. Osório, G. G. Koch, H. Pinheiro, R. C. L. F. Oliveira and V. F. Montagner, “Robust Current Control of Grid-Tied Inverters Affected by LCL Filter Soft-Saturation”, IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6550-6561, Aug. 2020.
Doi: 10.1109/TIE.2019.2938474.

[18] F. P. Scalcon, C. R. D. Osório, G. G. Koch, T. S. Gabbi, R. P. Vieira, H. A. Gründling, R. C. L. F. de Oliveira, V. F. Montagner, “Robust Control of Synchronous Reluctance Motors by Means of Linear Matrix Inequalities,” in IEEE Transactions on Energy Conversion, 2020.
Doi: 10.1109/TEC.2020.3028568

[19] G. G. Koch, T. S. Gabbi, R. P. Vieira, H. Pinheiro, T. A. Bernardes, R. C. L. F. de Oliveira, V. F. Montagner, “Linear matrix inequality based synthesis of PI controllers for PMSM with uncertain parameters”, Revista Eletrônica De Potência – SOBRAEP, vol. 23, no. 3, pp. 310-319, Setembro 2018.
Doi: 10.18618/REP.2018.3.2786

[20] T. S. Gabbi, G. G. Koch, R. P. Vieira, V. F. Montagner, E. S. Tognetti, R. A. Borges, L. A. Maccari, R. C. L. F. de Oliveira, “Linear Matrix Inequalities for Digital Redesign Under Delay Suitable for PI Controllers with Application to PMSMs”, Journal of Control, Automation and Electrical Systems, vol. 30, pp. 479–489, Aug. 2019.
Doi: 10.1007/s40313-019-00466-x

[21] W. Wang, H. Shen, L. Hou and H. Gu, “${H_\infty}$ Robust Control of Permanent Magnet Synchronous Motor Based on PCHD,” in IEEE Access, vol. 7, pp. 49150-49156, 2019.
Doi: 10.1109/ACCESS.2019.2893243

[22] K. Aström, B. Wittenmark, Computer-controlled systems: theory and design, Prentice Hall, 1997.

[23] V. F. Montagner, V. J. S. Leite and P. L. D. Peres, “Discrete-time switched systems: pole location and structural constrained control”, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp. 6242–6247, Maui, HI, USA, December 2003.
Doi: 10.1109/CDC.2003.1272287

[24] J. Daafouz, P. Riedinger and C. Iung, “Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach,” in IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1883-1887, Nov. 2002.
Doi: 10.1109/TAC.2002.804474

[25] B. A. Francis, W. M. Wonham, “The internal model principle of control theory”, Automatica, vol. 12, no. 5, pp. 457–465, September 1976.
Doi: 10.1016/0005-1098(76)90006-6

[26] M. Chilali, P. Gahinet and P. Apkarian, “Robust pole placement in LMI regions”, IEEE Transactions on Automatic Control, vol. 44, no. 12, pp. 2257-2270, Dec. 1999.
Doi: 10.1109/9.811208

[27] K. Ogata, Discrete-time control systems, Prentice Hall, 1995.

[28] M. J. Ryan, R. D. Lorenz and R. De Doncker, “Modeling of multileg sine-wave inverters: a geometric approach”, IEEE Transactions on Industrial Electronics, vol. 46, no. 6, pp. 1183-1191, Dec. 1999.
Doi: 10.1109/41.808008

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.