Institucional Revista Notícias Contato Acesso Associado

Revista Eletrônica de Potência (Brazilian Journal of Power Electronics)

Issue: Volume 25 - number 1
Publishing Date: março 2020
Editor-in-Chief: Demercil de Souza Oliveira Júnior
Editor Affiliation: UFC
MODELING AND DESIGN OF A FAST-DYNAMIC RESPONSE PHASE-LOCKED LOOP BASED ON MOVING AVERAGE FILTER
Fernando Ortiz Martinz, Rayra Destro, Naji Rajai Nasri Ama, Kelly Caroline Mingorancia de Carvalho, Wilson Komatsu, Lourenço Matakas Junior
114-124
http://dx.doi.org/10.18618/REP.2020.1.0003
English Data

Title: MODELING AND DESIGN OF A FAST-DYNAMIC RESPONSE PHASE-LOCKED LOOP BASED ON MOVING AVERAGE FILTER

Keywords: Grid synchronization, Moving Average Filter, Padé Approximation, Phase locked loops, PI controller

Abstract

Phase Locked Loops (PLLs) with in-loop Moving Average Filter (MAF) and a Proportional Integral (PI) controller are effective methods to achieve synchronization in grid-connected converters, since they have simple implementation, low computational burden and excellent filtering capability. However, they are known to be slow. The reasons are the MAF time delay and the PI controller tuning method, which makes the design of a fast control loop challenging. This paper demonstrates that the second-order Padé approximation is enough to achieve an accurate model for the MAF, and presents a controller design technique that results in the minimum settling times achievable for a MAF-PLL with a PI controller. Simulation and experimental results validate the proposed approach.

References

[1] [1] Z. Ali, N. Christofides, L. Hadjidemetriou, E. Kyriakides, Y. Yang, F. Blaabjerg, “Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review”, Renewable and Sustainable Energy Reviews, vol. 90, pp. 434–452, July 2018.
Doi: 10.1016/j.rser.2018.03.086

[2] [2] N.F. Guerrero-Rodríguez, A.B. Rey-Boué, L.C. Herrero-de Lucas, F. Martinez-Rodrigo, “Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances”. Renewable Energy, vol. 80, pp. 380–395, August 2015.
Doi: 10.1016/j.renene.2015.02.027

[3] [3] N.F. Guerrero-Rodríguez, A.B. Rey-Boué, E.J. Bueno, O. Ortiz, E. Reyes-Archundia, “Synchronization algorithms for grid-connected renewable systems: Overview, tests and comparative analysis”, Renewable and Sustainable Energy Reviews, vol. 75, pp. 629–643, Aug 2017.
Doi: 10.1016/j.rser.2016.11.038

[4] [4] R. Teodorescu, M. Liserre, P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems, John Wiley & Sons, Ltd, 1st edition, Chichester, 2011.
Doi: 10.1002/9780470667057

[5] [5] A.Q. Al-Shetwia, M.A. Sujod, F. Blaabjerg, “Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant”, Solar Energy, no. 159, pp. 665–681, January 2018.
Doi: 10.1016/j.solener.2017.11.027

[6] [6] A. Cabrera-Tobar, E. Bullich-Massagué, M. Aragüés-Peñalba, O. Gomis-Bellmunt, “Review of advanced grid requirements for the integration of large-scale photovoltaic power plants in the transmission system”, Renewable and Sustainable Energy Reviews, vol. 62, pp. 971–987, September 2016.
Doi: 10.1016/j.rser.2016.05.044

[7] [7] N. Ama, F.O. Martinz, L. Matakas Jr., F. Kassab Junior, “Phase Locked Loop Based on Selective Harmonics Elimination for Utility Applications”, IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 144-153, January 2013.
Doi: 10.1109/TPEL.2012.2195506

[8] [8] F. Freijedo, J. Doval-Gandoy, O. Lopez, E. Acha, “Tuning of Phase-Locked Loops for Power Converters Under Distorted Utility Conditions”. IEEE Transactions on Industry Applications, vol. 45, no. 6, pp. 2039-2047, November-December 2009.
Doi: 10.1109/TIA.2009.2031790

[9] [9] R.E. Best, Phase Locked Loops – Design, Simulation and Applications, Mc-Graw Hill, 5th edition, New York, 2003.

[10] [10] N.R.N. Ama, W. Komatsu, F. Kassab Junior, L. Matakas Jr., “Adaptive single phase moving average filter PLLs: analysis, design, performance evaluation and comparison”, Przeglad Elektrotechniczny, vol. 90, no. 5, pp. 180-188, 2014.
Doi: 10.12915/pe.2014.05.43

[11] [11] N. Ama, W. Komatsu, L. Matakas Jr., “Digital Control for PLLs Based on Moving Average Filter: Analysis and Design in Discrete Domain”, Eletrônica de Potência, vol. 20, no. 3, pp. 293-299, August 2015.
Doi: 10.18618/REP.2015.3.2547

[12] [12] N.R.N. Ama, W. Komatsu, L. Matakas Jr., “Single and three-phase moving average filter PLLs: Digital controller design recipe”, Electric Power Systems Research, vol. 116, pp. 276-283, November 2014.
Doi: 10.1016/j.epsr.2014.06.019

[13] [13] V.D. Bacon, S.A.O. da Silva, “Performance Improvement of a Three-Phase Phase-Locked-Loop Algorithm under Utility Voltage Disturbances using Non-Autonomous Adaptive Filters”, IET Power Electronics, vol. 8, no. 11, pp. 2237-2250, November 2015.
Doi: 10.1049/iet-pel.2014.0808

[14] [14] I. Carugati, C.M. Orallo, S. Maestri, P. Donato, D. Carrica, “Variable, Fixed, and Hybrid Sampling Period Approach for Grid Synchronization”. Electric Power Systems Research, vol. 144, pp. 23-31, March 2017.
Doi: 10.1016/j.epsr.2016.10.053

[15] [15] R. Destro, L. Matakas Jr., W. Komatsu, N.R.N. Ama, “Implementation Aspects of Adaptive Window Moving Average Filter Applied to PLLs – Comparative Study”, in Brazilian Power Electronics Conference (COBEP), pp. 730-736, 2013.
Doi: 10.1109/COBEP.2013.6785196

[16] [16] S. Golestan, M. Ramezani, J.M. Guerrero, F.D. Freijedo, M. Monfared, “Moving Average Filter Based Phase-Locked Loops: Performance Analysis and Design Guidelines”, IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2750-276, June 2014.
Doi: 10.1109/TPEL.2013.2273461

[17] [17] S. Golestan, F.D. Freijedo, A. Vidal, J.M. Guerrero, J. Doval-Gandoy, “A quasi-type-1 phase-locked loop structure”, IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6264–6270, December 2014.
Doi: 10.1109/TPEL.2014.2329917

[18] [18] S. Golestan, J.M. Guerrero, A.M. Abusorrah, “MAF-PLL with phase-lead compensator”, IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3691–3695, June 2015
Doi: 10.1109/TIE.2014.2385658

[19] [19] S. Golestan, J.M. Guerrero, A.M. Abusorrah, Y. Al-Turki, “Hybrid synchronous/stationary reference frame filtering based PLL”, IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5018-5022, August 2015.
Doi: 10.1109/TIE.2015.2393835

[20] [20] F.A.S. Neves, M.C. Cavalcanti, H.E.P. de Souza, F. Bradaschia, E.J. Bueno, M. Rizo, “A Generalized Delayed Signal Cancellation Method for Detecting Fundamental-Frequency Positive-Sequence Three-Phase Signals”, IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1816-1825, July 2010.
Doi: 10.1109/TPWRD.2010.2044196

[21] [21] V. Kaura, V. Blasko, “Operation of a phase locked loop system under distorted utility conditions”, IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 58-63, January-February 1997.
Doi: 10.1109/APEC.1996.500517

[22] [22] A. Kulkarni, V. John, “Design of a fast response time single-phase PLL with dc offset rejection capability”, Electric Power Systems Research, vol. 145, pp. 33-43, April 2017.
Doi: 10.1016/j.epsr.2016.12.023

[23] [23] F.P. Marafão, S.M. Deckmann, J.A. Pomilio, R.Q. Machado, “Metodologia de projeto e análise de algoritmos de sincronismo PLL”, Eletrônica de Potência, vol. 10, no. 1, pp. 7-14, June 2005.
Doi: 10.18618/REP.2005.1.007014

[24] [24] L. Matakas, W. Komatsu, F.O. Martinz, “Positive sequence tracking Phase Locked Loops: A unified graphical explanation”, in International Power Electronics Conference (IPEC), pp. 1273-1280, 2010.
Doi: 10.1109/IPEC.2010.5543480

[25] [25] M. Mirhosseini, J. Pou, V.G. Agelidis, E. Robles, S. Ceballos, “A three-phase frequency-adaptive phase-locked loop for independent single-phase operation”, IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6255–6259, December 2014.
Doi: 10.1109/TPEL.2014.2328657

[26] [26] L. Rolim, D. da Costa, M. Aredes, “Analysis and Software Implementation of a Robust Synchronizing PLL Circuit Based on the pq Theory”, IEEE Transactions on Industry Electronics, vol. 53, no. 6, pp. 1919-1926, December 2006.
Doi: 10.1109/TIE.2006.885483

[27] [27] J.Y. Wang, J. Liang, F. Gao, L. Zhang, Z. Wang, “A method to improve the dynamic performance of moving average filter-based PLL”, IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5978–5990, Oct. 2015.
Doi: 10.1109/TPEL.2014.2381673

[28] [28] Y. Han, M. Luo, C. Chen, A. Jiang, X. Zhao, J.M. Guerrero, “Performance Evaluations of Four MAF-Based PLL Algorithms for Grid-Synchronization of Three-Phase Grid-Connected PWM Inverters and DGs”, Journal of Power Electronics, vol. 16, no. 5, pp. 1904-1917, September 2016.
Doi: 10.6113/JPE.2016.16.5.1904

[29] [29] F. Golnaraghi and B.C. Kuo, Automatic Control Systems, Chapter 4 – Theoretical Foundation and Background Material: Modeling of Dynamic Systems, Prentice-Hall, 9th edition, John Wiley and Sons, 2010.

[30] [30] Mathworks, “Time-Delay Approximation”, 2019, https://www.mathworks.com/help/control/ug/time-delay-approximation.html.

[31] [31] K. Ogata, Modern Control Engineering, Chapter 8 -Frequency Domain Analysis, Prentice-Hall, 3rd edition, New Jersey, 1997.

[32] [32] S. Preitl, R.E. Precup, “An extension of tuning relations after symmetrical optimum method for PI and PID controllers”, Automatica, vol. 35, pp. 1731-1736, October 1999.
Doi: 10.1016/S0005-1098(99)00091-6

[33] [33] R.C. Dorf. and R.H. Bishop, Modern Control Systems, Chapter 5-Performance of feedback control systems, Prentice-Hall, 12th edition, New Jersey, 2011.

[34] [34] R.H. Middleton, G.C. Goodwin, Digital control and estimation: a unified approach, Prentice-Hall, 1st edition, New Jersey, 1990.

[35] [35] M. Vajta, “Some Remarks on Padé-Approximations”, in Tempus Intcom Symposium on Intelligent Systems in Control and Measurement, September 2000.

Seja um
Associado

A afiliação à SOBRAEP permite aos sócios (Efetivos, Aspirantes e Corporativos) acesso completo ao site da SOBRAEP e descontos em inscrições de alguns congressos da área, além da participação nos Webinars promovidos pela associação. Também existem três tipos de patrocínio disponíveis para o site/COBEP.