Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 26 - Number 3
Publishing Date: setembro 2021
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: Federal University of Ceará
CONVERSOR BOOST COM CÉLULAS A CAPACITOR CHAVEADO E INDUTOR ACOPLADO
Pablo H. C. da S. B. Loureiro, Tiago Miguel Klein Faistel, Ademir Toebe, Paulo Cesar Vargas da Luz, António Manuel Santos Spencer Andrade
279-289
http://dx.doi.org/10.18618/REP.2021.3.0005
Portuguese Data

Palavras Chaves: Alto Ganho de Tensão, Capacitor chaveado, Conversor Boost, Conversor CC-CC, Indutor Acoplado

Resumo
Este artigo apresenta uma topologia de conversor CC-CC de alto ganho de tensão baseado no conversor boost com célula ladder de capacitor chaveado e indutor acoplado. A posição do enrolamento do secundário do indutor acoplado permite que eliminar possíveis picos de correntes causados pela célula de capacitor chaveado. Além disso, o conversor possui como características: elevado ganho estático, baixo esforço de tensão nos semicondutores, o que permite utilizar interruptor e diodos com baixas resistências intrínsecas; baixos valores de capacitores, visto que os capacitores da célula ladder de capacitor chaveado podem ser projetados na região de carga total sem que ocorram picos de correntes. No artigo é avaliado teoricamente o princípio de operação do conversor proposto, ganho de tensão, esforço de tensão e corrente, comparação com topologias similares encontrados na literatura, e por fim metodologia de projeto. Para validar essas análises, um protótipo de 200 W, 30 V/400 V foi implementado experimentalmente, alçando um rendimento máximo de 96,4 %.

English Data

Title: BOOST CONVERTER WITH SWITCHED CAPACITORS CELL AND COUPLED INDUCTOR

Keywords: Boost Converter, Coupled Inductor, DC-DC converter, High step-up, Switched capacitor

Abstract
This paper presents a new topology of high voltage gain DC-DC converter based on the boost converter with the switched capacitor ladder cell and coupled inductor. The secondary position of the coupled inductor does not allow possible current spikes caused by the switched capacitor cell. In addition, the converter has the following characteristics: high static gain, low voltage stress across the semiconductors, which allows the use of switch and diodes with low intrinsic resistances; low capacitor values, since the capacitors of the switched capacitor ladder cell can be designed in the region of full charge without current spikes occurring. The principle of operation of proposed converter was theoretically evaluated, voltage gain, voltage and current stress, comparison with similar topologies found in the literature, and finally, design methodology. To validate these analyzes, a 200 W, 30 V/400 V prototype was implemented experimentally, raising a peak performance of 96.4%.

References

[1] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, B. Lehman, “Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications,” IEEE Transactions on Power Electronics, vol. 32, no. 12, pp.
9143-9178, Dec. 2017.
Doi: 10.1109/TPEL.2017.2652318

[2] F. L. Tofoli, D. de C. Pereira, W. J. de Paula, D. de S. Oliveira Junior, “Survey on non-isolated high-voltage step-up DC-DC topologies based on the boost converter,” IET Power Electronics, vol. 8, no. 10, pp. 2044–2057, 2015.
Doi: 10.1049/iet-pel.2014.0605

[3] E. S. Hass; C. B. Nascimento, “A Simple Self-Clamped High Step-Up DC-DC Converter Employing Coupled Inductor”, Eletrônica de Potência – SOBRAEP, vol. 24, nº 2, pp. 204-213, Abr./Jun. 2019.
Doi: 10.18618/REP.2019.2.0009

[4] R. Mayer, M. B. E. Kattel, S. V. G. Oliveira, “Bidirectional DC–DC Converter with Coupled Inductor for DC-Bus Regulation in Microgrid Applications”, Eletrônica de Potência – SOBRAEP, vol. 25, nº 3, pp. 241-248, Jul./Set. 2020.
Doi: 10.18618/REP.2020.3.0007

[5] F. K. Li, Y. Hu, A. Ioinovici, “Generation of the Large DC Gain Step-Up Nonisolated Converters in Conjunction With Renewable Energy Sources Starting From a Proposed Geometric Structure,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5323-5340, July 2017.
Doi: 10.1109/TPEL.2016.2609501

[6] B. Axelrod, Y. Berkovich and A. Ioinovici, “SwitchedCapacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, March 2008.
Doi: 10.1109/TCSI.2008.916403

[7] Y. Pontes, C. E. de A. e Silva, E. M. Sá Jr., “High Voltage Gain DC-DC Converter for Photovoltaic Applications in DC Nanogrids”, Eletrônica de Potência – SOBRAEP, 2020.
Doi: 10.18618/REP.2020.4.0021

[8] R. G. A. Cacau1, T. B. Lazzarin, M. C. T. Villanueva, I. Barbi, “Study of High Step-Up Gain DC-DC Converters Based pn Stacking of Non-Isolated Topologies”, Eletrônica de Potência – SOBRAEP, vol. 23, nº 4, pp. 505-515, Out./Dez. 2018.

Doi: 10.18618/REP.2018.4.0029

[9] J. R. Dreher, A. M. S. S. Andrade, L. Schuch, , M. L. da S. Martins, “Coupled-Inductor High Step-Up Integrated Topologies: Synthesis, Analysis and Experimental Results”, Eletrônica de Potência – SOBRAEP, vol. 21, nº 2, pp. 091-104, Mar./Jun. 2016.
Doi: 10.18618/REP.2016.2.2564

[10] S. Chen, M. Lao, Y. Hsieh, T. Liang, K. Chen, “A Novel Switched-Coupled-Inductor DC–DC Step-Up Converter and Its Derivatives,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 309-314, Jan.-Feb. 2015.
Doi: 10.1109/TIA.2014.2332642

[11] Maccarini, M. C. “Retificador monofásico com fator de potência unitário, de alto ganho, baseado em um conversor boost híbrido,” Dissertação de Mestrado, UFSC, 2013.

[12] Y. Tang, T. Wang, Y. He, “A Switched-CapacitorBased Active-Network Converter With High Voltage Gain,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2959-2968, June 2014.
Doi: 10.1109/TPEL.2013.2272639

[13] Tang, Y., T. Wang, D. FU, “Multicell switched inductor/switched capacitor combined active-network converters,” IEEE Transactions on Power Electronics, v. 30, n. 4, p. 2063-2072, 2015.
Doi: 10.1109/TPEL.2014.2325052

[14] A. M. S. S. Andrade, E. Mattos, L. Schuch, H. L. Hey, M. L. S. Martins, “Synthesis and comparative analysis of very high step-up DC–DC converters adopting coupled-inductor and voltage multiplier cells,” IEEE Transactions on Power Electronics, v. 33, n. 7, p. 5880-5897, 2018.

Doi: 10.1109/TPEL.2017.2742900

[15] A. M. S. S. Andrade, E. Mattos, H. L. Hey, L. Schuch, M. L. S. , “Coupled-Inductor High Step-Up Integrated Topologies: Synthesis, Analysis and Experimental Results”, Eletrônica de Potência – SOBRAEP, vol. 22, nº 2, pp. 122-130, Abr./Jun. 2017.
Doi: 10.18618/REP.2016.2.2564

[16] J. M. de Andrade, M. A. Salvador, R. F. Coelho and T. B. Lazzarin, “General Method for Synthesizing High Gain Step-Up DC–DC Converters Based on Differential Connections,” IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13239-13254, Dec. 2020.

Doi: 10.1109/TPEL.2020.2996501

[17] M. A. Salvador, J. M. de Andrade, T. B. Lazzarin and R. F. Coelho, “Nonisolated High-Step-Up DC–DC Converter Derived from Switched-Inductors and Switched-Capacitors,” IEEE Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8506-8516, Oct. 2020.
Doi: 10.1109/TIE.2019.2949535

[18] A. M. S. S. Andrade, T. Faistel, R. A. Guisso and A. Toebe, “Hybrid High Voltage Gain Transformerless DC-DC Converter,” IEEE Transactions on Industrial Electronics.

Doi: 10.1109/TIE.2021.3066939.

[19] E. S. Hass, C. B. Nascimento, “A Simple Self-Clamped High Step-Up DC-DC Converter employing Coupled Inductor”, Eletrônica de Potência – SOBRAEP, vol. 24, nº 2, pp. 204-2013, Abr./Jun. 2019.
Doi: 10.18618/REP.2019.2.0009

[20] J. Ai, M. Lin, H. Liu and P. Wheeler, “A Family of High Step–Up DC–DC Converters With Nc Step-Up Cells and M–Source Clamped Circuits,” IEEE Access, vol. 9, pp. 65947-65966, 2021.
Doi: 10.1109/ACCESS.2021.3073416.

[21] X. Fan, H. Sun, Z. Yuan, Z. Li, R. Shi and N. Ghadimi, “High Voltage Gain DC/DC Converter Using Coupled Inductor and VM Techniques,” IEEE Access, vol. 8, pp. 131975-131987, 2020.
Doi: 10.1109/ACCESS.2020.3002902.

[22] L. Schmitz, D. C. Martins and R. F. Coelho, “Comprehensive Conception of High Step-Up DC–DC Converters With Coupled Inductor and Voltage Multipliers Techniques,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6,
pp. 2140-2151, June 2020.
Doi: 10.1109/TCSI.2020.2973154

[23] J. Ai, M. Lin, H. Liu and P. Wheeler, “A Family of High Step–Up DC–DC Converters With Nc Step-Up Cells and M–Source Clamped Circuits,” IEEE Access, vol. 9, pp. 65947-65966, 2021.
Doi: 10.1109/ACCESS.2021.3073416

[24] M. B. Meier, S. Avelino da Silva, A. A. Badin, E. F. R. Romaneli and R. Gules, “Soft-Switching High Static Gain DC–DC Converter Without Auxiliary Switches,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2335-2345, March 2018.

Doi: 10.1109/TIE.2017.2739684

[25] P. Alavi, P. Mohseni, E. Babaei and V. Marzang, “An Ultra-High Step-Up DC–DC Converter With Extendable Voltage Gain and Soft-Switching Capability,” IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9238-9250, Nov. 2020.

Doi: 10.1109/TIE.2019.2952821

[26] M. E. Azizkandi, F. Sedaghati, H. Shayeghi and F. Blaabjerg, “A High Voltage Gain DC–DC Converter Based on Three Winding Coupled Inductor and Voltage Multiplier Cell,” IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4558-4567, May 2020.
Doi: 10.1109/TPEL.2019.2944518

[27] M. F. Guepfrih, G. Waltrich and T. B. Lazzarin, “High Step-Up Dc-Dc Converter Using Built-in Transformer Voltage Multiplier Cell and Dual Boost Concepts,” IEEE Journal of Emerging and Selected Topics in Power Electronics.

Doi: 10.1109/JESTPE.2021.3063060

[28] A. F. de Souza, F. L. Tofoli, E. R. Ribeiro, “Switched Capacitor DC-DC Converters: A Survey on the Main Topologies, Design Characteristics, and Applications,” Energies, vol. 14, pp. 1-33, 2021.
Doi: 10.3390/en14082231

[29] B. Wu, S. Li, K. M. Smedley, S. Singer, “Analysis of High-Power Switched-Capacitor Converter Regulation Based on Charge-Balance Transient-Calculation Method,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3482-3494, May 2016.
Doi: 10.1109/TPEL.2015.2466095

[30] G. V. Silva, J. M. de Andrade, R. F. Coelho, T. B. Lazzarin, “Switched-Capacitor Differential Boost Inverter: Design, Modeling, and Control,” IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5421-5431, July 2020.
Doi: 10.1109/TIE.2019.2931258

[31] Magnetics, “Magnetics Powder Core Catalog,” https://www.mag-inc. com/Media/Magnetics, 2020, acesso online: 10 de Janeiro de 2021.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.